Down the rabbit hole


Down the rabbit hole


Symmetries and complex numbers

M. C. Escher, drawing E55

- Rotations and translations in the complex plane are described by functions of the form

$$
f(z)=e^{i \theta} z+c
$$

## Symmetries and complex numbers


M. C. Escher, Circle Limit III

- How to describe the symmetries of this drawing with complex numbers?


## Symmetries and complex numbers



- How to describe the symmetries of this drawing with complex numbers?

$$
f(z)=\frac{a z+b}{b^{*} z+a^{*}}, \quad a, b \in \mathbb{C}, \quad|a|>|b|
$$

- Why these transformations? They preserve the unit circle: if $|z|=1$, then

$$
|a z+b|=\left|a z z^{*}+b z^{*}\right|=\left|a+b z^{*}\right|=\left|a^{*}+b^{*} z\right|
$$

so $\frac{|a z+b|}{\left|b^{*} z+a^{*}\right|}=1$.

## Symmetries and complex numbers



> J. Leys, after M. C. Escher, drawing E69

- How to describe the symmetries of this drawing with complex numbers?

$$
f(z)=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{R}, \quad a d-b c>0
$$

- These transformations preserve the upper half plane.


## Thanks for attending!



