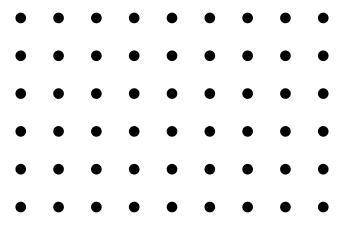
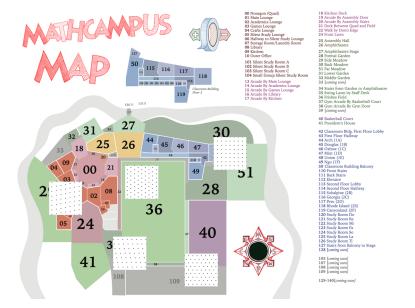
Lattices

 A *lattice* in the plane is an infinitely repeating grid of points in the plane containing the origin.



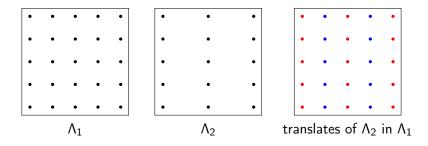
An atlas of lattices?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで、

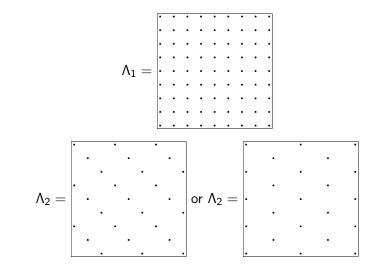
Relations between lattices

- Let Λ_1 , Λ_2 be lattices satisfying $\Lambda_2 \subseteq \Lambda_1$.
- Then Λ₁ is a union of finitely many translates of Λ₂.
- The number of translates is called the *index* of Λ₂ in Λ₁, denoted [Λ₁ : Λ₂].
- In the example below, $[\Lambda_1 : \Lambda_2] = 2$.



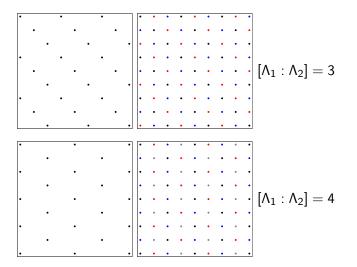
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Exercise: computing the index



▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国 … の Q @

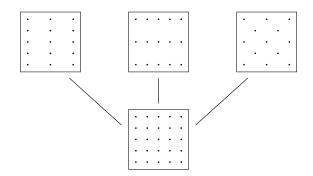
Exercise: computing the index



- * ロ * * 母 * * き * * き * うくぐ

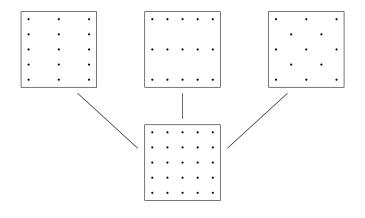
Relations between lattices

For any lattice Λ_1 , there are exactly three lattices Λ_2 satisfying $\Lambda_2 \subset \Lambda_1$ and $[\Lambda_1 : \Lambda_2] = 2$.



We can summarize this information in a graph.

- ► We construct a graph as follows:
 - Each lattice in the plane is a vertex of the graph.
 - We draw an edge between the lattices Λ₁ and Λ₂ if Λ₂ ⊂ Λ₁ and [Λ₁ : Λ₂] = 2.
- We just saw a small piece of the graph:



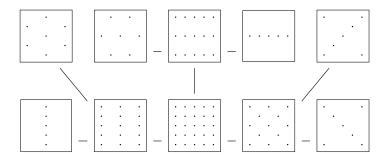
・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

► A slightly larger piece of the graph:



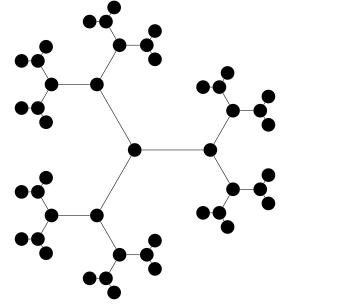
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 Declare two vertices to be *equivalent* if their lattices are related by scaling.



