3. Constructing Ramanujan graphs

We will describe a procedure that generates a graph given:

- An order \mathcal{O} in \mathbb{H} .
- A prime p.

This graph will *usually* be Ramanujan. We will say later exactly what we mean by "usually".

We will keep in mind the example where ${\cal O}$ is the order of Example 2.8, i.e. it is generated by

1,
$$\frac{i-\sqrt{3}k}{2}$$
, $i-\sqrt{3}j$, $\frac{1+3i+\sqrt{3}j+\sqrt{3}k}{2}$,

and p = 2.

Construct a graph as follows:

- Each left \mathcal{O} -ideal is a vertex of the graph.
- An edge is drawn from Λ_1 to Λ_2 if $\Lambda_1 \subset \Lambda_2$ and $[\Lambda_2 \colon \Lambda_1] = p^2 = 2^2 = 4$.

Surprisingly enough, we get the same graph as before:

The graph of lattices up to equivalences is again the Bruhat–Tits tree:

So why consider the four-dimensional lattices if we just get the same tree again? Because we can now consider multiplying a lattice not just by a rational number, but also by a quaternion. If Λ is a left \mathcal{O} -ideal and $z \in \mathbb{H}$ is nonzero, then Λz is also a left \mathcal{O} -ideal.

If we color the vertices of the Bruhat–Tits tree according to their orbits under the action of right multiplication, it looks like this:

If we identify vertices of the same color, we get the following (multi)graph:

The adjacency matrix is $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. Its eigenvectors are (1, 1), with eigenvalue 3, and (1, -1), with eigenvalue -1. Since $|-1| < 2\sqrt{3-1} = 2\sqrt{2}$, this graph is Ramanujan.

This example suggests the following general procedure for constructing graphs: **Procedure 3.1.**

- (1) Choose an order \mathcal{O} in \mathbb{H} and a prime p.
- (2) Draw a graph whose vertices correspond to left \mathcal{O} -ideals, such that the vertices corresponding to Λ_1 , Λ_2 are connected by an edge if $\Lambda_2 \subseteq \Lambda_1$ and $[\Lambda_1 \colon \Lambda_2] = p^2$.
- (3) Identify vertices Λ_1 , Λ_2 if there exists $z \in \mathbb{H}$ such that $\Lambda_2 = \Lambda_1 z$.

We will denote this graph by $G_p(\mathcal{O})$ and its adjacency matrix by $A_p(\mathcal{O})$. The adjacency matrix is sometimes called a *Brandt matrix*.

The graph from Example 1.11 was constructed by letting \mathcal{O} be

$$\frac{1+i+7j+5k}{2}, \quad i+7j+5k, \quad 25j+5k, \quad 7k$$

and letting p = 3.

It turns out that Procedure 3.1 usually, but not always, gives us a p + 1-regular Ramanujan graph. Let us again consider the case where O is generated by the vectors

1,
$$\frac{i-\sqrt{3}k}{2}$$
, $i-\sqrt{3}j$, $\frac{1+3i+\sqrt{3}j+\sqrt{3}k}{2}$.

Here are the matrices $A_p(\mathcal{O})$ for varying p:

All of these matrices have (1,1) as an eigenvector. The eigenvalue is p + 1 for all primes p except 3 and 5. Also note that when p = 3, the graph is not Ramanujan as (1,-1) is an eigenvector with eigenvalue -1, whereas the Ramanujan bound is $2\sqrt{1-1} = 0$.

So what is different about the primes 3 and 5? To answer that question, we will need to introduce some definitions.

Definition 3.2. The *conjugate* of a quaternion is defined by

 $(a+bi+cj+dk)^* := a-bi-cj-dk.$

The *reduced trace* of a quaternion is defined by $\operatorname{tr} z := z + z^*$, i.e.

 $\operatorname{tr}(a+bi+cj+dk) := 2a.$

The reduced norm of a quaternion is defined by $N(z) := zz^*$, i.e.

$$N(a + bi + cj + dk) := a^2 + b^2 + c^2 + d^2.$$

Lemma 3.3. Let $z = a + bi + cj + dk \in \mathbb{H}$. Consider the \mathbb{R} -linear map $f_z : \mathbb{H} \to \mathbb{H}$ defined by

$$f_z(z') = zz' \,.$$

The map f_z is represented by the matrix

$$\begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix}$$

The trace of this matrix is $4a = 2 \operatorname{tr} z$, and the determinant of this matrix is $(a^2 + b^2 + c^2 + d^2)^2 = N(z)^2$.

Proof. Left as an exercise to the reader.

Lemma 3.4. Let $\mathcal{O} \subseteq \mathbb{H}$ be an order. For any $z \in \mathcal{O}$, $N(z) \in \mathbb{Z}$, $tr(z) \in \mathbb{Z}$, and $z^* \in \mathcal{O}$.

Proof. Since left multiplication by z preserves the lattice \mathcal{O} , we can choose a basis of \mathbb{H} in which the matrix representing z has integer entries. By Lemma 3.3, $N(z)^2$ must be an integer, and $2 \operatorname{tr} z$ must be an integer. Likewise, for any integer m, $m + z \in \mathcal{O}$, so $N(m + z)^2$ must be an integer. We have

$$N(m+z) = (m+z)(m+z)^* = m^2 + mz^* + mz + zz^* = m^2 + m\operatorname{tr} z + N(z).$$

We know that $m^2 + m \operatorname{tr} z$ is a rational number. In order for $N(m+z)^2$ to be an integer, either N(z) must be an integer or $m^2 + m \operatorname{tr} z$ must be zero. The latter cannot hold for all m, so N(z) must be an integer.

Plugging m = 1 into the above formula, we find that 1 + tr z + N(z) must also be an integer. So tr z is an integer.

Since all integers are in $\mathcal{O}, z^* = \operatorname{tr} z - z \in \mathcal{O}.$

Definition 3.5. Let Λ be a lattice in \mathbb{H} , generated by z_1, z_2, z_3, z_4 . The discriminant of Λ , denoted $\Delta(\Lambda)$, is the determinant of the 4×4 matrix with entries $\operatorname{tr}(z_i^* z_j)$.

Example 3.6. Let $\Lambda = \{a + bi + cj + dk | a, b, c, d \in \mathbb{Z}\}$. Then Λ is generated by 1, i, j, k. We find

$$\Delta(\Lambda) = \det \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} = -16.$$

Lemma 3.7. For any order $\mathcal{O} \subset \mathbb{H}$, $\Delta(\mathcal{O}) \in \mathbb{Z}$.

Proof. This follows from Lemma 3.4.

Definition 3.8. Let $\mathcal{O} \subseteq \mathbb{H}$ be an order, and let p be a prime number. We say that \mathcal{O} is *unramified at* p if p does not divide the discriminant of \mathcal{O} .

Theorem 3.9. Procedure 3.1 produces a p + 1-regular Ramanujan graph if \mathcal{O} is unramified at p.

The key idea in the proof that the graph is p + 1 regular is that $\mathcal{O}/p\mathcal{O}$ is isomorphic to $M_2(\mathbb{Z}/p\mathbb{Z})$, the space of 2×2 matrices with coefficients in $\mathbb{Z}/p\mathbb{Z}$. An outline of the proof will be given in the homework. The proof that the graph is Ramanujan is much harder.

The proof that the graph is Ramanujan uses a lot of (cool) advanced mathematics. I will explain some of the ideas in the final lecture.