Ramanujan Graphs, Quaternions, and Number Theory homework - Day 1

Some of these exercises are rather time-consuming/difficult/open-ended. You don't need to do all of them; just choose the ones that look the most interesting to you.

1. Go to https://www.sagemath.org/ and either install Sage or set up a CoCalc account. Download the example notebook at https://people. maths.ox.ac.uk/gulotta/Ramanujan.ipynb and open it in Sage. Then try generating some graphs of your own. The Sage documentation for Brandt modules is at https://doc.sagemath.org/html/en/reference/ modmisc/sage/modular/quatalg/brandt.html.
2. A complete graph is a graph where every pair of vertices is connected by an edge. The complete graph with n vertices is denoted K_{n}.

K_{3}

K_{5}
(a) Write down the adjacency matrices of K_{2} and K_{3}. What are their eigenvalues?
(b) Find the eigenvalues of the adjacency matrix of K_{n}. (Hint: Let A_{n} be the adjacency matrix. First find the eigenvalues of $A_{n}+I_{n}$, where I_{n} is the $n \times n$ identity matrix.)
3. (a) Consider the cycle graph C_{n}.

Verify that for each integer m, the vectors

$$
\begin{aligned}
& (\cos (2 \pi \cdot 0 \cdot m / n), \cos (2 \pi \cdot 1 \cdot m / n), \ldots, \cos (2 \pi \cdot(n-1) \cdot m / n)) \\
& (\sin (2 \pi \cdot 0 \cdot m / n), \sin (2 \pi \cdot 1 \cdot m / n), \ldots, \sin (2 \pi \cdot(n-1) \cdot m / n))
\end{aligned}
$$

are eigenvectors of the adjacency matrix of C_{n}, with eigenvalue $2 \cos (2 \pi m / n)$.
(b) Explain why the eigenvalues of the adjacency matrix of a $n_{1} \times n_{2}$ wrapping square grid are of the form $2 \cos \left(2 \pi m_{1} / n_{1}\right)+2 \cos \left(2 \pi m_{2} / n_{2}\right)$ for integer m_{1}, m_{2}.

4. Write a computer program that generates random regular graphs. How large are the eigenvalues of the adjacency matrices typically?
5. Write a computer program that generates regular graphs of varying sizes without using randomness. How large the eigenvalues of the adjacency matrices?
6. Read the article "On the second eigenvalue of a graph" by A. Nilli, which proves Proposition 1.8 in the notes. It should be available for free online.
7. (if you know some group theory) The computation in this exercise will be useful for tomorrow's class. How many subgroups of index n does \mathbb{Z}^{2} have
(a) when $n=2$?
(b) when $n=3,4$, or 5 ?
(c) when n is prime?
(d) in general?
(Hint: a subgroup of \mathbb{Z}^{2} of index n must contain $n \mathbb{Z}^{2}$. So there is a bijection between subgroups of index n in \mathbb{Z}^{2} and subgroups of index n in $(\mathbb{Z} / n \mathbb{Z})^{2}$.)

