Ramanujan Graphs, Quaternions, and Number Theory homework - Day 2

Some of these exercises are rather time-consuming/difficult. You don't need to do all of them; just choose the ones that look the most interesting to you.

Lattices

1. In class, we saw that two-dimensional lattices can have twofold, fourfold, or sixfold rotational symmetry. Show that a two-dimensional lattice cannot have n-fold rotational symmetry for $n=5$ or $n>6$. (Hint: use proof by contradiction. Choose the point P in the lattice that is closest to the origin. Then use the rotation and translation symmetry of the lattice to construct a point that is closer to the origin.)
2. (a) Find a lattice in n dimensions that has n-fold rotational symmetry.
(b) Find a lattice in $n-1$ dimensions that has n-fold rotational symmetry. (Hint: does the rotation that you found in part (a) fix a vector? Then it also fixes the subspace perpendicular to that vector.)
3. The previous exercise shows that a four-dimensional lattice can have fivefold rotational symmetry. Read the following article, which explains how four-dimensional lattices with fivefold rotational symmetry can be used to construct Penrose tilings: http://www.ams.org/publicoutreach/feature-column/ fcarc-ribbons.
4. Some more questions about symmetries of higher-dimensional lattices:
(a) Find a lattice in 4 dimensions that has 8 -fold rotational symmetry. (Hint: consider your solution to part (a) for $n=8$. If R is the rotation, look at the eigenspaces of R^{4}.)
(b) Find a lattice in 8 dimensions that has 15 -fold rotational symmetry. (Hint: consider your solution to part (a) for $n=15$. If R is the rotation, look at the subspaces fixed by R^{3} and R^{5} and their orthogonal complements.)
(c) Let n be a positive integer, and let $\varphi(n)$ be the number of integers between 0 and $n-1$ inclusive that are relatively prime to n. Show that there is a lattice in $\varphi(n)$ dimensions that has n-fold rotational symmetry.
5. Let p be a prime number. In class, we considered a graph whose vertices are two-dimensional lattices up to scaling, such that two vertices are connected by an edge if there are representative lattices Λ_{1}, Λ_{2} such that $\Lambda_{2} \subset \Lambda_{1}$ and $\left[\Lambda_{1}: \Lambda_{2}\right]=p$.

We clamimed that this graph is a tree. This exercise will prove the claim.
(a) Show that each vertex has $p+1$ neighbors. This amounts to showing that for any lattice Λ_{1}, there are $p+1$ lattices $\Lambda_{2} \subset \Lambda_{1}$ satisfying $\left[\Lambda_{1}: \Lambda_{2}\right]=p$. (Hint: show that such lattices are in bijection with one-dimensional subspaces of the two-dimensional $\mathbb{Z} / p \mathbb{Z}$-vector space $\Lambda_{1} / p \Lambda_{1}$. How many nonzero elements does this vector space have, and how many generators does each one-dimensional subspace have?)
(b) Show that the graph has no loops by the following argument. Let Λ_{1} and Λ_{2} be lattices in the plane such that for some $n, p^{n} \Lambda_{1} \subseteq \Lambda_{2}$ and $p^{n} \Lambda_{2} \subset \Lambda_{1}$. Let A be a matrix sending a basis for Λ_{1} to a basis for Λ_{2}.
Define a function ord_{p} on the rational numbers by

$$
\operatorname{ord}_{p} p^{k} \frac{m}{n}=k
$$

where k is any integer and m and n are any integers not divisible by p, and $\operatorname{ord}_{p} 0=\infty$. In other words, $\operatorname{ord}_{p} x$ is the number of powers of p dividing x.
Define

$$
d\left(\Lambda_{1}, \Lambda_{2}\right):=\operatorname{ord}_{p}(\operatorname{det} A)-2 \min \left(\operatorname{ord}_{p}\left(A_{i j}\right)\right)
$$

Show that $d\left(\Lambda_{1}, \Lambda_{2}\right) \geq 0$, with equality if and only if Λ_{1} is a scalar multiple of Λ_{2}. Show that if $d\left(\Lambda_{1}, \Lambda_{2}\right)>0$, then among the $p+1$ lattices Λ_{3} satisfying $\Lambda_{3} \subset \Lambda_{2}$ and $\left[\Lambda_{2}: \Lambda_{3}\right]=p$, one of them satisfies

$$
d\left(\Lambda_{1}, \Lambda_{3}\right)=d\left(\Lambda_{1}, \Lambda_{2}\right)-1
$$

and the other p satisfy

$$
d\left(\Lambda_{1}, \Lambda_{3}\right)=d\left(\Lambda_{1}, \Lambda_{2}\right)+1
$$

Therefore, if we are at the vertex corresponding to Λ_{2}, there is a unique edge that will take us closer to Λ_{1}. So there is a unique way to get from the vertex corresponding to Λ_{2} to the vertex corresponding to Λ_{1} without backtracking.
6. Consider the graph described in Exercise 5, except that we let $\left[\Lambda_{1}: \Lambda_{2}\right]=$ n, where n is not necessarily prime.
(a) How is the graph for $n=4$ related to the graph for $n=2$?
(b) How is the graph for $n=6$ related to the graphs for $n=2$ and $n=3$?

Quaternions

7. Verify that

$$
\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z} \text { or } a, b, c, d \in \mathbb{Z}+1 / 2\}
$$

is an order in \mathbb{H}.
8. Verify that the lattice in \mathbb{H} generated by

$$
1, \quad \frac{i-\sqrt{3} k}{2}, \quad i-\sqrt{3} j, \quad \frac{1+3 i+\sqrt{3} j+\sqrt{3} k}{2}
$$

is an order.
9. Describe geometrically the following transformations:
(a) $z \mapsto i z$
(b) $z \mapsto z i$
(c) $z \mapsto(i+j) z$

