HW4 - Due 02/20

Each answer must be mathematically justified. Don’t forget your name.

Problem 1. Are the following sets convex?

(a) \(A = \{ \mathbf{x} \in \mathbb{R}^n : x_1^2 + \ldots + x_n^2 \leq 1 \} \);
(b) \(B = \{ \mathbf{x} \in \mathbb{R}^n : 0 \leq x_1 \leq 1, 0 \leq x_2 \leq 1, \ldots, 0 \leq x_n \leq 1 \} \);
(c) \(C = \{ (x, y) \in \mathbb{R}^2 : y \geq x^3 - x \} \);
(d) \(D = \{ (x, y, z) \in \mathbb{R}^3 : z = 2x^2 + y^2 \} \).

(a) We first show that the function \(x^2 \) is convex: it is obvious because its second derivative is 2, which is positive. Therefore, for any real \(x, y \) and any \(t \) in \([0, 1]\),

\[(tx + (1 - t)y)^2 \leq tx^2 + (1 - t)y^2. \]

We apply this to \(x = x_1, \ldots, x_n \) and to \(y = y_1, \ldots, y_n \) to get that for every \(j = 1, \ldots, n \), every \(t \) between 0 and 1,

\[(tx_j + (1 - t)y_j)^2 \leq tx_j^2 + (1 - t)y_j^2. \]

Sum over \(j \) and get

\[(tx_1 + (1 - t)y_1)^2 + \ldots + (tx_n + (1 - t)y_n)^2 \leq t(x_1^2 + \ldots + x_n^2) + (1 - t)(y_1^2 + \ldots + y_n^2). \]

Therefore, if \(\mathbf{x} \) and \(\mathbf{y} \) belong to \(A \), that is

\[x_1^2 + \ldots + x_n^2 \leq 1, \quad y_1^2 + \ldots + y_n^2 \leq 1, \]

then

\[(tx_1 + (1 - t)y_1)^2 + \ldots + (tx_n + (1 - t)y_n)^2 \leq t(x_1^2 + \ldots + x_n^2) + (1 - t)(y_1^2 + \ldots + y_n^2) \leq t + 1 - t \leq 1; \]

that is, \(t\mathbf{x} + (1 - t)\mathbf{y} \) belongs to \(A \). Therefore \(A \) is convex.

(b) Assume that \(\mathbf{x}, \mathbf{y} \) belong to \(B \). Then,

\[0 \leq x_1 \leq 1, \quad 0 \leq y_1 \leq 1, \]
\[0 \leq x_n \leq 1, \quad 0 \leq y_n \leq 1. \]

This implies that for any \(t \in [0, 1], \)

\[0 \leq tx_1 \leq 1, \quad 0 \leq tx_n \leq 1, \]
\[0 \leq (1 - t)y_1 \leq 1, \quad 0 \leq (1 - t)y_n \leq 1. \]

Summing both inequalities gives

\[0 \leq tx_1 + (1 - t)y_1 \leq 1, \quad 0 \leq tx_n + (1 - t)y_n \leq 1. \]

Therefore \(t\mathbf{x} + (1 - t)\mathbf{y} \) belongs to \(B \), thus \(B \) is convex.

The best is to draw a picture. This motivates the following choices: \((-1, 0) \in C \) and \((0, 0) \in C \) because \((-1)^3 - (-1) \leq 0 \) and \(0^3 - 0 \leq 0 \). But the middle point \((-1/2, 0)\) is not in \(B \) because \((-1/2)^3 - (-1/2) > 0 \). Thus \(C \) is not convex.

We observe that \((0, 0, 0) \) is in \(D \) and that \((0, 2, 4) \) is in \(D \). However, the middle point \((0, 1, 2) \) is not in \(D \) because \(2 \neq 2 \cdot 0^2 + 1^2 \). Therefore \(D \) is not convex.
Problem 2. Prove the following inequalities:

(a) For any a, b real numbers, $3e^{a+2b} \leq e^{3a} + 2e^{3b}$.
(b) For any a, b real numbers, $(a + b)^{2018} \leq 2^{2017}a^{2018} + 2^{2017}b^{2018}$.

(a) We use that e^x is convex to get $e^{x+2y} \leq \frac{1}{3}e^x + \frac{2}{3}e^y$.

