Kleinian Groups and Fractals homework - Day 1

Exercises 14 will be useful later in the class. Exercises 58 are just for fun.

1. Verify that the set of Möbius transformations forms a group under composition.
2. Let $\mathrm{GL}_{2}(\mathbb{C})$ be the set of invertible 2×2 complex matrices. These form a group under multiplication. Define a map from $\mathrm{GL}_{2}(\mathbb{C})$ to the group of Möbius transformations that sends the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to the transformation $z \mapsto \frac{a z+b}{c z+d}$.
(a) Verify that the formulas for composing Möbius transformations are the same as the formulas for multiplying 2×2 matrices. In other words, the above map is a homomorphism.
(b) Also convince yourself that the above map is surjective and that its kernel (the set of elements mapping to the identity) is the set of scalar multiples of the identity matrix. Conclude that the group of Möbius transformations is $\mathrm{GL}_{2}(\mathbb{C}) / \mathbb{C}^{\times}$. This group is often denoted $\mathrm{PGL}_{2}(\mathbb{C})$. (The P stands for "projective".)

If you are not so familiar with group theory and find this exercise confusing, it may help to read the first two chapters of https://pages.mtu. edu/~kreher/ABOUTME/syllabus/GTN.pdf. In particular, part (b) uses a result in group theory called the First Isomorphism Theorem, which is Theorem 2.6.1 in the above notes.
3. (a) Let a be a rotation in the plane about a point P, and let b be any symmetry of the plane. Convince yourself that $b a b^{-1}$ is a rotation about $b P$, with the same angle as a.
(b) The trace of a matrix (sometimes denoted tr) is defined to be the sum of its diagonal entries. Let A and B be 2×2 matrices, and assume that B is invertible. Show that $\operatorname{tr} A=\operatorname{tr} B A B^{-1}$. (Hint: to simplify the algebra, first show that for any 2×2 matrices C and D, $\operatorname{tr} C D=\operatorname{tr} D C$, then let $C=A B^{-1}, D=B$.)
4. Find a Möbius transformation that takes the interior of the circle of radius 1 centered at $z=-3 / 2$ to the exterior of the circle of radius 1 centered at $z=3 / 2$. (Hint: use the fact that $z \mapsto-1 / z$ interchanges the interior and exterior of the circle of radius 1 centered at $z=0$.)
5. Given a point $z=x+i y \in \mathbb{C}$, find the coordinates of its stereographic projection. Assume that the sphere has equation $x^{2}+y^{2}+(z-1 / 2)^{2}=1 / 4$, so that the sphere is tangent to the complex plane at its south pole $(0,0,0)$ and its north pole has coordinates $(0,0,1)$.
6. Let $\operatorname{SU}(1,1)$ be the set of matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right), \quad a, b \in \mathbb{C}, \quad|a|^{2}-|b|^{2}=1
$$

(a) Verify that $\mathrm{SU}(1,1)$ is a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$.
(b) By exercise 2, each element of $\mathrm{GL}_{2}(\mathbb{C})$ determines a Möbius transformation. Verify that any element of $\mathrm{SU}(1,1)$ maps the interior of the unit circle to itself.
(c) Verify that any Möbius transformation arising from an element of $\mathrm{SU}(1,1)$ commutes with the map $z \mapsto 1 / \bar{z}$.
(d) Verify that if $A, B \in \mathrm{SU}(1,1)$ represent the same Möbius transformation, then $A= \pm B$.
7. In class, it was claimed that the transformation

$$
z \mapsto \frac{\left(1-e^{i \pi / 4}\right)^{-1} z-2^{-1 / 4} i}{2^{-1 / 4} i z+\left(1-e^{-i \pi / 4}\right)^{-1}}
$$

is a symmetry of Escher's Circle Limit III drawing. In this exercise, we will justify this claim.
(a) Consider the rotations r_{1}, r_{2}, r_{3} depicted in the picture below. Convince yourself that $r_{3}=r_{1} r_{2}$. (Reminder: $r_{1} r_{2}$ means "do r_{2} first, then r_{1} ", since $\left(r_{1} r_{2}\right)(z)$ is defined to be $r_{1}\left(r_{2}(z)\right)$.)

(b) Observe that the matrix $\pm\left(\begin{array}{cc}e^{i \theta / 2} & 0 \\ 0 & e^{-i \theta / 2}\end{array}\right) \in \mathrm{SU}(1,1)$ represents a counterclockwise rotation about the origin by angle θ. Based on exercise 3 convince yourself that a matrix representing a "rotation" by θ should have trace $\pm\left(e^{i \theta / 2}+e^{-i \theta / 2}\right)= \pm 2 \cos \theta / 2$.
(c) The transformations r_{1}, r_{2}, r_{3} are "rotations" by $\pi / 2,2 \pi / 3,-2 \pi / 3$, respectively. If A_{1}, A_{2}, A_{3} are matrices corresponding to r_{1}, r_{2}, r_{3}, then we should have

$$
\begin{gathered}
A_{3}= \pm A_{2} A_{1} \\
A_{1}= \pm\left(\begin{array}{cc}
e^{i \pi / 4} & 0 \\
0 & e^{-i \pi / 4}
\end{array}\right) \\
\operatorname{tr} A_{2}= \pm 2 \cos \pi / 3= \pm 1 \\
\operatorname{tr} A_{3}= \pm 2 \cos -\pi / 3= \pm 1
\end{gathered}
$$

We are free to multiply each matrix by -1 , so we can fix most of the signs as follows:

$$
\begin{gathered}
A_{3}=A_{2} A_{1} \\
A_{1}=\left(\begin{array}{cc}
e^{i \pi / 4} & 0 \\
0 & e^{-i \pi / 4}
\end{array}\right) \\
\operatorname{tr} A_{2}=1 \\
\operatorname{tr} A_{3}=\operatorname{tr} A_{2} A_{1}= \pm 1
\end{gathered}
$$

Let $A_{2}=\left(\begin{array}{cc}a & b \\ \bar{b} & \bar{a}\end{array}\right)$; then the above equations imply

$$
\begin{gathered}
a+\bar{a}=1 \\
e^{i \pi / 4} a+e^{-i \pi / 4} \bar{a}= \pm 1 .
\end{gathered}
$$

Solve for a. Check that only one of the two solutions satisfies $|a| \geq 1$ (which is necessary for $|a|^{2}-|b|^{2}=1$).
(d) Check that if the transformation $z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}}$ fixes a point on the positive real axis other than 1 , then $\operatorname{Re} b=0$, and $\operatorname{Im} a$ and $\operatorname{Im} b$ have opposite signs. Use this information to solve for b, given the value of a found in part 7 c .
8. Write a computer program that makes symmetric drawings. (If you need some inspiration, try searching for "p5.js tessellation".)

