
Kleinian Groups and Fractals homework - Day 4

1. Play around with the fractal generator at https://guests.mpim-bonn.

mpg.de/gulotta/kleinian/. Do you notice any interesting patterns? If
so, show me at TAU or send me a message on Slack and we might discuss
it during tomorrow’s class!

If you’re feeling ambitious, you can also modify the fractal generator
(source code at https://github.com/dgulotta/kleinian) or write your
own.

2. Given two intersecting circles, we can measure the angle at which they
intersect. In Exercise 2 of the Day 2 homework, we showed that Möbius
transformations preserve circles and angles. In this exercise, we will show
that there is a notion of “distance” between nonintersecting circles that is
preserved by Möbius transformations.

In Exercise 3 of the Day 3 homework, we described a way of representing
a circle by a Hermitian matrix with negative determinant. Suppose that
circles C1 and C2 are represented by matrices A1 and A2. Since scaling the
matrix does not change the circle, we will assume detA1 = detA2 = −1.
Recall that if B is a matrix, then the matrix corresponding to the circle
BCi is (B−1)†AiB

−1.

Define
τ(C1, C2) :=

∣∣tr(A1A
−1
2 )

∣∣ .
(a) Recall that the trace of a matrix is the sum of its diagonal entries,

and that conjugating a matrix does not change its trace. Explain
why τ(C1, C2) is invariant under Möbius transformations, i.e. for any

invertible matrix B, trA1A
−1
2 = tr(B−1)†A1B

−1 ((B−1)†A2B
−1)−1.

(b) Show that if C1 and C2 intersect at an angle θ, then

τ(C1, C2) = 2 |cos θ| .

(c) Show that if C1 and C2 are concentric, then

τ(C1, C2) =
r(C1)

r(C2)
+
r(C2)

r(C1)
.

where r(Ci) is the radius of Ci.

(d) Show that if C1 and C2 do not intersect, then

τ(C1, C2) > 2 .

It therefore seems reasonable to call cosh−1(τ(C1, C2)/2) the “dis-
tance” between C1 and C2.
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(e) Show that if C1 and C2 do not intersect and one circle is contained
in the interior of the other, then

τ(C1, C2) ≤ r(C1)

r(C2)
+
r(C2)

r(C1)
.

3. As promised on Tuesday, we can now show that the sequences of Schottky
discs

Dg1 ⊃ Dg1g2 ⊃ Dg1g2g3 ⊃ · · · (∗)

shrink to zero size.

For any g1, g2, . . . , gn, let Cg1g2···gn denote the boundary of Dg1g2···gn .

(a) Explain why, for any g1, g2, . . . , gn, gn+1 ∈ {a, a−1, b, b−1},

τ(Cg1···gn , Cg1···gngn+1
) = τ(Cgn , Cgngn+1

) .

(b) Conclude that

r(Cg1···gngn+1
)

r(Cg1···gn)
+

r(Cg1···gn)

r(Cg1···gngn+1
)
≥ τ(Cgn , Cgngn+1

) .

(c) Since the function f(x) = x + 1/x is decreasing for x < 1, conclude
that

r(Cg1···gngn+1)

r(Cg1···gn)
≤ λ ,

where λ satisfies λ+ λ−1 = τ(Cgn , Cgngn+1) and λ < 1.

(d) Since there are only finitely many possibilities for the pair gn, gn+1,
conclude that the radii of the discs (∗) decrease exponentially.
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