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1. Day One

Let’s begin by looking at some nice pictures.

Figure 1. Some fractals.

These pictures were generated with the help of Kleinian groups.
To understand what a Kleinian group is, we will need to recall some geometric

properties of complex numbers. Both translations and rotations in the plane have
a nice description in terms of complex numbers. For example, consider the drawing
by M. C. Escher shown in Figure 2. If we choose coordinates appropriately, and
ignore colors, it is symmetric under the following transformations:
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Figure 2. A symmetric tiling of the plane.

• The horizontal translation z 7→ z + 1
• The vertical translation z 7→ z + i
• The 90 degree counterclockwise rotation z 7→ iz.
• More generally, any transformation of the form z 7→ az + b with a ∈
{1, i,−1,−i}, b ∈ Z + iZ.

Figure 3 shows another Escher drawing. It’s also symmetric. We already know
how to describe one of these symmetries using complex numbers. If we choose
coordinates so that the boundary of the drawing is the unit circle |z| = 1, then the
90 degree rotation about the origin is given by z 7→ iz. It turns out that the others
can also be described efficiently in terms of complex numbers. The orientation-
preserving transformations are of the form

z 7→ az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0 .

For example, the 120 degree rotation whose center is just to the right of the origin
has the parameters

a = (1− eiπ/4)−1, b = −2−1/4i, c = 2−1/4i, d = (1− e−iπ/4)−1 .

(See the homework for an explanation of where these numbers come from.)

Definition 1. A transformation of the form z 7→ az+b
cz+d is called a Möbius transfor-

mation.

A Möbius transformation is generally not a map C→ C because the denominator
cz + d is zero when z = −d/c. Instead, Möbius transformations are maps from the

Riemann sphere Ĉ = C ∪ {∞} to itself. We use the conventions

a(−d/c) + b

c(−d/c) + d
=∞, a∞+ b

c∞+ d
=
a

c
.
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Figure 3. Another symmetric tiling.

Figure 4. Left: Stereographic projection. To project a point P in
the plane onto the sphere, draw a line from P to the north pole of
the sphere. The other intersection of the line with the sphere is the
stereographic projection of P . Right: A stereographic projection
of Figure 3.

We call Ĉ a “sphere” because there is a stereographic projection relating C to a
sphere minus the north pole (see Figure 4). Adding ∞ fills in the missing point.

We leave it as an exercise to the reader to check that Möbius transformations
form a group under composition. The (orientation-preserving) symmetry groups of
the two Escher drawings are both subgroups of the group of Möbius transformations.
They are both discrete in the sense that they do not contain arbitrarily small
rotations or translations.

Definition 2. A Kleinian group is a discrete subgroup of the group of Möbius
transformations.
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Figure 5. Some orbits of the symmetry groups Figures 2 and 3.

The fractals shown in Figure 1 were all generated by choosing a Kleinian group
Γ and an element z ∈ Ĉ, and plotting γ(z) for all γ ∈ Γ.

Definition 3. Let Γ be a Kleinian group. An orbit of Γ is a subset of Ĉ of the
form

{γ · z|γ ∈ Γ} .
for some z ∈ Ĉ.

In other words, an orbit is the set of all points in Ĉ that we can reach from z by
applying elements of Γ.

We have just encountered some Kleinian groups. Some of their orbits are shown
in Figure 5. Although these orbits are nice in their own right, somehow they are
not quite as pretty as the fractals. To understand how to get fancier orbits, we will
need to introduce the concept of uniformization. Although “uniformization” is a
fancy word, you can just think of it as being about gift wrapping surfaces.

Let’s look at an example of uniformization. Figure 6 shows another one of
Escher’s tilings. Let Γ be its group of symmetries. The plane is covered by copies
of a fish tile and a butterfly tile. Any two fish tiles are related by an element of
Γ, and likewise any two butterfly tiles are related by an element of Γ. We can also
think of the plane as being covered by repetitions of a single tile, which consists of
one fish and one butterfly. Such a tile is called a fundamental domain of Γ.

A fundamental domain for Γ is, essentially a way of choosing one point of each
orbit of Γ. Any combination of one fish and one butterfly is a fundamental domain
of Γ. If we want to be boring, a square is also a fundamental domain. Figure 7
illustrates three different fundamental domains.

Now let’s consider the quotient C/Γ. This amounts to taking opposite sides of
the tile and gluing them together. This procedure is depicted in Figure 8. The end
result is a torus.

Similarly, Figure 9 shows how a surface with two handles can be expressed as a
quotient of the open unit disc.

