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2. Lattices and quaternion algebras

A lattice in the plane is an infinitely repeating grid of points in the plane con-
taining the origin.

Now let us consider how two lattices can be related. If Λ1, Λ2 are lattices
satisfying Λ2 ⊆ Λ1, then Λ1 is a union of finitely many translates of Λ1. The
number of translates is called the index of Λ2 in Λ1, denoted [Λ1 : Λ2].

Example 2.1. Here is an example where [Λ1 : Λ2] = 2.

Λ1 Λ2 translates of Λ2 in Λ1

Exercise 2.2. Compute [Λ1 : Λ2] where:

Λ1 =

Λ2 = or Λ2 = .
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For any lattice Λ1, there are exactly three lattices Λ2 satisfying Λ2 ⊂ Λ1 and
[Λ1 : Λ2] = 2.

We can summarize this information in a graph.

• • •

•

Now let us construct a graph as follows:

• Each lattice in the plane is a vertex of the graph.
• Draw an edge between the lattice Λ1 and the lattice Λ2 if Λ2 ⊂ Λ1 and
[Λ1 : Λ2] = 2.

We have already drawn a small piece of this graph. Here is a larger piece:

We can simplify the diagram a bit by declaring two lattices to be equivalent if they
are related by scaling. In particular, the bottom lattice is equivalent to the top
middle lattice. After identifying equivalent lattices, the piece of the graph looks
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like this.

The equivalence classes of lattices form a tree, called the Bruhat–Tits tree.

Now suppose that instead we draw an edge between lattices Λ1, Λ2 satisfying
[Λ1 : Λ2] = 3.



10

The graph is then an infinite 4-regular tree:

In general, for any prime p, if we draw an edge between pairs of lattices satisfying
[Λ1 : Λ2] = p, we will get a p+ 1-regular tree.

p = 2 p = 3 p = 5

p = 7 p = 11 p = 13

On the other hand, if we draw an edge between pairs of lattices satisfying [Λ1 :
Λ2] = n, where n is not prime, then we generally don’t get a tree. For example,
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when n = 4, the graph looks like this:

Now let’s consider two different ways that we could generalize this setup:

(1) Look at higher-dimensional lattices.
(2) Look at lattices with symmetry.

So, for any n we could consider constructing a graph as follows:

(1) Vertices are n-dimensional lattices up to scaling.
(2) Draw an edge between two vertices if there are representatives Λ1, Λ2 such

that Λ2 ⊂ Λ1 and [Λ1 : Λ2] = 2.

The resulting graph is called a building. When n = 3, the building looks something
like this:

Image credit: P. Garrett, Buildings and Classical Groups

Unfortunately, I don’t have more to say about buildings. Our construction of
Ramanujan graphs will only use the Bruhat–Tits trees.
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Now let’s look at symmetries of lattices. Any lattice has twofold rotational
symmetry. Some lattices in the plane have fourfold or sixfold rotational symmetry.

Twofold symmetry Fourfold symmetry Sixfold symmetry

Most lattices only have twofold rotational symmetry. On the Bruhat-Tits tree, the
set of points that correspond to lattices with fourfold or sixfold symmetry is either:

an infinite path, two adjacent vertices,

a single vertex, or empty.

So we do not get very interesting graphs this way. However, we can get interesting
graphs if we look at symmetrical lattices in higher dimensions. In particular, we
will construct Ramanujan graphs using symmetrical lattices in the four dimensions.

It will be useful to think of symmetries in the following way. Rotations in the
plane have a nice interpretation in terms of complex numbers. In the complex plane,
multiplication by eiθ corresponds to rotation by θ. So a lattice in the complex plane
has fourfold rotational symmetry if it is invariant under multiplication by eiπ/2 = i,
and sixfold rotational symmetry if it is invariant under multiplication by eiπ/3.
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eiπ/2 = i

eiπ/3

Another way of thinking about this is the following. Suppose that the lattice Λ
has fourfold rotational symmetry. Then iΛ = Λ. Note that (1 + i)Λ ⊂ Λ, since the
sum of two elements of Λ is also in Λ. Similarly, (a+ bi)Λ ⊂ Λ for all a, b ∈ Z.

Λ (1 + i)Λ (2 + i)Λ

Define Z[i] := {a+ bi|a, b ∈ Z}.
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A lattice Λ as fourfold rotational symmetry if and only if

{z ∈ C|zΛ ⊆ Λ} = Z[i] .

If this condition is satisfied, we say that Λ is a Z[i]-ideal.
The lattice Z[i] is an example of an order :

Definition 2.3. An order in C is a lattice O ⊂ C such that:

(1) 1 ∈ O
(2) For all z1, z2 ∈ O, z1z2 ∈ O.



14

Similarly, we can consider the lattice

Z[ω] := {a+ bω|a, b ∈ Z} , where ω = eπi/3 =
1

2
+

√
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2
i .
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A lattice Λ has sixfold rotational symmetry if and only if

{z ∈ C|zΛ ⊆ Λ} = Z[ω] .
Furthermore, Z[ω] is an order.

For any lattice Λ ⊂ C, define
End(Λ) := {z ∈ C|zΛ ⊆ Λ} .

For most lattices Λ, End(Λ) will just consist of integers. However, we have seen
that End(Λ) can be an order such as Z[i] or Z[ω].

Our construction of Ramanujan graphs will involve symmetrical four-dimensional
lattices. We need four-dimensional analogue of the complex numbers. These are
the quaternions.

Definition 2.4. The quaternions are the set

H := {a+ bi+ cj + dk|a, b, c, d ∈ R}
We define multiplication of two quaternions by the rules

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = −1, j2 = −1, k2 = −1 .

Unlike the case of the complex numbers, multiplication is not commutative.
We define orders and ideals similarly to the complex case.

Definition 2.5. An order in H is a lattice O ⊂ H such that

(1) 1 ∈ O.
(2) For all z1, z2 ∈ O, z1z2 ∈ O.

Definition 2.6. A left O-ideal is a lattice Λ ⊂ H such that

{x ∈ H|xΛ ⊆ Λ} = O .

Exercise 2.7. Which of these subsets of H are orders in H?

Z
{a+ bi+ cj + dk|a, b, c, d ∈ Z}
{a+ bi+ cj + dk|a, b, c, d ∈ 2Z}
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{a+ bi+ cj + dk|a ∈ Z, b, c, d ∈ 2Z}
{a+ bi+ cj + dk|a, b, c, d ∈ 1

2
Z}

Example 2.8. The four-dimensional lattice O consisting of integer combinations of
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is an order. To verify this, we need to check that any product of two of the four
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We leave the remainder of the verification to the reader.


