Suppose you are designing a computer network.

- You'd like to be able send information quickly between any pair of computers.
- Due to budget constraints, you can only connect each computer directly to 4 others.
- For simplicity, assume that it doesn't matter where the computers are physically located, only which ones are connected to each other.

One possible network:

1. How would you quantify how good a network is?
2. How would you design a network that is better than the one above?

Eigenvectors of the adjacency matrix

Eigenvectors of the adjacency matrix

			$\begin{array}{cccc} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \\ 0 & \bullet & & \bullet \end{array}$	

eigenvalue $4 \quad$ eigenvalue $3 \quad$ eigenvalue -3

$$
\begin{aligned}
& A^{n}(\quad)=4^{n} \therefore \therefore \because \theta^{n}+3^{n} \because \because+(-3)^{n} \therefore \quad \therefore+\cdots \\
& \therefore 4^{15} \approx 1.1 \times 10^{9}, \quad 3^{15} \approx 1.4 \times 10^{7}, \quad(-3)^{15} \approx-1.4 \times 10^{7}
\end{aligned}
$$

A Ramanujan graph

- This graph is 4-regular.
- The nontrivial eigenvalues of its adjacency matrix have absolute value at most $3 \leq 2 \sqrt{4-1}=2 \sqrt{3} \approx 3.46$.

A graph that is not Ramanujan

- One the eigenvalues of its adjacency matrix is

$$
-\frac{5+\sqrt{5}}{4} \approx-3.62<-2 \sqrt{3} \approx-3.46
$$