The process of describing a surface as a quotient of a simpler space is called
uniformization.
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Figure 6. Another symmetric plane tiling.

Figure 7. Some fundamental domains.

Theorem 4 (Uniformization theorem). Any orientable surface can be described as

a quotient of either Ĉ, C or the open unit disc H by a Kleinian group.

More specifically:

• A sphere is isomorphic to Ĉ.
• A plane, cylinder, and torus are quotients of C.
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Figure 8. Top left: A fundamental domain of the drawing shown
in Figures 6 and 7. Remaining: The quotient C/Γ is constructed
by gluing matching edges together. In this case, the quotient is a
torus.

• Any other orientable surface is a quotient of H. The process of expressing
a surface as a quotient of H is called Fuchsian uniformization.

This description is unique up to isomorphism. The group is called the fundamental
group of the surface.

Remark 5. In 3 dimensions, there is a similar but more complicated result, known
as Thurston’s geometrization conjecture. Perelman proved this conjecture (and, as
a consequence, also proved the Poincaré conjecture) in 2003.
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Figure 9. Top left: A symmetric design in the unit disc. Top
right: A division of the design into tiles. Below: Gluing the
edges of the tile together yields a two-handled surface. Images
are taken from this video: https://www.youtube.com/watch?v=

G1yyfPShgqw. See also https://www.youtube.com/watch?v=

I83K-on4X5A.

Now let’s consider a different type of uniformization, called Schottky uniformiza-
tion. Figure 10 shows another symmetric tiling. In this case, the drawing is sym-
metric under scaling z 7→ 4z (and also under rotation, but we will ignore that).
The plane minus the origin can be tiled with copies of the annulus 1 ≤ |z| < 4. If

https://www.youtube.com/watch?v=G1yyfPShgqw
https://www.youtube.com/watch?v=G1yyfPShgqw
https://www.youtube.com/watch?v=I83K-on4X5A
https://www.youtube.com/watch?v=I83K-on4X5A
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Figure 10. Top left: a tiling of the plane minus the origin. Top
right: dividing the pattern into annulus shaped tiles. Below: the
inner and outer boundaries of the tile can be glued to make a torus.

we glue the boundaries of the annulus together, we get a torus. So

(Ĉ \ {0,∞})/Γ = torus .

An annulus is Ĉ with two discs removed. If we instead remove four discs, we can
glue two pairs of boundaries together to get a surface with two handles, as seen in
Figure 11. We would therefore like to say that the surface with two handles is of
the form U/Γ, where U is a subset of Ĉ and Γ is a Kleinian group. We are left with
the following questions:
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Figure 11. A tile that is shaped like a sphere with four holes can
have its edges glued together to form a surface with two handles.

• How do we construct Γ?
• What does Γ look like?
• What does U look like?

To construct Γ, we will use the following ingredients:

• Four disjoint discs, labeled Da, Da−1 , Db, Db−1 .
• A Möbius transformation a that sends the complement of Da−1 to Da, and

a Möbius transformation b that sends the complement of Db−1 to Db.

The group Γ will be the group of Möbius transformations generated by a and b. A
Kleinian group constructed in this manner is called a Schottky group.

2. Day Two

To better understand the four-disc Schottky tiling, let’s first look at the annulus
tiling in more detail. Figure 12 gives an abstract description of the tiling shown in
Figure 10.

Now let’s look at the annulus tiling from a different perspective. The top half
of Figure 13 shows the annulus tiling on both the complex plane and the Riemann
sphere. In the bottom half of the figure, we have rotated the sphere by 90 degrees,
and then projected the tiling back onto the plane. This is equivalent to applying
the transformation z 7→ z+1

z−1 . In the bottom right image in Figure 13, the region
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TDa

Da−1

aT

aDa

aDa−1

Figure 12. Left: An annulus-shaped tile T . Right: Applying a
generator to get an adjacent tile.

Figure 13. Top left: The tiling from Figure 10. Top right: The
tiling projected onto the sphere. Bottom right: A 90 degree rota-
tion of the sphere. Bottom left: The rotated tiling projected back
onto the complex plane.
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T DaDa−1 aTaDa−1

aDa

T aTa−1T
a2T

a2Da

Figure 14. Top left: A Schottky tile consisting of Ĉ minus two
discs. To right: Applying a generator to get an adjacent tile.
Bottom: A few more tiles.

outside of the two large circles, extending all the way to infinity, is a tile T . There
is a Möbius transformation a that sends T to the annulus inside the right large
circle and outside the next largest circle on the right. Similarly, a−1 sends T to the
annulus inside the left large circle and outside the next largest circle on the left.
The tiles . . . , a−2T, a−1T, T, aT, a2T, . . . tile Ĉ minus two points. Figure 14 shows
a more abstract version of this setup.