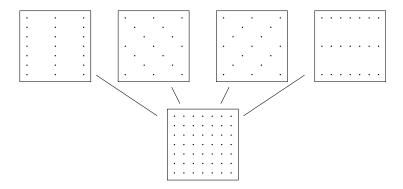
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへ⊙

The new graph is an infinite 3-regular tree, called a *Bruhat–Tits tree*.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

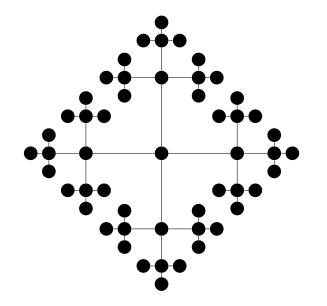
Suppose that we instead consider lattices Λ₁, Λ₂ satisfying [Λ₁ : Λ₂] = 3.



We draw a graph according to the same procedure as before:

- Each lattice in the plane is a vertex of the graph.
- ► Draw an edge between the lattices Λ_1 and Λ_2 if $\Lambda_2 \subset \Lambda_1$ and $[\Lambda_1 : \Lambda_2] = 3$.
- Then identify vertices related by scaling of lattices.

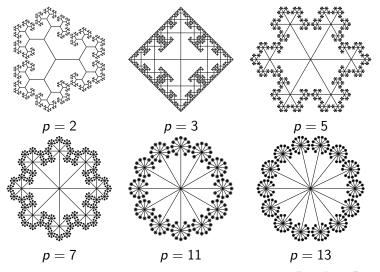
► This time, we get an infinite 4-regular tree:



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

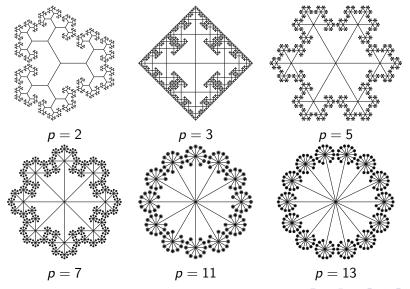
A nice pattern

Suppse we draw an edge between lattices satisfying [Λ₂ : Λ₁] = p:



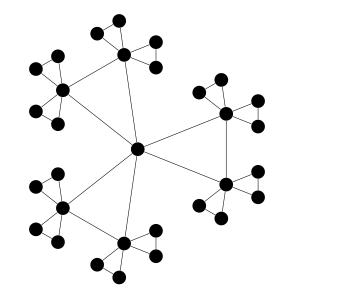
ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any prime *p*, if we draw an edge between lattices satisfying [Λ₂ : Λ₁] = *p*, we get an infinite *p* + 1-regular tree.



◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

If we draw an edge between lattices satisfying $[\Lambda_1:\Lambda_2]=4$ for example, we no longer get a tree:



Generalizations of this setup

Higher-dimensional lattices

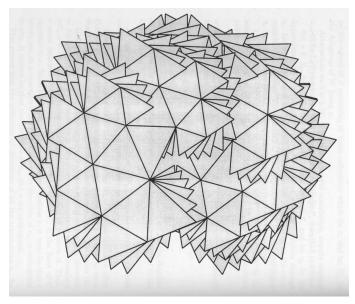
Lattices with symmetry

Three-dimensional lattices

- Construct a graph as follows:
 - Vertices are lattices in three-dimensional space.
 - Draw an edge between Λ_1 and Λ_2 if $\Lambda_2 \subset \Lambda_1$ and $[\Lambda_1 : \Lambda_2] = 2$.

- Then identify two vertices if their lattices are related by scaling.
- The resulting graph is called a *building*.

A building



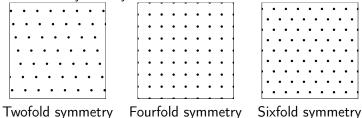
(日)

Image credit: P. Garrett, Buildings and Classical Groups

Mathcampus *p*-adic expansion plan

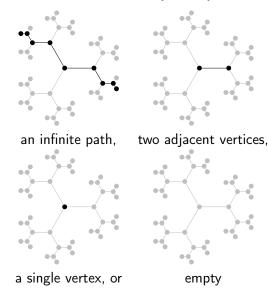
Symmetries of lattices in two dimensions

- ► All lattices have twofold rotational symmetry.
- In the plane, some lattices also have fourfold or sixfold rotational symmetry.



