Kleinian Groups and Fractals homework - Day 4

1. Play around with the fractal generator at https://guests.mpim-bonn. mpg.de/gulotta/kleinian/. Do you notice any interesting patterns? If so, show me at TAU or send me a message on Slack and we might discuss it during tomorrow's class!
If you're feeling ambitious, you can also modify the fractal generator (source code at https://github.com/dgulotta/kleinian) or write your own.
2. Given two intersecting circles, we can measure the angle at which they intersect. In Exercise 2 of the Day 2 homework, we showed that Möbius transformations preserve circles and angles. In this exercise, we will show that there is a notion of "distance" between nonintersecting circles that is preserved by Möbius transformations.
In Exercise 3 of the Day 3 homework, we described a way of representing a circle by a Hermitian matrix with negative determinant. Suppose that circles C_{1} and C_{2} are represented by matrices A_{1} and A_{2}. Since scaling the matrix does not change the circle, we will assume $\operatorname{det} A_{1}=\operatorname{det} A_{2}=-1$. Recall that if B is a matrix, then the matrix corresponding to the circle $B C_{i}$ is $\left(B^{-1}\right)^{\dagger} A_{i} B^{-1}$.
Define

$$
\tau\left(C_{1}, C_{2}\right):=\left|\operatorname{tr}\left(A_{1} A_{2}^{-1}\right)\right| .
$$

(a) Recall that the trace of a matrix is the sum of its diagonal entries, and that conjugating a matrix does not change its trace. Explain why $\tau\left(C_{1}, C_{2}\right)$ is invariant under Möbius transformations, i.e. for any invertible matrix $B, \operatorname{tr} A_{1} A_{2}^{-1}=\operatorname{tr}\left(B^{-1}\right)^{\dagger} A_{1} B^{-1}\left(\left(B^{-1}\right)^{\dagger} A_{2} B^{-1}\right)^{-1}$.
(b) Show that if C_{1} and C_{2} intersect at an angle θ, then

$$
\tau\left(C_{1}, C_{2}\right)=2|\cos \theta|
$$

(c) Show that if C_{1} and C_{2} are concentric, then

$$
\tau\left(C_{1}, C_{2}\right)=\frac{r\left(C_{1}\right)}{r\left(C_{2}\right)}+\frac{r\left(C_{2}\right)}{r\left(C_{1}\right)} .
$$

where $r\left(C_{i}\right)$ is the radius of C_{i}.
(d) Show that if C_{1} and C_{2} do not intersect, then

$$
\tau\left(C_{1}, C_{2}\right)>2
$$

It therefore seems reasonable to call $\cosh ^{-1}\left(\tau\left(C_{1}, C_{2}\right) / 2\right)$ the "distance" between C_{1} and C_{2}.
(e) Show that if C_{1} and C_{2} do not intersect and one circle is contained in the interior of the other, then

$$
\tau\left(C_{1}, C_{2}\right) \leq \frac{r\left(C_{1}\right)}{r\left(C_{2}\right)}+\frac{r\left(C_{2}\right)}{r\left(C_{1}\right)}
$$

3. As promised on Tuesday, we can now show that the sequences of Schottky discs

$$
\begin{equation*}
D_{g_{1}} \supset D_{g_{1} g_{2}} \supset D_{g_{1} g_{2} g_{3}} \supset \cdots \tag{*}
\end{equation*}
$$

shrink to zero size.
For any $g_{1}, g_{2}, \ldots, g_{n}$, let $C_{g_{1} g_{2} \cdots g_{n}}$ denote the boundary of $D_{g_{1} g_{2} \cdots g_{n}}$.
(a) Explain why, for any $g_{1}, g_{2}, \ldots, g_{n}, g_{n+1} \in\left\{a, a^{-1}, b, b^{-1}\right\}$,

$$
\tau\left(C_{g_{1} \cdots g_{n}}, C_{g_{1} \cdots g_{n} g_{n+1}}\right)=\tau\left(C_{g_{n}}, C_{g_{n} g_{n+1}}\right)
$$

(b) Conclude that

$$
\frac{r\left(C_{g_{1} \cdots g_{n} g_{n+1}}\right)}{r\left(C_{g_{1} \cdots g_{n}}\right)}+\frac{r\left(C_{g_{1} \cdots g_{n}}\right)}{r\left(C_{g_{1} \cdots g_{n} g_{n+1}}\right)} \geq \tau\left(C_{g_{n}}, C_{g_{n} g_{n+1}}\right)
$$

(c) Since the function $f(x)=x+1 / x$ is decreasing for $x<1$, conclude that

$$
\frac{r\left(C_{g_{1} \cdots g_{n} g_{n+1}}\right)}{r\left(C_{g_{1} \cdots g_{n}}\right)} \leq \lambda
$$

where λ satisfies $\lambda+\lambda^{-1}=\tau\left(C_{g_{n}}, C_{g_{n} g_{n+1}}\right)$ and $\lambda<1$.
(d) Since there are only finitely many possibilities for the pair g_{n}, g_{n+1}, conclude that the radii of the discs (*) decrease exponentially.