Now we are ready to look at the Schottky tiling with four discs. The left side
of Figure 15 shows a single tile T , which is Ĉ with four discs Da, Db, Da−1 , Db−1

removed. The right side of the figure depicts the action of a Möbius transformation
a, which sends T to the adjacent tile aT ⊂ Da. Then a−1 automatically sends T to
the adjacent tile a−1T ⊂ Da−1 . Similarly, we can choose a Möbius transformation
b that sends T to an adjacent tile bT ⊂ Db, and then b−1 will send T to an adjacent
tile b−1T ⊂ Db−1 . Figure 16 shows the effects of the four transformations a, a−1,
b, b−1. Some more tiles are shown in Figure 17.

I’d like to point out a key difference between the Schottky group Γ and the
symmetry groups of the Escher tilings. The symmetry groups of the Escher tilings
shown in Figure 18 are also generated by two elements, but there are some relations
between them. For example, in the first drawing, abT and baT represent the same
tile. In fact, ab and ba are the same symmetry. Relations between a and b come
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T Da

Db

Da−1

Db−1

aDa−1
aT
Da2 = aDa

Dab = aDb

Dab−1 = aDb−1

Figure 15. Left: A Schottky tile T consisting of Ĉ minus four
discs. Right: A transformation a, which sends T to an adjacent
tile.

T Da

Db

Da−1

Db−1

aa−1
b

b−1

Figure 16. Left: A set of four disjoint Schottky discs Da, Da−1 ,
Db, Db−1 . The region outside of the discs is the fundamental tile
T . Right: Transformations a, a−1, b, b−1 such that a sends the
complement of Da−1 to Da and b sends the complement Db−1 to
Db.

from corners of the tile. But the tile for our Schottky group has no corners; hence
the generators of the Schottky group do not satisfy any relations. Therefore, a
Schottky group is a free group.

A more precise way of saying this is the following. Let Γ is a group generated
by two elements a, b. Then any element γ ∈ Γ can be written as a product

γ = g1g2 . . . gn

for some nonnegative integer n and g1, g2, . . . , gn ∈ {a, a−1, b, b−1}, Such a product
is called a word. If gi 6= g−1i+1 for each i, then the word is said to be reduced. For
the symmetry groups depicted in Figure 18, there is more than one reduced word
representing each element of Γ. But for the Schottky group depicted in Figure 17,
there is exactly one reduced word representing each element of Γ.

To sum up:



13

T aT

bT

a−1T

b−1T

a2T

abT

ab−1T

Figure 17. A tiling associated with a Schottky group.

Fuchsian Schottky
Tiles have. . . corners but no holes holes but no corners
Group has. . . one relation per corner no relations

The Fuchsian uniformization has simpler (hole-free) tiles, at a cost of having a more
difficult to understand group.

We can prove rigorously that Schottky groups are free as follows.

Proposition 6. Any reduced word starting with a maps T into Da. Likewise,
any reduced word starting with a−1, b, or b−1 maps T into Da−1 , Db, or Db−1 ,
respectively.

Proof. We use induction on the length of the word. The case of length 1 follows
from the definition of a and b. Now consider a reduced word g1g2 . . . gn, n ≥ 2.
By the induction hypothesis, g2 . . . gn maps T into Dg2 . Since the word is reduced,

g2 6= g−11 . So g1 maps Dg2 into Dg1 . So g1g2 . . . gn maps T into Dg1 . �

Corollary 7. The group Γ is free.

Proof. Suppose two different reduced words g1 . . . gn and h1 . . . hm represent the
same element of Γ. Then the word g1 . . . gnh

−1
m . . . h−11 represents the identity. This

word is not necessarily reduced, but we can cancel aa−1, a−1a, bb−1, b−1b pairs to
get a nontrivial reduced word. But Proposition 6 implies that any nontrivial reduced
word maps T into the complement of T , so it cannot represent the identity. �

Now let’s try to understand the set U and its complement. Let z ∈ Ĉ be a point
not in U . Then in particular z /∈ T , so z ∈ Dg1 for some g1 ∈ {a, a−1, b, b−1}.
Likewise, z /∈ g1T , so z ∈ g1Dg2 for some g2 6= g−11 . By similar reasoning, there
exists an infinite reduced word g1g2g3 · · · so that z is contained in the infinite
decreasing sequence of discs

Dg1 ⊃ g1Dg2 ⊃ g1g2Dg3 ⊃ · · · .
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a−1bT
= ba−1T

bT abT
= baT

a−1T T aT

a−1b−1T
= b−1a−1T

b−1T ab−1T
= b−1aT

a−1b−1T
= baT

a−1T a2T
= a−2T

bT T aT

b2T
= b−2T

b−1T abT
= b−1a−1T

Figure 18. The generators of the symmetry groups of these Es-
cher tilings satisfy some relations. Each relation can be attributed
to a corner of the initial tile.