・ロト ・雪 ト ・ ヨ ト ・ コ ト

- Which lattices have more than twofold symmetry?
- On the Bruhat–Tits tree, the set of vertices corresponding to lattices with fourfold or sixfold symmetry is either:

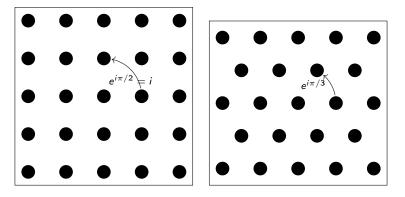


∃ \0 < \0</p>

< 4 個 ▶ < Ξ

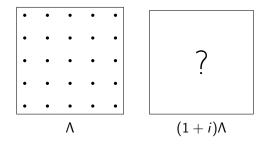
Symmetries and complex numbers

- Before moving to higher dimensions, let's consider how to express symmetries using complex numbers.
- In the complex plane, multiplication by $e^{i\theta}$ corresponds to rotation by θ .



Symmetries and complex numbers

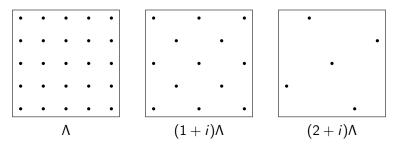
- A lattice Λ has fourfold rotational symmetry if and only if iΛ = Λ.
- If i∧ = ∧, then (1 + i)∧ ⊂ ∧, since the sum of two elements of ∧ is also in ∧.
- Exercise: draw $(1 + i)\Lambda$.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

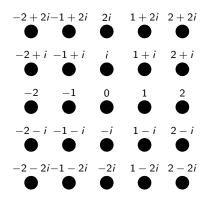
Symmetries and complex numbers

- A lattice Λ has fourfold rotational symmetry if and only if iΛ = Λ.
- If iΛ = Λ, then (1 + i)Λ ⊂ Λ, since the sum of two elements of Λ is also in Λ. Similarly, (a + bi)Λ ⊂ Λ for all a, b ∈ Z.



◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

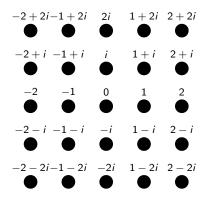
▶ Let $\mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{Z}\}.$



A lattice Λ has fourfold symmetry if and only if

```
\{z \in \mathbb{C} | z \Lambda \subseteq \Lambda\} = \mathbb{Z}[i].
```

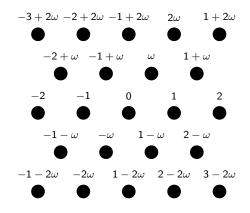
If this condition is satified, we say that Λ is a Z[i]-ideal.



Z[i] is an example of an *order*: in addition to being a lattice, it satisfies

▶
$$1 \in \mathbb{Z}[i]$$
.
▶ For all $z_1, z_2 \in \mathbb{Z}[i], z_1z_2 \in \mathbb{Z}[i]$

• Let
$$\mathbb{Z}[\omega] := \{a + b\omega | a, b \in \mathbb{Z}\}$$
, where $\omega = e^{\pi i/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$.



 \triangleright $\mathbb{Z}[\omega]$ is also an order:

- ▶ $1 \in \mathbb{Z}[\omega]$.
- For all $z_1, z_2 \in \mathbb{Z}[\omega]$, $z_1 z_2 \in \mathbb{Z}[\omega]$.

A lattice Λ has sixfold rotational symmetry if and only if

$$\{z \in \mathbb{C} | z \Lambda \subseteq \Lambda\} = \mathbb{Z}[\omega]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

For any lattice $\Lambda \subset \mathbb{C}$, define

$$\operatorname{End}(\Lambda) := \{z \in \mathbb{C} | z\Lambda \subseteq \Lambda\}$$
.

- For most lattices Λ, End(Λ) = Z. But End(Λ) can be an order such as Z[i] or Z[ω], as we just saw.
- If End(Λ) is an order (i.e. if End(Λ) is a lattice), then we say that Λ is an End(Λ)-ideal.

