Definitions from yesterday's lecture

$$
\mathbb{H}:=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\} .
$$

- Multiplication of quaternions is defined by the rules

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1 \\
i j=-j i=k, \quad k i=-i k=j, \quad j k=-k j=i
\end{gathered}
$$

- An order in \mathbb{H} is a lattice $\mathcal{O} \subset \mathbb{H}$ such that:
- $1 \in \mathcal{O}$.
- For all $z_{1}, z_{2} \in \mathcal{O}, z_{1} z_{2} \in \mathcal{O}$.
- Let Λ be a lattice in \mathbb{H}, and let \mathcal{O} be an order in \mathbb{H}. We say that Λ is a left \mathcal{O}-ideal if

$$
\{z \in \mathbb{H} \mid z \Lambda \subseteq \Lambda\}=\mathcal{O} .
$$

Constructing Ramanujan graphs

- We will describe a procedure that constructs a graph given:
- An order $\mathcal{O} \subset \mathbb{H}$.
- A prime p.
- It will turn out that this graph is usually Ramanujan.
- We will show how to construct the Ramanujan graph from the first lecture using this procedure.
- Let $\mathcal{O} \subset \mathbb{H}$ be the order generated by

$$
1, \quad \frac{i-\sqrt{3} k}{2}, \quad i-\sqrt{3} j, \quad \frac{1+3 i+\sqrt{3} j+\sqrt{3} k}{2}
$$

and let $p=2$.

- Construct a graph as follows:
- Each left \mathcal{O}-ideal is a vertex of the graph.
- An edge is drawn between Λ_{1} to Λ_{2} if $\Lambda_{2} \subset \Lambda_{1}$ and $\left[\Lambda_{1}: \Lambda_{2}\right]=p^{2}=2^{2}=4$.
- It turns out that we get the same graph that we had before for 2-dimensional lattices.

If we identify lattices related by scaling, we again get the Bruhat-Tits tree:

- Why introduce this fancy setup just to get the same tree?
- If Λ is a left \mathcal{O}-ideal and $z \in \mathcal{O}$, then Λz is also a left \mathcal{O}-ideal.
- The analogous statement is also true for lattices in \mathbb{C} : the following lattices are all \mathbb{Z} [i]-ideals.

Λ

$(1+i) \wedge=\Lambda(1+i)$

$(2+i) \Lambda=\Lambda(2+i)$
- So we can consider identifying lattices related not just by scaling, but also by right multiplication by elements of \mathcal{O}.
- Consider Λ_{1}, Λ_{2} to be equivalent if $\Lambda_{1}=\Lambda_{2} z$ for some $z \in \mathbb{H}$.
- There are only two equivalence classes in the tree:

- Identifying vertices of the same color yields this graph:

- Adjacency matrix:

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

- Eigenvalues:

$$
3, \text { eigenvector }\binom{1}{1} \quad-1, \text { eigenvector }\binom{1}{-1}
$$

- This graph is Ramanujan since $|-1|<2 \sqrt{3-1}=2 \sqrt{2}$.
- We have a general procedure for constructing a graph given an order $\mathcal{O} \subset \mathbb{H}$ and a prime p :
- Draw a vertex for each left \mathcal{O}-ideal Λ.
- Draw an edge between vertices Λ_{1} and Λ_{2} if $\Lambda_{2} \subseteq \Lambda_{1}$ and $\left[\Lambda_{1}: \Lambda_{2}\right]=p^{2}$.
- Identify vertices Λ_{1} and Λ_{2} if $\Lambda_{1}=\Lambda_{2} z$ for some $z \in \mathbb{H}$.
- We call this graph $G_{p}(\mathcal{O})$ and its adjacency matrix $A_{p}(\mathcal{O})$.
- The Ramanujan graph from the first lecture is $G_{p}(\mathcal{O})$, where:
- $\mathcal{O} \subset \mathbb{H}$ is the order generated by

$$
\frac{1+i+7 j+5 k}{2}, \quad i+7 j+5 k, \quad 25 j+5 k, \quad 7 k,
$$

- $p=3$.

Some more examples

- Again, we consider the order \mathcal{O} generated by

$$
1, \quad \frac{i-\sqrt{3} k}{2}, \quad i-\sqrt{3} j, \quad \frac{1+3 i+\sqrt{3} j+\sqrt{3} k}{2} .
$$

p	2	3	5	7	11	13
$A_{p}(\mathcal{O})$	$\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}6 & 5 \\ 5 & 6\end{array}\right)$	$\left(\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right)$	$\left(\begin{array}{ll}4 & 8 \\ 8 & 4\end{array}\right)$	$\left(\begin{array}{ll}6 & 8 \\ 8 & 6\end{array}\right)$

- Again, we consider the order \mathcal{O} generated by

$$
1, \quad \frac{i-\sqrt{3} k}{2}, \quad i-\sqrt{3} j, \quad \frac{1+3 i+\sqrt{3} j+\sqrt{3} k}{2} .
$$

p	2	3	5	7	11	13
$A_{p}(\mathcal{O})$	$\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}6 & 5 \\ 5 & 6\end{array}\right)$	$\left(\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right)$	$\left(\begin{array}{ll}4 & 8 \\ 8 & 4\end{array}\right)$	$\left(\begin{array}{ll}6 & 8 \\ 8 & 6\end{array}\right)$
λ_{1}	3	1	11	8	12	14
λ_{2}	3	-1	1	0	-4	-2

- We get a $p+1$-regular Ramanujan graph for all primes p except 3 and 5 .

