3. Constructing Ramanujan graphs

We will describe a procedure that generates a graph given:

- An order \mathcal{O} in \mathbb{H}.
- A prime p.

This graph will usually be Ramanujan. We will say later exactly what we mean by "usually".

We will keep in mind the example where \mathcal{O} is the order of Example 2.8, i.e. it is generated by

$$
1, \quad \frac{i-\sqrt{3} k}{2}, \quad i-\sqrt{3} j, \quad \frac{1+3 i+\sqrt{3} j+\sqrt{3} k}{2},
$$

and $p=2$.
Construct a graph as follows:

- Each left \mathcal{O}-ideal is a vertex of the graph.
- An edge is drawn from Λ_{1} to Λ_{2} if $\Lambda_{1} \subset \Lambda_{2}$ and $\left[\Lambda_{2}: \Lambda_{1}\right]=p^{2}=2^{2}=4$.

Surprisingly enough, we get the same graph as before:

The graph of lattices up to equivalences is again the Bruhat-Tits tree:

So why consider the four-dimensional lattices if we just get the same tree again? Because we can now consider multiplying a lattice not just by a rational number, but also by a quaternion. If Λ is a left \mathcal{O}-ideal and $z \in \mathbb{H}$ is nonzero, then Λz is also a left \mathcal{O}-ideal.

If we color the vertices of the Bruhat-Tits tree according to their orbits under the action of right multiplication, it looks like this:

If we identify vertices of the same color, we get the following (multi)graph:

The adjacency matrix is $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. Its eigenvectors are (1,1), with eigenvalue 3 , and $(1,-1)$, with eigenvalue -1 . Since $|-1|<2 \sqrt{3-1}=2 \sqrt{2}$, this graph is Ramanujan.

This example suggests the following general procedure for constructing graphs: Procedure 3.1.
(1) Choose an order \mathcal{O} in \mathbb{H} and a prime p.
(2) Draw a graph whose vertices correspond to left \mathcal{O}-ideals, such that the vertices corresponding to Λ_{1}, Λ_{2} are connected by an edge if $\Lambda_{2} \subseteq \Lambda_{1}$ and $\left[\Lambda_{1}: \Lambda_{2}\right]=p^{2}$.
(3) Identify vertices Λ_{1}, Λ_{2} if there exists $z \in \mathbb{H}$ such that $\Lambda_{2}=\Lambda_{1} z$.

We will denote this graph by $G_{p}(\mathcal{O})$ and its adjacency matrix by $A_{p}(\mathcal{O})$. The adjacency matrix is sometimes called a Brandt matrix.

The graph from Example 1.11 was constructed by letting \mathcal{O} be

$$
\frac{1+i+7 j+5 k}{2}, \quad i+7 j+5 k, \quad 25 j+5 k, \quad 7 k
$$

and letting $p=3$.

It turns out that Procedure 3.1 usually, but not always, gives us a $p+1$-regular Ramanujan graph. Let us again consider the case where \mathcal{O} is generated by the vectors

$$
1, \quad \frac{i-\sqrt{3} k}{2}, \quad i-\sqrt{3} j, \quad \frac{1+3 i+\sqrt{3} j+\sqrt{3} k}{2} .
$$

Here are the matrices $A_{p}(\mathcal{O})$ for varying p :

p	2	3	5	7	11	13	17
$A_{p}(\mathcal{O})$	$\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}6 & 5 \\ 5 & 6\end{array}\right)$	$\left(\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right)$	$\left(\begin{array}{ll}4 & 8 \\ 8 & 4\end{array}\right)$	$\left(\begin{array}{cc}6 & 8 \\ 8 & 6\end{array}\right)$	$\left(\begin{array}{cc}10 & 8 \\ 8 & 10\end{array}\right)$

All of these matrices have $(1,1)$ as an eigenvector. The eigenvalue is $p+1$ for all primes p except 3 and 5 . Also note that when $p=3$, the graph is not Ramanujan as $(1,-1)$ is an eigenvector with eigenvalue -1 , whereas the Ramanujan bound is $2 \sqrt{1-1}=0$.

So what is different about the primes 3 and 5 ? To answer that question, we will need to introduce some definitions.