- Our construction of Ramanujan graphs will involve lattices in four dimensions with symmetry.
- We will need a four-dimensional replacement for the complex numbers.

▶ We will use the *quaternions*.

Quaternions

Define the set of *quaternions* by

$$\mathbb{H} := \{a + bi + cj + dk | a, b, c, d \in \mathbb{R}\}.$$

Multiplication of quaternions is defined by the rules

$$i^2 = j^2 = k^2 = -1$$
,
 $ij = -ji = k$, $ki = -ik = j$, $jk = -kj = i$.

Orders and ideals in $\mathbb H$

An order in \mathbb{H} is a lattice $\mathcal{O} \subset \mathbb{H}$ such that:

▶ $1 \in \mathcal{O}$.

For all $z_1, z_2 \in \mathcal{O}$, $z_1 z_2 \in \mathcal{O}$.

Let A be a lattice in H, and let O be an order in H. We say that A is a *left O-ideal* if

 $\{z \in \mathbb{H} | z \Lambda \subseteq \Lambda\} = \mathcal{O}.$

Exercise: orders in $\mathbb H$

An order in \mathbb{H} is a lattice $\mathcal{O} \subset \mathbb{H}$ such that: \blacktriangleright 1 $\in \mathcal{O}$. For all $z_1, z_2 \in \mathcal{O}$, $z_1 z_2 \in \mathcal{O}$. \blacktriangleright Which of these are orders in \mathbb{H} ? 7. $\{a + bi + cj + dk | a, b, c, d \in \mathbb{Z}\}$ $\{a+bi+cj+dk|a,b,c,d\in 2\mathbb{Z}\}$ $\{a+bi+cj+dk|a\in\mathbb{Z}, b, c, d\in 2\mathbb{Z}\}$ $\{a+bi+cj+dk|a,b,c,d\in\frac{1}{2}\mathbb{Z}\}$

$\mathsf{Exercise:} \ \mathsf{orders} \ \mathsf{in} \ \mathbb{H}$

Which of these are orders?

\mathbb{Z} No

 ${\mathbb Z}$ is not a lattice in ${\mathbb H}.$

$$\{a + bi + cj + dk | a, b, c, d \in \mathbb{Z}\}$$
 Yes
 $\{a + bi + cj + dk | a, b, c, d \in 2\mathbb{Z}\}$ No

Does not contain 1.

$$\{a + bi + cj + dk | a \in \mathbb{Z}, b, c, d \in 2\mathbb{Z}\}$$
 Yes
 $\{a + bi + cj + dk | a, b, c, d \in \frac{1}{2}\mathbb{Z}\}$ No

1/2 is in the lattice but $(1/2)^2$ is not.

An order in $\mathbb H$

 \blacktriangleright Consider the lattice ${\cal O}$ in ${\mathbb H}$ generated by

1,
$$\frac{i-\sqrt{3}k}{2}$$
, $i-\sqrt{3}j$, $\frac{1+3i+\sqrt{3}j+\sqrt{3}k}{2}$.

▶ \mathcal{O} is an order: $1 \in \mathcal{O}$ and for all $z_1, z_2 \in \mathcal{O}$, $z_1z_2 \in \mathcal{O}$. For example, we can check that

$$\left(\frac{i-\sqrt{3}k}{2}\right)\left(i-\sqrt{3}j\right)$$
$$=\frac{1}{2}\left(i\cdot i-i\cdot\sqrt{3}j-\sqrt{3}k\cdot i+\sqrt{3}k\cdot\sqrt{3}j\right)$$
$$=\frac{1}{2}\left(-1-\sqrt{3}k-\sqrt{3}j-3i\right)$$
$$=-\frac{1+3i+\sqrt{3}j+\sqrt{3}k}{2}\in\mathcal{O}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▶ We will describe a procedure that constructs a graph given:

- An order $\mathcal{O} \subset \mathbb{H}$.
- A prime p.
- ▶ It will turn out that this graph is *usually* Ramanujan.
- More precisely, for any fixed O, the graph is Ramanujan for all but finitely many p.
- We will show how to construct the Ramanujan graph from the first lecture using this procedure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @