
O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Midterm 1 practice

At the midterm, you will be asked to have your camera on and microphone
off. If you need to ask a question, send me a private message through the
Zoom chat. During the midterm, you are allowed to use two pages of notes
that you wrote yourself. You are not allowed to use textbooks, the Internet,
or any other resources. The exam will last 60 minutes. In the remaining
15 minutes of class, upload your solutions together with the two pages of
notes to the Gradescope. If you encounter technical difficulties with the
Gradescope or anything else, send me a message through the Zoom chat.

references

The midterm will be based on Lectures 1–7, Homework 1–3, and the problems
from this practice midterm. It will cover the following topics:

1. Separable equations

2. First order linear equations

3. Existence and uniqueness for solutions

4. Autonomous equations

5. Autonomous systems and exact equations

In the lecture notes, you can find references to the relevant parts of the
textbooks of Boyce–DiPrima and Braun.

The midterm problems will be very similar to the problems from this practice
midterm and the following homework problems:

• 3, 4, 5.1, 6 from Homework 1,

• 1, 2, 6 from Homework 2,

• 3, 4 from Homework 3.
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practice problems and solutions

Problem 1. Solve the initial value problem{
y′ = −t−1y
y(1) = 2

and determine the maximal interval of existence of the solution y = y(t).

Similar to: Example 3 from Lecture 1, Example 2 from Lecture 2, Examples
1–3 from Boyce–DiPrima section 2.2.

Solution. This is a separable equation. We separate y and t and integrate with
respect to t: ∫ y′

y
dt = −

∫ 1
t

dt = − ln |t|+ C,

for a constant C. We integrate the left-hand side is by substitution y = y(t),∫ y′

y
dt =

∫ 1
y

dy = ln |y|.

Therefore,
ln |y| = − ln |t|+ C.

Exponentiating both sides, we get

|y(t)| = eC|t|−1,

where A = eC can be any positive constant. We can also drop the absolute
value to get

y(t) = At−1

where now A is allowed to have any sign. (We also allow A = 0 which we
easily check to be a solution.) This is the general solution. To solve the initial
value problem, we set t = 1:

2 = y(1) = A,

so the solution is
y(t) = 2t−1.

We see that the maximal interval containing t = 1 for which y(t) is well-
defined is (0, ∞), as y(t)→ ∞ as t approaches 0 from the right. This is the
maximal interval of existence.
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Problem 2. Find the general solution to the differential equation

y′ + 2y = e−t.

Hint: The function µ(t) = e2t satisfies the differential equation µ′ = 2µ.

Similar to: Example 2 from Lecture 3, Examples 2–5 from Boyce–DiPrima
section 2.1.

Solution. This is a first order, non-homogenous linear equation. We look
for the integrating factor µ = µ(t). The integrating factor has to have the
property that the equation multiplied by µ:

µy′ + 2µy = µe−t. (0.1)

can be written as
(µy)′ = µe−t. (0.2)

Since the derivative of the product is

(µy)′ = µy′ + µ′y,

equations (0.1) and (0.2) are equivalent if µ satisfies the differential equation
µ′ = 2µ. The hint tells us that µ(t) = e2t is a non-zero solution to this
equation, so we will use this function. It remains to solve (0.2). Integrating
both sides with respect to t, we get that

µ(t)y(t) =
∫

µ(t)e−tdt =
∫

e2te−tdt =
∫

etdt = et + C,

for any constant C. Dividing by µ(t) we get a formula for the general solution

y(t) = e−2t(et + C) = e−t + Ce−2t.
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Problem 3. State the existence and uniqueness theorem for first order differ-
ential equations. Argue that the initial value problem{

y′ = t2et−y

y(0) = 1
(0.3)

has a unique solution y = y(t) defined for t close to t = 0.

Similar to: Example 1 from Lecture 5, Problems 4–15 (without specifying the
integral of existence) and 17 in Braun section 1.10.

Solution. For the statement of the existence and uniqueness theorem, see
Theorem 4 in Lecture 4; or Theorem 2.8.1 in Boyce–DiPrima section 2.8; or
Theorem 2’ in Braun section 1.10. The textbooks state the theorem in a more
detailed way. You don’t need to memorize the exact formulation of the
theorem, but you should understand the general idea. The theorem concerns
initial value problems of the form{

y′ = f (t, y)
y(t0) = y0,

where f is a given function of two variables and t0, y0 are given numbers.
The theorem says that if the function f is continuous around the point (t0, y0)
and its partial derivative ∂ f /∂y exists and is continuous around (t0, y0), then
the above initial value problem has a solution y = y(t) defined for t in some
interval containing t0, and that this solution is unique for t in that interval.

In order to apply the theorem to the specific initial value problem (0.4), we
need to verify that the function

f (t, y) = t2et−y

and its partial derivative ∂ f /∂y are continuous at all (t, y) close to (t0, y0) =
(0, 1). Recall from the Calculus course that polynomials, the exponential
function, logarithm, trigonometric functions and their inverses are continu-
ous, (whenever well-defined; for example, ln x is continuous on the interval
(0, ∞)). Moreover, sums, products, and compositions of continuous functions
are continuous. Since the functions

t 7→ t2, (t, y) 7→ t− y, t 7→ et

are continuous, so is f as it can be constructed by multiplying and composing
the above functions. Similarly,

∂ f
∂y

= −t2et−y

is continuous for the same reason. We conclude that f and ∂ f /∂y are
continuous on the entire ty–plane, in particular they are continuous around
the point (t0, y0) = (0, 1) and the uniqueness and existence theorem applies
in this case.
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Problem 3 (Alternative version). State the existence and uniqueness theorem
for first order differential equations. Show that the initial value problem{

y′ = y1/3,
y(0) = 0,

(0.4)

has two different solutions y = y(t) defined for t ≥ 0. Explain why the
existence and uniqueness theorem cannot be applied in this case.

Similar to: Example 2 from Lecture 5; Problems 18 and 19 from Braun section
1.10.

Solution. After stating the existence and uniqueness theorem as in the
previous version of the problem, we need to find two solutions to this initial
value problem. The first one is obvious: the constant function y(t) = 0. The
second solution can be found using separation of variables and integrating
(see the solution to Problem 1):∫

y′y−1/3dt =
∫

1dt = t + C.

The left integral can be computed by substitution y = y(t):∫
y′y−1/3dt =

∫
y−1/3dy =

3
2

y2/3.

Therefore,
3
2

y(t)2/3 = t + C

for some constant C. Plugging t = 0 and y(0) = 0, we get C = 0, so the
solution is

y(t) =
(

3
2

t
)3/2

.

We have found two different solutions to the given initial value problem,
defined for t ≥ 0. The existence and uniqueness theorem cannot be applied
in this case because the function f (t, y) = y1/3 does not have continuous
partial derivative ∂ f /∂y at (t0, y0) = (0, 0). Indeed, for y > 0 we compute

∂ f
∂y

=
1
3

y−2/3

and the right hand-side diverges to infinity as y→ 0.
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Problem 4. Find equilibria of the autonomous differential equation

y′ = y2 − y.

Draw the direction field and integral curves. Determine whether the equilib-
ria are asymptotically stable, asymptotically unstable, or neither of these.

Similar to: Examples 5, 6, 8, 9, 11 from Lecture 5; Example 3 and Problems 15–
14 from Boyce–DiPrima section 11; Boyce–DiPrima section 2.5, in particular
Problems 1–7.

Solution. We write the equation in the form

y′ = f (y) = y(y− 1).

The equlibria are the points where f (y) = 0, that is: y = 0 and y = 1. The
draw the direction field, it is helpful to see where f is positive and where it
is negative. We see, for example by drawing the graph of f , that

f (y) > 0 for y < 0,
f (y) < 0 for 0 < y < 1,
f (y) > 0 for 1 < y.

