
Lattices

I A lattice in the plane is an infinitely repeating grid of points in
the plane containing the origin.



An atlas of lattices?



Relations between lattices

I Let Λ1, Λ2 be lattices satisfying Λ2 ⊆ Λ1.
I Then Λ1 is a union of finitely many translates of Λ2.
I The number of translates is called the index of Λ2 in Λ1,

denoted [Λ1 : Λ2].
I In the example below, [Λ1 : Λ2] = 2.

Λ1 Λ2 translates of Λ2 in Λ1



Exercise: computing the index

Λ1 =

Λ2 = or Λ2 =



Exercise: computing the index

[Λ1 : Λ2] = 3

[Λ1 : Λ2] = 4



Relations between lattices
I For any lattice Λ1, there are exactly three lattices Λ2 satisfying

Λ2 ⊂ Λ1 and [Λ1 : Λ2] = 2.

I We can summarize this information in a graph.

• • •

•



I We construct a graph as follows:
I Each lattice in the plane is a vertex of the graph.
I We draw an edge between the lattices Λ1 and Λ2 if Λ2 ⊂ Λ1

and [Λ1 : Λ2] = 2.

I We just saw a small piece of the graph:



I A slightly larger piece of the graph:



I Declare two vertices to be equivalent if their lattices are
related by scaling.



The new graph is an infinite 3-regular tree, called a Bruhat–Tits
tree.



I Suppose that we instead consider lattices Λ1, Λ2 satisfying
[Λ1 : Λ2] = 3.

I We draw a graph according to the same procedure as before:
I Each lattice in the plane is a vertex of the graph.
I Draw an edge between the lattices Λ1 and Λ2 if Λ2 ⊂ Λ1 and

[Λ1 : Λ2] = 3.
I Then identify vertices related by scaling of lattices.



I This time, we get an infinite 4-regular tree:



A nice pattern
I Suppse we draw an edge between lattices satisfying

[Λ2 : Λ1] = p:

p = 2 p = 3 p = 5

p = 7 p = 11 p = 13



I For any prime p, if we draw an edge between lattices satisfying
[Λ2 : Λ1] = p, we get an infinite p + 1-regular tree.

p = 2 p = 3 p = 5

p = 7 p = 11 p = 13



If we draw an edge between lattices satisfying [Λ1 : Λ2] = 4 for
example, we no longer get a tree:



Generalizations of this setup

I Higher-dimensional lattices
I Lattices with symmetry



Three-dimensional lattices

I Construct a graph as follows:
I Vertices are lattices in three-dimensional space.
I Draw an edge between Λ1 and Λ2 if Λ2 ⊂ Λ1 and [Λ1 : Λ2] = 2.

I Then identify two vertices if their lattices are related by scaling.
I The resulting graph is called a building.



A building

Image credit: P. Garrett, Buildings and Classical Groups



Mathcampus p-adic expansion plan



Symmetries of lattices in two dimensions

I All lattices have twofold rotational symmetry.
I In the plane, some lattices also have fourfold or sixfold

rotational symmetry.

Twofold symmetry Fourfold symmetry Sixfold symmetry



I Which lattices have more than twofold symmetry?
I On the Bruhat–Tits tree, the set of vertices corresponding to

lattices with fourfold or sixfold symmetry is either:

an infinite path, two adjacent vertices,

a single vertex, or empty



Symmetries and complex numbers

I Before moving to higher dimensions, let’s consider how to
express symmetries using complex numbers.

I In the complex plane, multiplication by e iθ corresponds to
rotation by θ.

e iπ/2 = i e iπ/3



Symmetries and complex numbers

I A lattice Λ has fourfold rotational symmetry if and only if
iΛ = Λ.

I If iΛ = Λ, then (1 + i)Λ ⊂ Λ, since the sum of two elements of
Λ is also in Λ.

I Exercise: draw (1 + i)Λ.

?

Λ (1 + i)Λ



Symmetries and complex numbers

I A lattice Λ has fourfold rotational symmetry if and only if
iΛ = Λ.

I If iΛ = Λ, then (1 + i)Λ ⊂ Λ, since the sum of two elements of
Λ is also in Λ. Similarly, (a + bi)Λ ⊂ Λ for all a, b ∈ Z.

Λ (1 + i)Λ (2 + i)Λ



I Let Z[i ] := {a + bi |a, b ∈ Z}.
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I A lattice Λ has fourfold symmetry if and only if

{z ∈ C|zΛ ⊆ Λ} = Z[i ] .

I If this condition is satified, we say that Λ is a Z[i ]-ideal.
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I Z[i ] is an example of an order: in addition to being a lattice, it
satisfies
I 1 ∈ Z[i ].
I For all z1, z2 ∈ Z[i ], z1z2 ∈ Z[i ].



I Let Z[ω] := {a + bω|a, b ∈ Z}, where ω = eπi/3 = 1
2 +

√
3

2 i .
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I Z[ω] is also an order:
I 1 ∈ Z[ω].
I For all z1, z2 ∈ Z[ω], z1z2 ∈ Z[ω].

I A lattice Λ has sixfold rotational symmetry if and only if

{z ∈ C|zΛ ⊆ Λ} = Z[ω] .



I For any lattice Λ ⊂ C, define

End(Λ) := {z ∈ C|zΛ ⊆ Λ} .

I For most lattices Λ, End(Λ) = Z. But End(Λ) can be an order
such as Z[i ] or Z[ω], as we just saw.

I If End(Λ) is an order (i.e. if End(Λ) is a lattice), then we say
that Λ is an End(Λ)-ideal.



I Our construction of Ramanujan graphs will involve lattices in
four dimensions with symmetry.

I We will need a four-dimensional replacement for the complex
numbers.

I We will use the quaternions.



Quaternions

I Define the set of quaternions by

H := {a + bi + cj + dk|a, b, c , d ∈ R} .

I Multiplication of quaternions is defined by the rules

i2 = j2 = k2 = −1 ,

ij = −ji = k, ki = −ik = j , jk = −kj = i .



Orders and ideals in H

I An order in H is a lattice O ⊂ H such that:
I 1 ∈ O.
I For all z1, z2 ∈ O, z1z2 ∈ O.

I Let Λ be a lattice in H, and let O be an order in H. We say
that Λ is a left O-ideal if

{z ∈ H|zΛ ⊆ Λ} = O .



Exercise: orders in H

I An order in H is a lattice O ⊂ H such that:
I 1 ∈ O.
I For all z1, z2 ∈ O, z1z2 ∈ O.

I Which of these are orders in H?
Z

{a + bi + cj + dk |a, b, c , d ∈ Z}

{a + bi + cj + dk|a, b, c , d ∈ 2Z}

{a + bi + cj + dk|a ∈ Z, b, c , d ∈ 2Z}

{a + bi + cj + dk|a, b, c , d ∈ 1
2
Z}



Exercise: orders in H

I Which of these are orders?

Z No

Z is not a lattice in H.

{a + bi + cj + dk|a, b, c, d ∈ Z} Yes

{a + bi + cj + dk|a, b, c , d ∈ 2Z} No

Does not contain 1.

{a + bi + cj + dk|a ∈ Z, b, c , d ∈ 2Z} Yes

{a + bi + cj + dk|a, b, c , d ∈ 1
2
Z} No

1/2 is in the lattice but (1/2)2 is not.



An order in H

I Consider the lattice O in H generated by
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I We will describe a procedure that constructs a graph given:
I An order O ⊂ H.
I A prime p.

I It will turn out that this graph is usually Ramanujan.
I More precisely, for any fixed O, the graph is Ramanujan for all

but finitely many p.
I We will show how to construct the Ramanujan graph from the

first lecture using this procedure.


