Ramanujan Graphs, Quaternions, and Number Theory homework - Day 2

Some of these exercises are rather time-consuming/difficult. You don't need to do all of them; just choose the ones that look the most interesting to you.

Lattices

- 1. In class, we saw that two-dimensional lattices can have twofold, fourfold, or sixfold rotational symmetry. Show that a two-dimensional lattice cannot have *n*-fold rotational symmetry for n = 5 or n > 6. (Hint: use proof by contradiction. Choose the point *P* in the lattice that is closest to the origin. Then use the rotation and translation symmetry of the lattice to construct a point that is closer to the origin.)
- 2. (a) Find a lattice in n dimensions that has n-fold rotational symmetry.
 - (b) Find a lattice in n-1 dimensions that has *n*-fold rotational symmetry. (Hint: does the rotation that you found in part (a) fix a vector? Then it also fixes the subspace perpendicular to that vector.)
- 3. The previous exercise shows that a four-dimensional lattice can have fivefold rotational symmetry. Read the following article, which explains how four-dimensional lattices with fivefold rotational symmetry can be used to construct Penrose tilings: http://www.ams.org/publicoutreach/feature-column/ fcarc-ribbons.
- 4. Some more questions about symmetries of higher-dimensional lattices:
 - (a) Find a lattice in 4 dimensions that has 8-fold rotational symmetry. (Hint: consider your solution to part (a) for n = 8. If R is the rotation, look at the eigenspaces of R^4 .)
 - (b) Find a lattice in 8 dimensions that has 15-fold rotational symmetry. (Hint: consider your solution to part (a) for n = 15. If R is the rotation, look at the subspaces fixed by R^3 and R^5 and their orthogonal complements.)
 - (c) Let n be a positive integer, and let $\varphi(n)$ be the number of integers between 0 and n-1 inclusive that are relatively prime to n. Show that there is a lattice in $\varphi(n)$ dimensions that has n-fold rotational symmetry.
- 5. Let p be a prime number. In class, we considered a graph whose vertices are two-dimensional lattices up to scaling, such that two vertices are connected by an edge if there are representative lattices Λ_1 , Λ_2 such that $\Lambda_2 \subset \Lambda_1$ and $[\Lambda_1 : \Lambda_2] = p$.

We clamimed that this graph is a tree. This exercise will prove the claim.

- (a) Show that each vertex has p+1 neighbors. This amounts to showing that for any lattice Λ_1 , there are p+1 lattices $\Lambda_2 \subset \Lambda_1$ satisfying $[\Lambda_1 : \Lambda_2] = p$. (Hint: show that such lattices are in bijection with one-dimensional subspaces of the two-dimensional $\mathbb{Z}/p\mathbb{Z}$ -vector space $\Lambda_1/p\Lambda_1$. How many nonzero elements does this vector space have, and how many generators does each one-dimensional subspace have?)
- (b) Show that the graph has no loops by the following argument. Let Λ_1 and Λ_2 be lattices in the plane such that for some $n, p^n \Lambda_1 \subseteq \Lambda_2$ and $p^n \Lambda_2 \subset \Lambda_1$. Let A be a matrix sending a basis for Λ_1 to a basis for Λ_2 .

Define a function ord_p on the rational numbers by

$$\operatorname{ord}_p p^k \frac{m}{n} = k \,,$$

where k is any integer and m and n are any integers not divisible by p, and $\operatorname{ord}_p 0 = \infty$. In other words, $\operatorname{ord}_p x$ is the number of powers of p dividing x.

Define

$$d(\Lambda_1, \Lambda_2) := \operatorname{ord}_p(\det A) - 2\min(\operatorname{ord}_p(A_{ij}))$$

Show that $d(\Lambda_1, \Lambda_2) \geq 0$, with equality if and only if Λ_1 is a scalar multiple of Λ_2 . Show that if $d(\Lambda_1, \Lambda_2) > 0$, then among the p + 1 lattices Λ_3 satisfying $\Lambda_3 \subset \Lambda_2$ and $[\Lambda_2 : \Lambda_3] = p$, one of them satisfies

$$d(\Lambda_1, \Lambda_3) = d(\Lambda_1, \Lambda_2) - 1,$$

and the other p satisfy

$$d(\Lambda_1, \Lambda_3) = d(\Lambda_1, \Lambda_2) + 1$$
.

Therefore, if we are at the vertex corresponding to Λ_2 , there is a unique edge that will take us closer to Λ_1 . So there is a unique way to get from the vertex corresponding to Λ_2 to the vertex corresponding to Λ_1 without backtracking.

6. Consider the graph described in Exercise 5, except that we let $[\Lambda_1 : \Lambda_2] = n$, where *n* is not necessarily prime.

- (a) How is the graph for n = 4 related to the graph for n = 2?
- (b) How is the graph for n = 6 related to the graphs for n = 2 and n = 3?

Quaternions

7. Verify that

$$\{a+bi+cj+dk|a,b,c,d\in\mathbb{Z} \text{ or } a,b,c,d\in\mathbb{Z}+1/2\}$$

is an order in \mathbb{H} .

8. Verify that the lattice in \mathbb{H} generated by

1,
$$\frac{i-\sqrt{3}k}{2}$$
, $i-\sqrt{3}j$, $\frac{1+3i+\sqrt{3}j+\sqrt{3}k}{2}$

is an order.

- 9. Describe geometrically the following transformations:
 - (a) $z \mapsto iz$ (b) $z \mapsto zi$ (c) $z \mapsto (i+j)z$

3