Now take $x = 3a$ and $y = 3b$ and multiply both sides by 3 to get $3e^{a+2b} \leq e^{3a} + 2e^{3b}$.

(b) We use that x^{2018} is convex (its second derivative is positive) to get $\left(\frac{x+y}{2}\right)^{2018} \leq \frac{1}{2}x^{2018} + \frac{1}{2}y^{2018}$.

Then take $x = 2a$ and $y = 2b$ above to get $(a + b)^{2018} \leq 2^{2017}a^{2018} + 2^{2017}b^{2018}$.

Problem 3. Show that if $u(t)$ is convex and increasing and $f(x, y)$ is convex, then the function $g(x, y) = u(f(x, y))$ is convex. Use this fact to prove that the function $h(x, y) = e^{x^2+y^4+1}$ is convex.

If f is convex, then $f(t \vec{x} + (1 - t) \vec{y}) \leq tf(\vec{x}) + (1 - t)f(\vec{y})$.

Apply u on both sides (remark that u is increasing, so the sense of the inequality is preserved) to get $g(t \vec{x} + (1 - t) \vec{y}) \leq u(tf(\vec{x}) + (1 - t)f(\vec{y}))$.

Now, use that u is convex to get $u(tf(\vec{x}) + (1 - t)f(\vec{y})) \leq tu(f(\vec{x})) + (1 - t)u(f(\vec{y}))$.

We deduce that $g(t \vec{x} + (1 - t) \vec{y}) \leq tu(f(\vec{x})) + (1 - t)u(f(\vec{y})) = tg(\vec{x}) + (1 - t)g(\vec{y})$, that is, g is convex. Now in order to show that h is convex, we take $u(t) = e^t$ (which is convex and increasing) and $f(x, y) = 1 + x^2 + y^4$. Note that f is convex: we have $f''(x, y) = \begin{bmatrix} 2 & 0 \\ 0 & 12y^2 \end{bmatrix}$, which is positive semi-definite: $2 > 0$ and $24y^2 \geq 0$. In addition, $h = u \circ f$. Thus by the first part, h is convex.

Problem 4. Find the global minimum of the following functions:

(a) $f(x, y) = e^{x^2+2xy+4y^2}$ over all real x and y;
(b) \(g(x, y) = 2x^2 - 2x + 1 - 2xy + y^2 \) over \(\{(x, y) : (x - 1)^2 + (y - 1)^2 \leq 1\} \);
(c) \(h(x, y) = x^2 + y^2 + 1 \) over \(\{(x, y) : 1 \leq x \leq 2, 1 \leq y \leq 2\} \).
(d) (optional) \(i(x, y) = e^{x^2+y^2} + e^{-x^2-y^2} \) over all real \(x \) and \(y \).

(a) We observe that \(f \) is convex: indeed it suffices to prove (by Problem 3) that \(x^2 + 2xy + 4y^2 \) is convex. The Hessian is
\[
\begin{bmatrix}
2 & 2 \\
2 & 8
\end{bmatrix}
\]
which is definite positive. Therefore if \(f \) has a critical point, then it must correspond to the global minimum. The derivatives of \(f \) are
\[
\partial_x f(x, y) = (2x + 2y)e^{x^2+2xy+4y^2}, \quad \partial_y f(x, y) = (2x + 8y)e^{x^2+2xy+4y^2}.
\]
The only critical point is at \((0, 0)\) thus \(f \) has a global minimum at \((0, 0)\), equal to \(f(0, 0) = 1 \).

(b) Again, we first prove that \(g \) is convex, then we look for critical points within the admissible set. The Hessian is
\[
g''(x, y) = \begin{bmatrix}
4 & -2 \\
-2 & 2
\end{bmatrix}
\]
which is positive definite, thus \(g \) is convex. The admissible set is convex (see e.g. Problem 1(a)). The derivatives of \(g \) are
\[
\partial_x g(x, y) = 4x - 2 - 2y, \quad \partial_y g(x, y) = -2x + 2y.
\]
The only critical point is \((1, 1)\). It belongs to the admissible set. Therefore it corresponds to the global minimum of \(g \): \(g(1, 1) = 0 \).