Remember that the direction field at a point with coordinates (t, y) on the
plane is the line whose slope is f (y).Based on the above information about f
we can sketch the direction field as in class. The integral curves are curves
which are tangent to the direction field. During office hours and review
session, we will discuss again how to draw the direction field and integral
curves.
From the picture we will see that:

• an integral curve starting at y < 0 goes to y = 0 as t → ∞ and to
y→ −∞ as t→ −∞,

• an integral curve starting at 0 < y < 1 goes to y = 0 as t→ ∞ and to
y = 1 as t→ −∞,

• and integral curve starting at y > 1 goes to y → ∞ as t → ∞ and to
y = 1 as t→ −∞.

We conclude that y = 0 is an asymptotically stable equilibrium and y = 1 is
an asymptotically unstable equilibrium.
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Problem 4 (Alternative versions). The same problem but for the equations

y′ = y2

and
y′ = −y(y− 1)(y− 2).

Solution. In the first case, there is one equilibrium y = 0 and

1. an integral curve starting at y > 0 goes to y → ∞ as t → ∞ and to
y = 0 as t→ −∞,

2. an integral curve starting at y < 0 goes to y = 0 as t → ∞ and to
y− → −∞ as t→ −∞.

We conclude that y = 0 is neither asymptotically stable nor asymptotically
unstable: it is in the infinite future of some nearby solutions but in the infinite
past of the others.

The second case is the example discussed in Lecture 5. The equilibria are
y = 0 (asymptotically stable), y = 1 (asymptotically unstable), and y = 2
(asymptotically stable).
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Problem 5. Explain:

1. what is an autonomous system of differential equations,

2. what it means for an autonomous system to be exact,

3. what it means for an autonomous system to be closed,

4. what is the relation between exact and closed systems.

(You can restrict yourself to two-dimensional systems, that is systems con-
sisting of two differential equations for two unknown functions.)

Verify that the following autonomous system is closed and find an equation
describing its integral curves:{

x′ = 2xy,
y′ = 3x2 − y2.

(0.5)

Similar to: Examples from Lecture 7; Examples 2, 3 and Problems 1–12 in
Boyce–DiPrima section 2.6.

Solution. The definitions can be found in Lecture 7. A two-dimensional
autonomous system is a system of differential equations of the form{

x′ = f (x, y),
y′ = g(x, y)

for two unknown functions x = x(t) and y = y(t). We say that such a system
is exact if there is a function H = H(x, y) such that

f (x, y) = −∂H/∂y and g(x, y) = ∂H/∂x.

We say that an autonomous system is closed if

∂ f
∂x

+
∂g
∂y

= 0. (0.6)

In Lecture 7 we proved a theorem which says that an autonomous system
defined on a rectangle [x0, y0]× [x1, y1] in the xy–plane is exact if and only if
it is closed.

To verify that the autonomous system (0.5) we compute that for f (x, y) = 2xy
and g(x, y) = 3x2 − y2 we have

∂ f
∂x

= 2y and
∂g
∂y

= −2y.

Therefore, (0.6) holds and the system is closed. To find the integral curves,
we look for a function H = H(x, y) such that

∂H
∂y

= − f (x, y) = −2xy.
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Integrating with respect to y we get that for some function ϕ = ϕ(x),

H(x, y) = ϕ(x)−
∫

2xydy = ϕ(x)− xy2.

(We can incorporate the integration constant into the unknown function ϕ.)
To find ϕ we use that:

∂H
∂x

= g(x, y) = 3x2 − y2.

Therefore, computing the right-hand side from the formula for H:

ϕ′(x)− y2 = 2x2 − y2 =⇒ ϕ′(x) = 3x2.

Integrating the last equation with respect to x, we get

ϕ(x) = x3 + C

for a constant C. The integral curves are described by H(x, y) = 0, that is:

x3 − xy2 + C = 0.
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O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Midterm 1

11 February 2021

problems and solutions

Problem 1. Solve the initial value problem{
y′ = 2ty2

y(0) = 1

and determine the maximal interval of existence of the solution y = y(t).

Solution. This is a separable equation. We separate y and t and integrate with
respect to t: ∫

y′y−2dt =
∫

2tdt = t2 + C.

for a constant C. We integrate the left-hand side is by substitution y = y(t),∫
y′y−2dt =

∫
y−2dy = −y−1.

Therefore,
y−1 = −t2 − C

so
y(t) =

1
−C− t2 .

This is the general solution. To solve the initial value problem, we set t = 0:

1 = y(0) = −C−1

so C = −1 and the solution is

y(t) =
1

1− t2 .

We see that the maximal interval containing t = 0 for which y(t) is well-
defined is (−1, 1) as y(t)→ ∞ when t→ −1 or t→ 1.
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Problem 2. Find the general solution to the differential equation

y′ + y = t.

Hint: The formula for integration by parts is∫
f ′g = f g−

∫
f g′.

Solution. This is a first order, non-homogenous linear equation. We look
for the integrating factor µ = µ(t). The integrating factor has to have the
property that the equation multiplied by µ:

µy′ + µy = µt (0.1)

can be written as
(µy)′ = µt. (0.2)

Since the derivative of the product is

(µy)′ = µy′ + µ′y,

equations (0.1) and (0.2) are equivalent if µ satisfies the differential equation
µ′ = µ. We can take any function satisfying this equation, so we choose
µ(t) = et. It remains to solve (0.2). Integrating both sides with respect to t,
and using integration by parts (with f (t) = et and g(t) = t), we get

µ(t)y(t) =
∫

µ(t)tdt =
∫

ettdt = ett−
∫

etdt = ett− et + C = et(t− 1) + C

for any constant C. Dividing by µ(t) we get a formula for the general solution

y(t) = t− 1 + Ce−t.
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Problem 3. State the existence and uniqueness theorem for first order differ-
ential equations. Argue that the initial value problem{

y′ = y2 sin(y− t)
y(0) = 0

(0.3)

has a unique solution y = y(t) defined for t close to t = 0.

Bonus question: (3 points) Can you guess this solution?

Solution. For the statement of the existence and uniqueness theorem, see
Theorem 4 in Lecture 4; or Theorem 2.8.1 in Boyce–DiPrima section 2.8; or
Theorem 2’ in Braun section 1.10. The textbooks state the theorem in a more
detailed way. You don’t need to memorize the exact formulation of the
theorem, but you should understand the general idea. The theorem concerns
initial value problems of the form{

y′ = f (t, y)
y(t0) = y0,

where f is a given function of two variables and t0, y0 are given numbers.
The theorem says that if the function f is continuous around the point (t0, y0)
and its partial derivative ∂ f /∂y exists and is continuous around (t0, y0), then
the above initial value problem has a solution y = y(t) defined for t in some
interval containing t0, and that this solution is unique for t in that interval.

In order to apply the theorem to the specific initial value problem (0.3), we
need to verify that the function

f (t, y) = y2 sin(y− t)

and its partial derivative ∂ f /∂y are continuous at all (t, y) close to (t0, y0) =
(0, 0). Recall from the Calculus course that polynomials, the exponential
function, logarithm, trigonometric functions and their inverses are continu-
ous, (whenever well-defined; for example, ln x is continuous on the interval
(0, ∞)). Moreover, sums, products, and compositions of continuous functions
are continuous. Since the functions

y 7→ y2, (y, t) 7→ y− t, t 7→ sin t

are continuous, so is f as it can be constructed by multiplying and composing
the above functions. Similarly,

∂ f
∂y

= 2y sin(y− t) + y2 cos(y− t)

is continuous for the same reasons. We conclude that f and ∂ f /∂y are con-
tinuous on the entire ty–plane, in particular they are continuous around the
point (t0, y0) = (0, 0) and the uniqueness and existence theorem applies in
this case.

We easily verify that the constant function y(t) = 0 satisfies the given initial
value problem. The general theorem guarantees that this solution is unique.
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Problem 4. Find equilibria of the autonomous differential equation

y′ = (1 + y)(2− y)

Draw the direction field and integral curves. Determine whether the equilib-
ria are asymptotically stable, asymptotically unstable, or neither of these.

Solution.
Let f (y) = (1 + y)(2− y). The equlibria are the points where f (y) = 0, that
is: y = −1 and y = 2. The draw the direction field, it is helpful to see where
f is positive and where it is negative. We see, for example by drawing the
graph of f , that 

f (y) < 0 for y < −1,
f (y) > 0 for − 1 < y < 2,
f (y) < 0 for 2 < y.

Remember that the direction field at a point with coordinates (t, y) on the
plane is the line whose slope is f (y). Based on the above information about
f we can sketch the direction field as in class. The integral curves are curves
which are tangent to the direction field. During office hours and review
session, we will discuss again how to draw the direction field and integral
curves. From the picture we will see that:

• an integral curve starting at y < −1 goes to y = −∞ as t→ ∞ and to
y→ −1 as t→ −∞,

• an integral curve starting at −1 < y < 2 goes to y = 2 as t→ ∞ and to
y = −1 as t→ −∞,

• an ntegral curve starting at y > 2 goes to y = 2 as t→ ∞ and to y→ ∞
as t→ −∞.

We conclude that y = −1 is an asymptotically unstable equilibrium and
y = 2 is an asymptotically stable equilibrium.
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Problem 5. Explain:

1. what is an autonomous system of differential equations,

2. what it means for an autonomous system to be exact,

3. what it means for an autonomous system to be closed,

4. what is the relation between exact and closed systems.

(You can restrict yourself to two-dimensional systems, that is systems con-
sisting of two differential equations for two unknown functions.)

Verify that the following autonomous system is closed and find an equation
describing its integral curves:{

x′ = −3xy2,
y′ = y3 + 4x3.

(0.4)

Solution. The definitions can be found in Lectures 7 and 8. A two-dimensional
autonomous system is a system of differential equations of the form{

x′ = f (x, y),
y′ = g(x, y)

for two unknown functions x = x(t) and y = y(t). We say that such a system
is exact if there is a function H = H(x, y) such that

f (x, y) = −∂H/∂y and g(x, y) = ∂H/∂x.

We say that an autonomous system is closed if

∂ f
∂x

+
∂g
∂y

= 0. (0.5)

In Lecture 7 we proved a theorem which says that an autonomous system
defined on a rectangle [x0, y0]× [x1, y1] in the xy–plane is exact if and only if
it is closed.

To verify that the autonomous system (0.4) we compute that for f (x, y) =
−3xy2 and g(x, y) = y3 + 4x3 we have

∂ f
∂x

= −3y2 and
∂g
∂y

= 3y2.

Therefore, (0.5) holds and the system is closed. To find the integral curves,
we look for a function H = H(x, y) such that

∂H
∂y

= − f (x, y) = 3xy2.

Integrating with respect to y we get that for some function ϕ = ϕ(x),

H(x, y) = ϕ(x) +
∫

3xy2dy = ϕ(x) + xy3.
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(We can incorporate the integration constant into the unknown function ϕ.)
To find ϕ we use that:

∂H
∂x

= g(x, y) = y3 + 4x3.

Therefore, computing the right-hand side from the formula for H:

ϕ′(x) = y3 = y3 + 4x3 =⇒ ϕ′(x) = 4x3.

Integrating the last equation with respect to x, we get

ϕ(x) = x4 + C

for a constant C. The integral curves are described by H(x, y) = 0, that is:

x4 + xy3 + C = 0.
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Midterm 1: second approach

26 February 2021

problems and solutions

Problem 1. Solve the initial value problem{
y′ = (1 + y)2

y(0) = 0

and determine the maximal interval of existence of the solution y = y(t).

Solution. This is a separable equation. We separate y and t and integrate with
respect to t: ∫

y′(1 + y)−2dt =
∫

1dt = t + C.

for a constant C. We integrate the left-hand side is by substitution y = y(t),∫
y′(1 + y)−2dt =

∫
(1 + y)−2dy = −(1 + y)−2

Therefore,
−(1 + y)−1 = t + C

so solving for y we find

y(t) = −1− 1
t + C

.

This is the general solution. To solve the initial value problem, we set t = 0:

0 = y(0) = −1− C−1

so C = −1 and the solution is

y(t) = −1 +
1

1− t
.

We see that the maximal interval containing t = 0 for which y(t) is well-
defined is (−∞, 1) as y(t)→ ∞ when t approaches 1 from the left.
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Problem 2. Find the general solution to the differential equation

y′ − 3y = et.

Solution. This is a first order, non-homogenous linear equation. We look
for the integrating factor µ = µ(t). The integrating factor has to have the
property that the equation multiplied by µ:

µy′ − 3µy = µet (0.1)

can be written as
(µy)′ = µet. (0.2)

Since the derivative of the product is

(µy)′ = µy′ + µ′y,

equations (0.1) and (0.2) are equivalent if µ satisfies the differential equation
µ′ = −3µ. We can take any function satisfying this equation, so we choose
µ(t) = e−3t. (If this solution is not obvious to you, you can always find it
by solving µ′ = −3µ, since this is a separable equation.) It remains to solve
(0.2). Integrating both sides with respect to t, we get

µ(t)y(t) =
∫

µ(t)etdt =
∫

e−3tetdt =
∫

e−2tdt = −1
2

e−2t + C

for any constant C. Dividing by µ(t) = e−3t we get a formula for the general
solution

y(t) = −1
2

et + Ce3t.
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Problem 3. State the existence and uniqueness theorem for first order differ-
ential equations. Consider two initial value problems for the same differential
equation but with different initial values:{

y′ = y1/2(y + t)
y(1) = 0.

(0.3)

and {
y′ = y1/2(y + t)
y(1) = 5.

(0.4)

In which of these two cases can we apply the existence and uniqueness
theorem to conclude that there exists a solution y(t) defined for t in some
interval containing the initial time t = 1, and that the solution is unique in
that interval? In each case, explain we can or cannot apply the theorem.

Solution. For the statement of the existence and uniqueness theorem, see
Theorem 4 in Lecture 4; or Theorem 2.8.1 in Boyce–DiPrima section 2.8; or
Theorem 2’ in Braun section 1.10. The textbooks state the theorem in a more
detailed way. You don’t need to memorize the exact formulation of the
theorem, but you should understand the general idea. The theorem concerns
initial value problems of the form{

y′ = f (t, y)
y(t0) = y0,

where f is a given function of two variables and t0, y0 are given numbers.
The theorem says that if the function f is continuous around the point (t0, y0)
and its partial derivative ∂ f /∂y exists and is continuous around (t0, y0), then
the above initial value problem has a solution y = y(t) defined for t in some
interval containing t0, and that this solution is unique for t in that interval.

In order to apply the theorem to the specific initial value problem (0.3), we
need to check whether the function

f (t, y) = y1/2(y + t)

and its partial derivative ∂ f /∂y are continuous at all (t, y) close to (t0, y0).
The function

(y, t) 7→ y + t

is a polynomial so it is continues for all y and t. Moreover, its partial
derivatives are also continuous. However, the function

y 7→ y1/2

is continuous for y ∈ [0, ∞) but differentiable only for y ∈ (0, ∞). Indeed,
its derivative with respect to y is (1/2)y−1/2 which is not defined at y = 0.
Since the product of continuous functions is continuous, we see that f (t, y)
is continuous at those (t, y) with y ≥ 0. Moreover, it is differentiable at those
(t, y) with y > 0 (and similar argument shows that its partial derivative
∂ f /∂y is continuous in that region). We conclude that the existence and
uniqueness theorem applies to the initial value problem (0.4) since f and
∂ f /∂y are continuous around (t0, y0) = (1, 5). However ∂ f /∂y does not exist
at (t0, y0) = (1, 0), so we cannot apply the existence and uniqueness theorem
to the initial value problem (0.3).
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Problem 4. Find equilibria of the autonomous differential equation

y′ = y(y− 2).

Draw the direction field and integral curves. Determine whether the equilib-
ria are asymptotically stable, asymptotically unstable, or neither of these.

Solution.
Let f (y) = y(y− 2). The equlibria are the points where f (y) = 0, that is:
y = 0 and y = 2. The draw the direction field, it is helpful to see where f is
positive and where it is negative. We see, for example by drawing the graph
of f , that 

f (y) > 0 for y < 0,
f (y) < 0 for 0 < y < 2,
f (y) > 0 for 2 < y.

Remember that the direction field at a point with coordinates (t, y) on the
plane is the line whose slope is f (y). Based on the above information about
f we can sketch the direction field as in class. The integral curves are curves
which are tangent to the direction field. During office hours and review
session, we will discuss again how to draw the direction field and integral
curves. From the picture we will see that:

• an integral curve starting at y < 0 goes to y = 0 as t → ∞ and to
y→ −∞ as t→ −∞,

• an integral curve starting at 0 < y < 2 goes to y = 0 as t→ ∞ and to
y = 2 as t→ −∞,

• an integral curve starting at y > 2 goes to y → ∞ as t → ∞ and to
y→ 2 as t→ −∞.

We conclude that y = 0 is an asymptotically stable equilibrium and y = 2 is
an asymptotically unstable equilibrium.
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Problem 5. Explain:

1. what is an autonomous system of differential equations,

2. what it means for an autonomous system to be exact,

3. what it means for an autonomous system to be closed,

4. what is the relation between exact and closed systems.

(You can restrict yourself to two-dimensional systems, that is systems con-
sisting of two differential equations for two unknown functions.)

Verify that the following autonomous system is closed and find an equation
describing its integral curves:{

x′ = −xey,
y′ = ey + 3x2.

(0.5)

Solution. The definitions can be found in Lectures 7 and 8. A two-dimensional
autonomous system is a system of differential equations of the form{

x′ = f (x, y),
y′ = g(x, y)

for two unknown functions x = x(t) and y = y(t). We say that such a system
is exact if there is a function H = H(x, y) such that

f (x, y) = −∂H/∂y and g(x, y) = ∂H/∂x.

We say that an autonomous system is closed if

∂ f
∂x

+
∂g
∂y

= 0. (0.6)

In Lecture 7 we proved a theorem which says that an autonomous system
defined on a rectangle [x0, y0]× [x1, y1] in the xy–plane is exact if and only if
it is closed.

To verify that the autonomous system (0.5) we compute that for f (x, y) =
−xey and g(x, y) = ey + 3x2 we have

∂ f
∂x

= −ey and
∂g
∂y

= ey.

Therefore, (0.6) holds and the system is closed. To find the integral curves,
we look for a function H = H(x, y) such that

∂H
∂y

= − f (x, y) = xey.

Integrating with respect to y we get that for some function ϕ = ϕ(x),

H(x, y) = ϕ(x) +
∫

xeydy = ϕ(x) + xey.
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(We can incorporate the integration constant into the unknown function ϕ.)
To find ϕ we use that:

∂H
∂x

= g(x, y) = ey + 3x2.

Therefore, computing the right-hand side from the formula for H:

ϕ′(x) + ey = ey + 3x2 =⇒ ϕ′(x) = 3x2.

Integrating the last equation with respect to x, we get

ϕ(x) = x3 + C

for a constant C. Therefore,

H(x, y) = x3 + xey + C.

The integral curves are described by H(x, y) = 0, that is:

x3 + xey + C = 0.
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Midterm 2 practice

Midterm 2 scheduled at 10:10–11:25 Thursday 18 March

At the midterm, you will be asked to have your camera on and microphone
off. If you need to ask a question, send me a private message through the
Zoom chat. During the midterm, you are allowed to use two pages of notes
that you wrote yourself. You are not allowed to use textbooks, the Internet,
or any other resources. The exam will last 60 minutes. In the remaining
15 minutes of class, upload your solutions together with the two pages of
notes to the Gradescope. If you encounter technical difficulties with the
Gradescope or anything else, send me a message through the Zoom chat.

references

The midterm will be based on Lectures 9–14, Homework 4–6, and the prob-
lems from this practice midterm. It will cover the following topics:

1. Second order equations as systems of first order equations

2. Existence and uniqueness theorem for second order equations

3. Second order linear equations; linear combinations of solutions; sys-
tems of linear algebraic equations; Wronskian; Abel’s formula

4. Homogenous equations with constant coefficients

5. Complex numbers

6. Non-homogenous equations with constant coefficients

In the lecture notes, you can find references to the relevant parts of the
textbooks of Boyce–DiPrima and Braun.

The midterm problems will be very similar to the problems from this practice
midterm and Homework 4–6 (you can ignore bonus problems).
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practice problems and solutions

Problem 1 (Existence and uniqueness). State the existence and uniqueness
theorem for second order differential equations. Which of the following
initial value problems satisfy the conditions of the theorem and therefore
admit a unique solution for t close to the initial time? In each case, justify
your answer.

1. y′′ − (y′)2 + y = 0 with initial condition y(2) = 1;

2. y′′ − (y′)2 + y = 0 with initial conditions y(2) = 1, y′(2) = 0;

3. y′′ − (y′)1/4 + y = 0 with initial conditions y(2) = 1, y′(2) = 0.

Solution. The theorem is explained in Lecture 9.

Theorem (Existence and uniqueness for second order equations). Given
numbers t0, y0, y′0 and a function f of three variables, consider the initial value
problem 

y′′ = f (t, y, y′)
y(t0) = y0,
y′(t0) = y′0.

If the functions f , ∂ f /∂y and ∂ f /∂y′ (by this we mean the partial derivatives of f
with respect to the second and third variable) are continuous in a neighborhood of the
point (t0, y0, y′0), then there exists a solution y(t) to the initial value problem defined
for t from some interval (t0 − ε, t0 + ε) containing t0. Moreover, the solution is
unique in that interval.

In the first case, we do not specify the value of y′ at t0 = 2, so the theorem
does not apply: in an initial value problem for second order equations we
have prescribe both y(t0) and y′(t0) to get uniqueness.

In the second case, the initial value problem prescribes both y(t0) and y′(t0).
Moreover, the function

f (t, y, y′) = (y′)2 + y

is continuous because it is a polynomial in y′ and y. Similarly, its partial
derivatives are also polynomials in y′ and y, so are continuous. We conclude
that the theorem applies in this case.

Finally, in the third case, the initial value problem prescribes both y(t0) and
y′(t0). The function

f (t, y, y′) = (y′)1/4 + y

is continuous for y ∈ (−∞, ∞) and y′ ∈ [0, ∞). However, its partial derivative
with respect to y′ is

∂ f /∂y′ =
1
4
(y′)−3/4

not defined at y′ = 0. The existence and uniqueness theorem assumes that
∂ f /∂y′ is continuous at (t0, y0, y′0), in this case (2, 1, 0). However, in this case
this is not true. Therefore, the theorem does not apply in this case.

2



Problem 2 (Wronskian). Verify that the functions

y1(t) = t2 and y2(t) = t−1

are both solutions of the linear differential equation

t2y′′ − 2y = 0.

Compute their Wronskian. What is the general solution of this differential
equation? Justify your answer.

Solution. Let us verify that these functions solve the equation. We have

y′1(t) = 2t and y′′1 (t) = 2.

We compute
t2y′′1 − 2y1 = 2t2 − 2t2 = 0,

so y1 is a solution. Similarly,

y′2(t) = −t−2 and y′′2 (t) = 2t−3.

We compute
t2y2 − 2y2 = 2t−1 − 2t−1 = 0,

so y2 is a solution. The Wronskian is

W[y1, y2](t) = y1(t)y′2(t)− y′1(t)y2(t) = t2(−t−2)− 2tt−1 = −3.

Since the Wronskian is non-zero, the general theorem about solutions to
homogenous second order equations discussed in class tells us that any other
solution is a linear combination of y1 and y2. That is, the general solution is

y(t) = C1t2 + C2t−1.
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Problem 3 (Complex numbers). Write the following complex numbers in
the form a + bi, with a and b real:

1. (2 + i)−1,

2. (5 + i)(1− i),

3. eln 2+πi/4,

4. 1 + 3i,

5. i5.

Solution

(2 + i)−1 =
1

2 + i
=

2− i
(2 + i)(2− i)

=
2− i
4− i2

=
2
5
− i

5
.

