Kleinian Groups and Fractals homework - Day 2

1. Figure 18 in the notes shows how the corners of a tile lead to relations in the tiling group. Draw similar diagrams for the two tilings below.

2. Given four points $z_{1}, z_{2}, z_{3}, z_{4} \in \hat{\mathbb{C}}$, the cross ratio $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$ is defined to be

$$
\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}
$$

This seemingly random quantity turns out to be quite useful!
(a) Check that Möbius transformations preserve the cross ratio.
(b) Show that four points $z_{1}, z_{2}, z_{3}, z_{4} \in \hat{\mathbb{C}}$ lie on a common circle or line if and only if $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right) \in \mathbb{R} \cup\{\infty\}$. (Hint: the argument of $\frac{z_{3}-z_{1}}{z_{3}-z_{2}}$ is the measure of angle $z_{1} z_{3} z_{2}$.) In particular, this means that Möbius transformations map circles and lines to circles and lines.
(c) Show that Möbius transformations preserve angles. (Hint: one way to do this is the following. Let C_{1}, C_{2} be intersecting circles, let z_{1} be a point on C_{1}, let z_{2} be a point on C_{2}, and let z_{3}, z_{4} be the intersection points of C_{1} and C_{2}. Express the angle at which C_{1} and C_{2} intersect in terms of the cross ratio $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)$.)
3. Write down an explicit set of generators for a Schottky group. In other words, choose four disjoint discs $D_{a}, D_{a^{-1}}, D_{b}, D_{b^{-1}} \subset \hat{\mathbb{C}}$ and write down transformations a, b such that a maps the exterior of $D_{a^{-1}}$ to D_{a} and b maps the exterior of $D_{b^{-1}}$ to D_{b}. (Hint: The map $z \mapsto 1 / z$ interchanges the inside and outside of the unit disc centered at the origin. Try composing this map with translations.) If you enjoy programming, write a computer program to plot some orbits of the group generated by a and b.
4. If you have not seen Cayley graphs before, read the Wikipedia article: https://en.wikipedia.org/wiki/Cayley_graph
(a) In the top left right corner of the Wikipedia article is a Cayley graph for a free group on two generators. Do you see a resemblance between this graph and Schottky tilings?
(b) Draw a Cayley graph for the symmetry group of one of Escher's drawings.