(c) We compute the Hessian:
\[
h''(x, y) = \begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}
\]
Therefore \(h \) is convex. Then we look for critical points: there is only one, \((0, 0)\), which is outside the admissible set. Since this admissible set is convex, \(h \) admits its minimum on the boundary of the set. This boundary is given by four pieces of line, corresponding to \((1, 1 + t); (1 + t, 1); (1 + t, 2) \) and \((2, 1 + t)\), where \(t \) lies between 0 and 1. Therefore we must look for the minimum of the following functions:
\[
1 + (1 + t)^2 + 1; \quad (1 + t)^2 + 1 + 1; \quad (1 + t)^2 + 2^2 + 1; \quad 2^2 + (1 + t)^2 + 1
\]
for \(t \) between 0 and 1. Clearly, the last ones are bigger than the first one; and the first equal \(3 + 2t + t^2 \). This function decreases for \(t \geq -1 \) and increases after. Therefore \(3 + 2t + t^2 \) is minimal for \(t \) in \([0, 1]\) when \(t = 0 \): 3 is its global minimum. It follows that 3 is the global minimum of \(h \) (attained at \((1, 1)\)).

(d) We check that \(i \) is convex:
\[
\partial_x i(x, y) = 2x(e^{x^2+y^2} - e^{-x^2-y^2}), \quad \partial_y i(x, y) = 2y(e^{x^2+y^2} - e^{-x^2-y^2}),
\]
\[
i''(x, y) = \begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}(e^{x^2+y^2} - e^{-x^2-y^2}) + \begin{bmatrix}
4x^2 & 2x \\
2y & 2y
\end{bmatrix}(e^{x^2+y^2} + e^{-x^2-y^2}).
\]
We observe that the second matrix is positive semi-definite while the first one is positive definite (because $e^t \geq e^{-t}$). Therefore i is convex. We observe that $(0,0)$ is a critical point of i: its derivatives vanish simultaneously at $(0,0)$. Hence it must correspond to the global minimum of i: $i(0,0) = 2$.

Problem 5. For which values of a and b is the function $f(x, y) = e^{ax^2 + by^2}$ convex?

We compute the Hessian of f:

$$
\partial_x f(x, y) = 2axe^{ax^2+by^2}, \quad \partial_y f(x, y) = 2bye^{ax^2+by^2},
$$

$$
f''(x, y) = \begin{bmatrix}
2a + (2ax)^2 & 4abxy \\
4abxy & 2b + (2by)^2
\end{bmatrix} e^{ax^2+by^2}.
$$

Now we test when this is positive semidefinite: we must have $2a + 4ax^2 \geq 0$ for all x. This is achieved iff $a \geq 0$ (take $x = 0$). We must also have for all x and y,

$$(2a + 4a^2x^2)(2b + 4b^2y^2) - 4abxy \cdot 4abxy = 4ab + 8a^2bx^2 + 8b^2ay^2 \geq 0,$$

which can happen only if $b \geq 0$ (take $x = y = 0$). When a and b are both nonnegative, $4ab + 8a^2bx^2 + 8b^2ay^2 \geq 0$. Thus f is convex.

Problem 6. Show that if f is a convex smooth function on \mathbb{R}, then for any value of a, the graph of f is above the tangent line at a. (Hint: use the fundamental theorem of calculus).

Fix a a point. By the fundamental theorem of calculus:

$$f(x) = f(a) + \int_a^x f'(t)dt.$$

Now use that f' is non-decreasing (because f is convex): if $x \geq a$ and t is between a and x, $f'(t) \geq f'(a)$. It follows that

$$f(x) = f(a) + \int_a^x f'(t)dt \geq f(x) = f(a) + \int_a^x f'(a)dt \geq f(a) + (x-a)f'(a).$$

This means that f is above its tangent line for all $x \geq a$. For $x \leq a$ and t between x and a, $f'(x) \leq f'(a)$ and since the bound in the integral are inverted,

$$f(x) = f(a) + \int_a^x f'(t)dt \geq f(x) = f(a) + \int_a^x f'(a)dt = f(a) - \int_x^a f'(t)dt \geq f(a) - \int_a^x f'(a)dt = f(a) - (a-x)f'(a) = f(a) + (x-a)f'(a).$$

This shows that f is above its tangent line for x before a.