(5 + i)(1− i) = 5 + i− 5i− i2 = 6− 4i.

eln 2+πi/4 = eln 2eπi/4 = 2(cos π/4 + i sin π/4) =
2√
2
+ i

2√
2

.

1 + 3i = 1− 3i.

i5 = i · i2 · i2 = i · (−1) · (−1) = i.
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Problem 4 (Homogenous equations with constant coefficients). Find the
general solution of each of the following differential equations

1. y′′ + y′ + y = 0,

2. y′′ + y′ − 2y = 0,

3. y′′ + 2y′ + y = 0.

Solution. These are second order homogenous equations with constant co-
efficients. In all cases, the first step is to find roots of the characteristic
polynomial.

(1) In the first case, the characteristic polynomial is

χ(λ) = λ2 + λ + 1.

The roots are complex

λ1 = −1
2
+ i
√

3
2

and λ2 = −1
2
− i
√

3
2

.

The complex solutions are eλ1t and eλ2t. The general real solution is a linear
combination of the real and imaginary part of one of the complex solutions.
We have

Re(eλ1t) = e−t/2 cos(
√

3t/2)

Re(eλ1t) = e−t/2 sin(
√

3t/2)

so the general solution is

y(t) = C1e−t/2 cos(
√

3t/2) + C2e−t/2 sin(
√

3t/2).

(2) In the second case, the roots of the characteristic polynomial

χ(λ) = λ2 + λ− 2

are
λ1 = −2 and λ1 = 1.

The roots are distinct and real. Therefore, the general solution is

y(t) = C1e−2t + C2et.

(3) In the third case, the characteristic polynomial

χ(λ) = λ2 + 2λ + 1

has a repeated root λ1 = −1. Therefore, the general solution is

y(t) = C1e−t + C2te−t.
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Problem 5 (Non-homogenous equation with constant coefficients). Find the
general solution of the following differential equation

y′′ + 2y′ = 6e−3t.

Solution. First we find a particular solution. Following the general rule, we
look for a solution of the form

y(t) = ae−3t.

We have

y′(t) = −3ae−3t,

y′′(t) = 9ae−3t.

Plugging this to the left-hand side of the equation we get

y′′ + 2y′ = 9ae−3t − 6ae−3t = 3ae−3t.

In order for this to be equal to 6e−3t, we need 3a = 6, so a = 2. We have
found a particular solution

y(t) = 2e−3t.

The general solution is the sum of this particular solution and the general
solution to the homogenous equation

y′′ + 2y′ = 0.

The roots of the characteristic polynomial χ(λ) = λ2 + 2λ of this equation
are λ1 = 0 and λ2 = −2. Therefore, the general solution of the homogenous
equation is

C1 + C2e−2t.

We conclude that the general solution to the nonhomogenous equation is

C1 + C2e−2t + 2e−3t.

Alternative versions.

y′′ + y′ = (A + Bt)et

Look for a particular solution of the form y(t) = (a + bt)et.

y′′ + 2y′ + y = A + Bt + Ct2

Look for a particular solution of the form y(t) = a + bt + ct2.

y′′ + 2y′ = (A + Bt) sin(3t)

Find a particular solution to the complex equation y′′ + 2y′ = (A + Bt)e3it of
the form y(t) = (a + bt)e3it with a and b complex. Then the imaginary part
is a particular solution to the original equation.

6



O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Midterm 2 solutions

Problem 1. State the existence and uniqueness theorem for second order
differential equations. Which of the following initial value problems satisfy
the conditions of the theorem and therefore admit a unique solution for t
close to the initial time? In each case, justify your answer.

1. y′′ − (sin t)y3 + cos t = 0 with initial condition y(0) = 1, y′(0) = 0.

2. y′′ + 2ty′ − 3y4 = 0 with initial condition y(0) = 1.

Solution.

Theorem (Existence and uniqueness for second order equations). Given
numbers t0, y0, y′0 and a function f of three variables, consider the initial value
problem 

y′′ = f (t, y, y′)
y(t0) = y0,
y′(t0) = y′0.

If the functions f , ∂ f /∂y and ∂ f /∂y′ (by this we mean the partial derivatives of f
with respect to the second and third variable) are continuous in a neighborhood of the
point (t0, y0, y′0), then there exists a solution y(t) to the initial value problem defined
for t from some interval (t0 − ε, t0 + ε) containing t0. Moreover, the solution is
unique in that interval.

In the second case, we do not specify the value of y′ at t0 = 0, so the theorem
does not apply: in an initial value problem for second order equations we
have prescribe both y(t0) and y′(t0) to get uniqueness. In the first case, the
initial value problem prescribes both y(t0) and y′(t0). Moreover, the function

f (t, y, y′) = (sin t)y3 + cos t

is composed of sums of products of the polynomial y3 and trigonometric
functions sin t, cos t. From calculus we know that these functions are ev-
erywhere continuous, therefore so is f . The same is true for the partial
derivatives

∂ f /∂y = 3(sin t)y2 and ∂ f /∂y′ = 0.

We conclude that the theorem applies in this case. (Alternatively, we can
argue that sums and products of functions which are continuous and have
continuous derivatives are continuous and have continuous derivatives. If
we use this fact, we don’t have to compute partial derivatives since we know
that polynomials and sin t, cos t have continuous derivatives.)
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Problem 2. Verify that the functions

y1(t) = t1/2 and y2(t) = t−1

are both solutions of the linear differential equation

2t2y′′ + 3ty′ − y = 0.

Compute their Wronskian for t > 0. What is the general solution of this
differential equation defined for t > 0? Justify your answer.

Solution. Let us verify that these functions solve the equation. We have

y′1(t) =
1
2

t−1/2 and y′′1 (t) = −
1
4

t−3/2.

We compute

2t2y′′1 + 3ty′1 − y1 = −1
2

t1/2 +
3
2

t1/2 − t1/2 = 0,

so y1 is a solution. Similarly,

y′2(t) = −t−2 and y′′2 (t) = 2t−3.

We compute

2t2y′′2 + 3ty′2 − y2 = 4t−1 − 3t−1 − t−1 = 0.

so y2 is a solution. The Wronskian is

W[y1, y2](t) = y1(t)y′2(t)− y′1(t)y2(t) = −t1/2t−2 − 1
2

t−1/2t−1 = −3
2

t−3/2.

Since the Wronskian is non-zero for t > 0, the general theorem about
solutions to homogenous second order equations discussed in class tells
us that any other solution defined for t > 0 is a linear combination of y1 and
y2. That is, the general solution for t > 0 is

y(t) = C1t1/2 + C2t−1.
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Problem 3. Write the following complex numbers in the form a + bi, with a
and b real:

1. (1 + 3i)(2 + i),

2. (1− i)−1,

3. ei(1+i),

4. i4.

Solution

(1 + 3i)(2 + i) = 2 + i + 6i− 3 = −1 + 7i = −1− 7i.

1
1− i

=
1 + i

(1− i)(1 + i)
=

1 + i
1− i2

=
1 + i

2
=

1
2
+

i
2

.

ei(1+i) = e−1+i = e−1(cos 1 + i sin 1).

i4 = i2i2 = (−1)(−1) = 1.
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Problem 4. Find the general solution of each of the following differential
equations

1. y′′ + 4y′ + 5y = 0,

2. y′′ − 10y′ + 25y = 0.

Solution. In the first case, the characteristic polynomial is

χ(λ) = λ2 + 4λ + 5.

There are two complex roots

λ1 = −2 + i and λ2 = −2− i.

We have complex solutions eλ1t and eλ2t. The real and imaginary part (of,
say, the first one) are

Re(eλ1t) = e−2t cos t,

Im(eλ1t) = e−2t sin t.

The general real solution is their linear combination

y(t) = C1e−2t cos t + C2e−2t sin t.

In the second case, the characteristic polynomial is

χ(λ) = λ2 − 10λ + 25.

There is one repeated root
λ1 = 5.

Therefore, the general solution is

y(t) = C1e5t + C2te5t.
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Problem 5. Find a particular solution of the differential equation

y′′ + y′ + y = 1 + t + t2.