Definition 3.2. The conjugate of a quaternion is defined by

$$
(a+b i+c j+d k)^{*}:=a-b i-c j-d k .
$$

The reduced trace of a quaternion is defined by $\operatorname{tr} z:=z+z^{*}$, i.e.

$$
\operatorname{tr}(a+b i+c j+d k):=2 a .
$$

The reduced norm of a quaternion is defined by $N(z):=z z^{*}$, i.e.

$$
N(a+b i+c j+d k):=a^{2}+b^{2}+c^{2}+d^{2}
$$

Lemma 3.3. Let $z=a+b i+c j+d k \in \mathbb{H}$. Consider the \mathbb{R}-linear map $f_{z}: \mathbb{H} \rightarrow \mathbb{H}$ defined by

$$
f_{z}\left(z^{\prime}\right)=z z^{\prime}
$$

The map f_{z} is represented by the matrix

$$
\left(\begin{array}{cccc}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right)
$$

The trace of this matrix is $4 a=2 \operatorname{tr} z$, and the determinant of this matrix is $\left(a^{2}+\right.$ $\left.b^{2}+c^{2}+d^{2}\right)^{2}=N(z)^{2}$.

Proof. Left as an exercise to the reader.
Lemma 3.4. Let $\mathcal{O} \subseteq \mathbb{H}$ be an order. For any $z \in \mathcal{O}, N(z) \in \mathbb{Z}, \operatorname{tr}(z) \in \mathbb{Z}$, and $z^{*} \in \mathcal{O}$.

Proof. Since left multiplication by z preserves the lattice \mathcal{O}, we can choose a basis of \mathbb{H} in which the matrix representing z has integer entries. By Lemma 3.3, $N(z)^{2}$ must be an integer, and $2 \operatorname{tr} z$ must be an integer. Likewise, for any integer m, $m+z \in \mathcal{O}$, so $N(m+z)^{2}$ must be an integer. We have

$$
N(m+z)=(m+z)(m+z)^{*}=m^{2}+m z^{*}+m z+z z^{*}=m^{2}+m \operatorname{tr} z+N(z) .
$$

We know that $m^{2}+m \operatorname{tr} z$ is a rational number. In order for $N(m+z)^{2}$ to be an integer, either $N(z)$ must be an integer or $m^{2}+m \operatorname{tr} z$ must be zero. The latter cannot hold for all m, so $N(z)$ must be an integer.

Plugging $m=1$ into the above formula, we find that $1+\operatorname{tr} z+N(z)$ must also be an integer. So $\operatorname{tr} z$ is an integer.

Since all integers are in $\mathcal{O}, z^{*}=\operatorname{tr} z-z \in \mathcal{O}$.
Definition 3.5. Let Λ be a lattice in \mathbb{H}, generated by $z_{1}, z_{2}, z_{3}, z_{4}$. The discriminant of Λ, denoted $\Delta(\Lambda)$, is the determinant of the 4×4 matrix with entries $\operatorname{tr}\left(z_{i}^{*} z_{j}\right)$.

Example 3.6. Let $\Lambda=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z}\}$. Then Λ is generated by 1 , i, j, k. We find

$$
\Delta(\Lambda)=\operatorname{det}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{array}\right)=-16
$$

Lemma 3.7. For any order $\mathcal{O} \subset \mathbb{H}, \Delta(\mathcal{O}) \in \mathbb{Z}$.
Proof. This follows from Lemma 3.4.
Definition 3.8. Let $\mathcal{O} \subseteq \mathbb{H}$ be an order, and let p be a prime number. We say that \mathcal{O} is unramified at p if p does not divide the discriminant of \mathcal{O}.

Theorem 3.9. Procedure 3.1 produces a $p+1$-regular Ramanujan graph if \mathcal{O} is unramified at p.

The key idea in the proof that the graph is $p+1$ regular is that $\mathcal{O} / p \mathcal{O}$ is isomorphic to $M_{2}(\mathbb{Z} / p \mathbb{Z})$, the space of 2×2 matrices with coefficients in $\mathbb{Z} / p \mathbb{Z}$. An outline of the proof will be given in the homework. The proof that the graph is Ramanujan is much harder.

The proof that the graph is Ramanujan uses a lot of (cool) advanced mathematics. I will explain some of the ideas in the final lecture.