Without doing computations, explain in one sentence how, after finding a
particular solution, you would find the general solution of this equation.

Solution. Since the right-hand is a polynomial of degree two, we are looking
for a particular solution which is also a polynomial of degree two, that is

y(t) = a + bt + ct2.

We have
y′(t) = b + 2ct and y′′(t) = 2c.

Therefore
y′′ + y′ + y = (2c + b + a) + (2c + b)t + ct2.

We want this to be equal to
1 + t + t2.

Comparing coefficients next to each power of t, we find that
2c + b + a = 1,
2c + b = 1,
c = 1.

Therefore, a = 0, b = −1, and c = 1. The function

y(t) = −t + t2.

Is a particular solution.

To find the general solution, we first find the general solution of the homoge-
nous equation y′′ + y′ + y = 0 using the method from the previous problem.
The general solution of the non-homogenous equation is then the sum of the
general solution of the homogenous equation and a particular solution of
the non-homogenous equation.
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Midterms 1 and 2: second approach

30 April 2021

Problem 1. Solve the initial value problem{
y′ = (1 + y)2

y(0) = 0

and determine the maximal interval of existence of the solution y = y(t).

Problem 2. Find the general solution to the differential equation

y′ − 3y = et.

Problem 3. State the existence and uniqueness theorem for first order differ-
ential equations. Consider two initial value problems for the same differential
equation but with different initial values:{

y′ = y1/2(y + t)
y(1) = 0.

and {
y′ = y1/2(y + t)
y(1) = 5.

In which of these two cases can we use the existence and uniqueness theorem
to conclude that there exists a solution y(t) defined for t in some interval
containing the initial time t = 1, and that the solution is unique in that
interval? In each case, explain why we can or cannot apply the theorem.

Problem 4. Find equilibria of the autonomous differential equation

y′ = y(y− 2).

Draw the direction field and integral curves. Determine whether the equilib-
ria are asymptotically stable, asymptotically unstable, or neither of these.
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Problem 5. Explain:

1. what is an autonomous system of differential equations,

2. what it means for an autonomous system to be exact,

3. what it means for an autonomous system to be closed,

4. what is the relation between exact and closed systems.

(You can restrict yourself to two-dimensional systems, that is systems con-
sisting of two differential equations for two unknown functions.)

Verify that the following autonomous system is closed and find an equation
describing its integral curves:{

x′ = −xey,
y′ = ey + 3x2.

Problem 6. Find the general solution of the following differential equations

y′′ − 4y′ + 13y = 0,

and
y′′ − 10y′ + 25y = 0.

Problem 7. Find the general solution of the differential equation

y′′ − y− 12y = 8e5x.

Problem 8. Compute the Wronskian W[y1, y2] for the following pairs of
functions:

• y1(t) = eat, y2(t) = ebt,

• y1(t) = sin(at), y2(t) = cos(at),

• y1(t) = eat, y2(t) = teat.

Here a and b are constant. Why is this computation relevant to solving
second order differential equations?

2
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Practice for the final exam

Exam date: Thu 04/22/21 9:00am-12:00pm

topics

The exam will test your knowledge of the entire course. List of topics:

• Examples of differential equations

1. Harmonic oscillator

2. Damped and forced vibrations

3. Radioactive decay

4. Population growth

5. Logistic model

• First order equations

1. Existence and uniqueness theorems for first order equations, max-
imal interval of existence

2. Separable equations

3. First order linear equations

4. Direction fields, vector fields, integral curves

5. Autonomous differential equations and equilibria

6. Closed and exact autonomous systems

• Second and higher order equations

1. Higher order equations as systems of first order equations

2. Existence and uniqueness theorem for second order equations

3. Second order linear equations, Wronskian, Abel’s formula

4. Complex numbers and finding roots of polynomials

5. Homogenous and nonhomogenous second order linear equations
with constant coefficients

6. Higher order linear equations with constant coefficients

• Linear algebra and systems of differential equations

1. Existence and uniqueness theorem for systems of first order dif-
ferential equations

2. Vectors and matrices, systems of linear algebraic equations

3. Vector spaces, linear dependence, bases

1



4. Determinants, eigenvectors and eigenvalues

5. Linear systems of differential equations with constant coefficients

• Nonlinear equations and stability

1. Equilibria of autonomous systems, stability, long-time behavior

2. Equilibria of linear autonomous systems

3. Linearization around equilibrium

4. Predator-prey equations

practice problems

The problems on the final exam will be very similar to the ones from the
following list (for the topics discussed before Midterm 2) and the ones listed
in this document (for the topics discussed after Midterm 2).

• Homework 1: 3, 4, 5.1, 6

• Homework 2: 1, 2, 6

• Homework 3: 3, 4

• Midterm 1 practice

[Instead of alternative versions see: Examples 1-5 from Section 3.5 in
Boyce-DiPrima and/or Examples 1-6 in Section 2.5 of Braun.]

• Midterm 1

• Midterm 1 retake

• Homework 4: 1, 2, 3, 4, 5

• Homework 5: 1, 2, 3, 4, 5

• Homework 6: 1, 2, 3, 4, 5

• Midterm 2 practice

• Midterm 2

• Homework 7: 1, 2, 3, 4, 5, 6, 7

• Homework 8: 1, 2, 3, 4, 5, 6

• Homework 9: 1, 2, 3

Problem 1 (Matrices and vectors). Let

A =

 1 −2 0
3 2 −1
−2 1 3

 , B =

 4 −2 3
−1 5 0
6 1 2

 , x =

−1
2
0

 .

Compute 2A + B, AB, BA, and Ax.

2



Solution. This is a straightforward calculation. For rules of multiplying matri-
ces and multiplying vectors by matrices see section 7.2 in Boyce–DiPrima.

Problem 2 (Vector spaces). Which of the following sets form a vector space
with the standard operations of addition and multiplication by scalars? In
each case, justify your answer:

1. the set of solutions of the differential equation y′′ = y′ + y,

2. the set of solutions of the differential equation y′ = y2,

3. the set of vectors x = (x1, x2) ∈ R2 satisfying x2
1 − x2

2 = 0,

4. the set of polynomials of degree at most 3.

Solution. (1). The equation y′′− y′− y = 0 is a linear homogenous differential
equation. We proved in the lecture that the set of solutions to such equations
is a vector space (that is: a linear combination of solutions is also a solution).

(2) The equation y′ = y2 is nonlinear. To see that the set of solutions is not
a vector space, we can solve the equation since it is separable. The general
solution is y(t) = 1/(c − t) or y(t) = 0. For example, y(t) = −1/t is a
solution. But 2y(t) = −2/t is not a solution, so we have found an element
such that when we multiply it by 2 we don’t get an element of the same set.
(We could alternatively observe that in general the sum of two solutions is
not a solution.)

(3) This set is not a vector space. Interestingly, the set does contain the zero
vector and for every vector x in the set, its scalar multiple λx is also in the
set. However, in general the sum of two vectors in the set is not in the set.
For example, vectors x = (1, 1) and y = (1,−1) are in this set but their sum
x + y = (2, 0) is not.

(4) This is a vector space because: the zero polynomial is in this set, the sum
of two polynomials of degree at most 3 is also a polynomial of degree at
most 3, and a multiple of a polynomial of degree at most 3 is a polynomial
of the same degree.

Problem 3 (Linear transformations). Let V be the vector space of polynomials
of degree at most 3. Define a map L : V → V by

L( f ) =
d f
dx
− f

for any polynomial f (x) of degree at most 3. Verify that L is a linear
transformation and find its matrix with respect to the basis of V given by the
polynomials

1, x, x2, x3.
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Solution The map f 7→ d f
dx is a linear transformation from V to V because:

the derivative of a polynomial of degree k ≤ 3 is a polynomial of degree
k− 1 ≤ 3 and

d
dx

(0) = 0,
d

dx
( f + g) =

d f
dx

+
dg
dx

,
d(λ f )

dx
= λ

d f
dx

.

Similarly, the map f 7→ − f is a linear transformation from V to V because
for any vector space multiplication by a scalar (in this case, −1) is a linear
transformation. Since L is the sum of these two transformations, it is a linear
transformation. To find the matrix of L, we compute

L(1) = −1, L(x) = 1− x, L(x2) = 2x− x2, L(x3) = 3x2 − x3

so in the basis given by 1, x, x2, x3, L is given by the matrix

L =


−1 1 0 0
0 −1 2 0
0 0 −1 3
0 0 0 −1

 .

Problem 4 (Linear dependence). Determine if the following collections of
vectors are linearly independent:

1. polynomials f (x) = 1− x, g(x) = x2, h(x) = −x2 + 3x− 3 in the vector
space of polynomials of degree at most 4,

2. the following vectors in R2:

v1 =

[
1
0

]
, v2 =

[
3
−2

]
, v3 =

[
−7
3

]
,

3. the following vectors in R3:

v1 =

 1
−1
0

 v2 =

 2
0
−1

 v3 =

 0
−3
0

 .

Solution. (1) Observe that

h(x) = −g(x)− 3 f (x),

so these three polynomials are linearly dependent.

(2) R2 is a vector space of dimension two, so any collection of three vectors
in R2 is linearly dependent.

(3) We will show that these vectors are linearly independent. Suppose that
there are numbers λ1, λ2, λ3 such that

λ1v1 + λ2v2 + λ3v3 = 0.

That means that

λ1 + 2λ2 = 0

− λ1 − 3λ3 = 0

− λ2 = 0.
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From these equations we immediately see that λ1 = λ2 = λ3 = 0. That
means that there is no nontrivial linear combination of v1, v2, v3 which is
zero, i.e. these vectors are linearly independent.

Problem 5 (Eigenvectors). Find eigenvalues and eigenvectors of the matrices

A =

[
3 −1
4 −2

]
, B =

0 1 1
1 0 1
1 1 0

 .

Solution. See Examples 4 and 5 in section 7.3 of Boyce–DiPrima.

Problem 6 (Homogenous linear systems with constant coefficients). Find the
general solutions of the following systems of differential equations

y′ =

0 1 1
1 0 1
1 1 0

 y

y′ =
[
−1 −1
2 −1

]
y

y′ =
[

1 −1
1 3

]
y.

Solution. See Example 3 in section 7.5, Example 2 in section 7.6, and Example
2 in section 7.8 of Boyce–DiPrima; we will also discuss these problems in
class.

sample final exams

Here are some examples of what the final exam might look like. At the actual
exam, the problems will not be exactly the same as the ones from homework
and midterms, but they will be similar.

Example 1

1. Problem 5.1 from Homework 1

2. Problem 2 from Practice Midterm 1

3. Problem 4 from Homework 2

4. Problem 4 from Midterm 2

5. Problem 2 from Homework 6

6. Problem 7 parts 1–2 from Homework 7

7. Problem 6 from Homework 8

8. Problem 3 from Homework 9
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Example 2

1. Problem 2 from Homework 2

2. Problem 4 from Midterm 1

3. Problem 3 from Homework 3

4. Problem 4 from Homework 5

5. Problem 3 from this file

6. Problem 4 from this file

7. Problem 6 from Homeowkr 8

8. Problem 1 from Homework 9

Example 3

1. Problem 6 from Homework 1

2. Problem 2 from Midterm 1

3. Problem 3 from Midterm 1

4. Problem 2 from Midterm 2 practice

5. Problem 7 parts 3–5 from Homework 7

6. Problem 2 from Homework 8

7. Problem 6 from this file

8. Problem 2 from Homework 9

6



O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Final exam

Thu 04/22/21 9:00am-12:00pm

Problem 1 (10 points). For every y0, solve the initial value problem{
y′ = y(1− y),
y(0) = y0.

What is the maximal interval of existence of the solution, depending on y0?
(Hint: consider separately the cases: y0 < 0, 0 ≤ y0 ≤ 1, and y0 > 1.)

Find equilibria of this equation, sketch integral curves, and determine
whether each equilibrium is stable or unstable.

Solution. This is a separable equation. (In fact, this is the logistic model which
we discussed in class.) We separate y and t:

y′

y(1− y)
= 1

and integrate with respect to t∫ y′

y(1− y)
dt = t + C.

By substitution y = y(t) the integral on the left-hand side is∫ y′

y(1− y)
dt =

∫ 1
y(1− y)

dy =
∫ (1

y
+

1
1− y

)
dy

= ln |y| − ln |1− y|+ C = ln
∣∣∣∣ y
1− y

∣∣∣∣+ C.

We get

ln
∣∣∣∣ y
1− y

∣∣∣∣ = t + C.

Taking the exponential of both sides,∣∣∣∣ y
1− y

∣∣∣∣ = eCet.

Here eC is any positive constant. If we drop the absolute value, we get that

y
1− y

= Cet

1



for constant C of any sign (as usual, this is a different C than before, as
we name any constant expression C). (C = 0 is also allowed because the
constant function y(t) = 0 is a solution.) Solving for y we get, again for a
different constant C,

y(t) =
et

et + C
.

This is the general solution of the equation. Plugging y0 = y(0) we get that

C =
1
y0
− 1.

This gives us the solution of the initial value problem.

We see that the solution goes to infinity as the denominator goes to zero, that
is when et = −C. The maximal interval of existence is the interval which
contains 0 and has as one of the endpoints the solution t to the equation
et = −C. When y0 < 0, then C < −1, so −C > 1 and t = ln(−C) is positive.
So the interval (−∞, ln(−C)) contains 0 and this is the maximal interval of
existence. When 0 ≤ y0 ≤ 1, then C ≤ 0 and the equation et = −C has no
solution, so the denominator is never zero and the maximal interval of exis-
tence is (−∞, ∞). When y0 > 1, then 0 < −C < 1 so t = ln(−C) is negative
and the interval (ln(−C), ∞) contains 0, so this is the maximal interval of
existence. We see that solutions with y0 < 0 have infinite past but go to
−∞ in finite future, solutions with 0 ≤ y0 ≤ 1 have infinite past and infinite
future, and solutions with y0 > 1 have infinite future but goto ∞ in finite past.

There are two equilibria y = 0 and y = 1. We sketch the integral curves as
usual, see, for example, Midterm 1. We find that y = 0 is unstable and y = 1
is stable.

Problem 2 (5 points). Describe the general method of solving first order
linear equations

y′ + a(t)y = b(t).

Solution. This is the method from Lecture 3.

1. Multiply the equation y′ + a(t)y = b(t) by a function µ(t).

2. Observe that this equation is equivalent to (µy)′ = µ(t)b(t) if µ satisfies
the homogenous equation µ′ = a(t)µ.

3. Solve the homogenous equation µ′ = a(t)µ. This is a separable equation
and has solution µ(t) = exp

∫
a(t)dt.

4. Find µy by integrating both sides of (µy)′ =
∫

µ(t)b(t)dt.

5. Finally, divide by µ(t) to get a formula for y:

y(t) =
1

µ(t)

∫
µ(t)b(t)dt with µ(t) = exp

∫
a(t)dt.
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Problem 3 (5 points). State the existence and uniqueness theorem for first
order differential equations. Write two examples of initial value problems:
one which satisfies the assumptions of the theorem and one which doesn’t.
In each case, explain why the assumptions are or are not satisfied. You can
use examples from lectures and homework, or you can come up with your
own examples.

Solution. The existence and uniqueness theorem was stated in Lecture 4. It
asserts that the initial value problem{

y′ = f (t, y),
y(t0) = y0.

(0.1)

has a unique solution defined for t from the interval (t0 − ε, t0 + ε) for some
ε > 0, provided that f and ∂y f are both continuous in a neighborhood of
(t0, y0). Here are two simple examples. Consider the initial value problems{

y′ = y,
y(0) = 0.

and {
y′ = y1/2,
y(0) = 0.

In the first case, the function f (t, y) = y is a polynomial so it is continuous
and has continuous partial derivative in y at (t0, y0) = (0, 0), so it satisfies the
assumption of the theorem. (In fact, in this case we know that the solution is
y(t) = et.) In the second case, the function f (t, y) = y1/2 is continuous but
it does not have a partial derivative in y at (t0, y0) = (0, 0), so the theorem
does not apply. (In fact, we proved in class that there are two solutions of
this initial value problem, so the uniqueness statement fails.)

Problem 4 (5 points). Find the general solution of the differential equation

y′′ + y′ − 6y = 4et.

Solution. This is a second order nonhomogenous linear equation with con-
stant coefficients. To find the general solution, we first find the general
solution of the homogenous equation

y′′ + y′ − 6y = 0

and then find a particular solution of the nonhomogenous equation. The
characteristic polynomial λ2 + λ − 6 has roots −3 and 2 so the general
solution is

Ae−3t + Be2t

for any constants A and B. To find a particular solution of the nonhomoge-
nous equation, we look for a solution of the form Cet. Easy calculation

3



shows that for C = −1 we get a solution. So the general solution of the
nonhomogenous equation is

y(t) = Ae−3t + Be2t − et.

Problem 5 (10 points). Let V be the set of solutions of the equation

y′′ + ay′ + by = 0,

with a, b constant.

1. Show that with the standard operations of addition and multiplication
of functions by numbers, V is a vector space. Based on what we learned
in class, what is the dimension of this vector space?

2. Show that if y is a solution to the equation, then so is y′ (hint: differen-
tiate both sides of the equation) and that the map L : V → V defined
by L(y) = y′ is a linear transformation.

3. Show that the eigenvectors of L are solutions of the form eλt where λ
is a root of the characteristic polynomial

λ2 + aλ + b = 0.

Solution. Suppose that y1 and y2 are solutions of the equation. To show that
V is a vector space, we need to show that for any constant λ1, λ2 the linear
combination y = λ1y1 + λ2y2 is also a solution. We compute

y′′ + ay′ + by = y′′1 + y′′2 + ay′1 + ay′2 + by1 + by2

= (y′′1 + ay′1 + by1) + (y′′2 + ay′2 + by2) = 0.

so y is a solution if y1 and y2 are.

To prove the second part, suppose that y′ is a solution. Differentiating the
equation

y′′ + ay′ + by = 0

we get
y′′′ + ay′′ + by′ = 0

which can be written as:

(y′)′′ + a(y′)′ + b(y′) = 0

which shows that y′ is also a solutions of the same differential equation.
This gives us a map L : V → V. To show that the map is linear, we need
to show that for two elements y1, y2 ∈ V and two constants λ1, λ2 we have
L(λ1y1 + λ2y2) = λ1L(y1) + λ2L(y2). We compute

L(λ1y1 + λ2y2) = (λ1y1 + λ2y2)
′ = (λ1y1)

′ + (λ2y2)
′

= λ1y′1 + λ2y′2 = λ1L(y1) + λ2L(y2),

so L is a linear transformation.
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An eigenvector of L is an element y of V such that L(y) = λy for some λ.
This means that y′ = λy for some λ. But this implies that y is a function of
the form y(t) = Ceλt. Since y has to be an element of V, it also also has to
solve the differential equation:

y′′ + ay′ + by = 0

Plugging y(t) = Ceλt to this equation we get that λ has to satisfy the
characteristic equation λ2 + aλ + b = 0.

Problem 6. (5 points) Find the general solution of the linear system[
x
y

]′
=

[
1 a
−a 1

] [
x
y

]
in two cases: when a = 0 and a > 0. In both cases, sketch the integral curves
of the system and determine whether solutions are stable or unstable.

Use your solution to the first part of the problem to determine if the equilib-
rium x = 0, y = 0 of the following nonlinear system is stable or unstable:{

x′ = x + 2y + xy− x2 − xy3,
y′ = −2x + y− 2xy− y3 + x2y.

Solution. When a = 0, there is one eigenvalue λ = 1 and any vector is an
eigenvector. The general solution is

y(t) = et
[

A
B

]
for any constants A, B. For a > 0, the characteristic polynomial of the matrix,

χ(λ) = (1− λ)2 + a2

has two complex roots 1± ia. To find a complex eigenvector with eigenvalue
1 + ia, we solve the equation[

−ia a
−a −ia

] [
x
y

]
=

[
0
0

]
.

We find that y = ix, so for example we can take x = 1 and y = i to get the
eigenvector [

1
i

]
.

This gives us a complex solution

yc(t) = e(1+ia)t
[

1
i

]
= et(cos(at) + i sin(at))

[
1
i

]
.

We compute its real and imaginary part to get real solutions

Reyc(t) = et
[

cos(at)
− sin(at)

]
, Imyc(t) = et

[
sin(at)
cos(at)

]
.
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The general solution is a linear combination of those two

y(t) = Aet
[

cos(at)
− sin(at)

]
+ Bet

[
sin(at)
cos(at)

]
.

In both cases, there is an eigenvalue with positive real part, so according to
the theorem proved in class the solutions are unstable. We draw the integral
curves as in the lecture: for a = 0 they are straight lines going from zero to
infinity, and for a > 0 they are spirals going away from zero.

To investigate the stability of x = 0, y = 0 of the nonlinear system, observe
that we can write it as[

x
y

]′
=

[
1 2
−2 1

] [
x
y

]
+

[
g1(x, y)
g2(x, y)

]
where the functions g1 and g2 satisfy

|g1(x, y)| ≤ c(x2 + y2), |g2(x, y)| ≤ c(x2 + y2)

for some constants c and all x, y close to 0. Therefore, the linear system[
x
y

]′
=

[
1 2
−2 1

] [
x
y

]
is the linearization of the nonlinear system at the equilibrium x = 0, y = 0.
Since the solutions of the linearization are unstable, we conclude from the
theorem discussed in Lecture 24 that the equilibrium x = 0, y = 0 of the
nonlinear system is also unstable.
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O R D I N A RY D I F F E R E N T I A L E Q UAT I O N S ( M AT H 2 0 3 0 )

Final exam: version 2

Monday 05/03/2021 10am–2:30pm

Problems 1 and 5 are worth 10 points. Problems 2, 3, 4, 6 are worth 5 points.

Problem 1 (10 points). For every y0, solve the initial value problem{
y′ = (1− y)2,
y(0) = y0.

What is the maximal interval of existence of the solution, depending on y0?

Find equilibria of this equation, sketch integral curves, and determine
whether each equilibrium is stable or unstable.

Problem 2 (5 points). Describe the general method of solving first order
linear equations

y′ + a(t)y = b(t).

Problem 3 (5 points). State the existence and uniqueness theorem for second
order differential equations. Does the theorem apply to the following initial
value problem? Justify your answer.

y′′ = −y2 + yy′ − (y′)2

y(0) = 1,
y′(0) = 0.

Problem 4 (5 points). Find the general solution of the following differential
equations

y′′ − 4y′ + 13y = 0,

y′′ − 10y′ + 25y = 0,

y′′ − y− 12y = 8e5x.
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Problem 5 (10 points). Let k be a positive integer and let V be the set of
polynomials of degree at most k.

1. Show that with the standard operations of addition and multiplication
of polynomials by numbers, V is a vector space. Find any basis of V
and compute the dimension of V.

2. Show that if f is a polynomial in V, then its second derivative f ′′ is also
a polynomial in V. Show that the map L : V → V defined by L( f ) = f ′′

is a linear transformation. Compute the matrix of L with respect to the
basis of V you found in the first part of the problem.

Problem 6. (5 points) Find the general solution of the linear systems[
x
y

]′
=

[
3 −2
2 −2

] [
x
y

]
and [

x
y

]′
=

[
1 −5
1 3

] [
x
y

]
.

In both cases, sketch the integral curves of the system and determine whether
solutions are stable or unstable.

Use your solution to the first part of the problem to determine if the equilib-
rium x = 0, y = 0 of the following nonlinear system is stable or unstable:{

x′ = 3x− 2y + xy− x2 − xy3,
y′ = 2x− 2y− 2xy− y3 + x2y.
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