For convenience, we will write Dg1g2...gn for g1g2 . . . gn−1Dgn . So the above sequence
would be written as

(8) Dg1 ⊃ Dg1g2 ⊃ Dg1g2g3 ⊃ · · · .

Proposition 9. The radii of the discs in the sequence (8) go to zero. In particular,
the intersection of all of the discs is a single point.
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T aT

Db

Da−1

Db−1

Da2 = aDa

Dab = aDb

Dab−1 = aDb−1

aTDa2

abT

Dab−1

Daba−1

Dabb

Daba

Figure 19. As tiles are added to the drawing, each disc is replaced
with three smaller ones.

Figure 20. The limit set of the Schottky group depicted in Fig-
ures 16 and 17.

This will be proved in the homework.

Corollary 10. The complement of U is in bijection with the set of infinite reduced
words in a, a−1, b, b−1.

Proposition 11. Let g1g2 · · · be an infinite reduced word, and let z ∈ U . Then
the sequence z, g1z, g1g2z, . . . converges to the point corresponding to g1g2 · · · . In
particular, the bijection of Corollary 10 depends only on the group Γ and not on
the choice of circles.

The group Γ acts in the way you would expect on infinite words. For example,
a · (baba−1 · · · ) = ababa−1 · · · and b−1 · (baba−1 · · · ) = aba−1 · · · .

Definition 12. A point z ∈ Ĉ is a limit point of Γ if there exists z′ ∈ Ĉ and
distinct γ1, γ2, . . . ∈ Γ such that the sequence γ1z

′, γ2z′, . . . converges to z′.
The limit set of Γ is the set of limit points of Γ.

We see that the limit set of Γ is precisely the complement of U . Figure 20 depicts
the limit set of a Schottky group. We note that the limit set is totally disconnected,
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is closed, and has no isolated points. A subset of Ĉ having these properties is called
a Cantor dust.

In conclusion:

• The group Γ is a free group with two generators.
• The limit set of Γ is a Cantor dust.
• Let U be the complement of the limit set of Γ. The quotient U/Γ is a

surface with two handles.
• There is a fundamental domain for U that is constructed by removing four

discs from Ĉ.

More generally, we can consider a similar situation with 2n pairs of circles rather
than 2 pairs of circles. Then:

• The group Γ is a free group with n generators.
• If n ≥ 2, then the limit set of Γ is a Cantor dust. For n = 1, the limit set

consists of two points, and for n = 0, it is empty.
• Let U be the complement of the limit set of Γ. The quotient U/Γ is a

surface with n handles.
• There is a fundamental domain for U that is constructed by removing 2n

discs from Ĉ.

3. Day Three

There is a uniformization theorem for Schottky uniformization, as well.

Theorem 13 (Schottky uniformization). Any orientable closed surface has a Schot-
tky uniformization.

However, unlike Fuchsian uniformization, Schottky uniformization is not unique.
Essentially, this is because Fuchsian uniformization unwinds all of the loops in our
surface, while Schottky uniformization unwinds only half of them, and we can
choose which half.

Anyway, now we are familiar with Fuchsian and Schottky uniformization. They
look quite different—but occasionally they are actually the same! Consider the
tiling in Figure 21. It is the limit of a Schottky tiling, where we allow the circles
to touch. But it’s also a pair of Fuchsian tilings.

As shown in Figure 22, the quotient U/Γ is a pair of punctured tori.

Proposition 14. Let S be an orientable surface with at least one puncture. Assume
S has a Fuchsian uniformization (i.e. S is not a plane or cylinder). Let S be the
mirror image of S. Then the Fuchsian uniformizations of S and S combine to form
a Schottky uniformization of S ∪ S.

Corollary 15. The fundamental group of a surface with at least one puncture is
free.

Now, what if we take a Schottky uniformization of S ∪S′ for some other surface
S′? Amazingly, the limit set can look like the fractals in the top row of Figure 1!
In the next part of the course, we’ll learn how to generate these fractals.

Here are a few observations about Figure 21.

• The set of points not covered by any tile is a circle.
• The sequences of discs (8) still shrink to zero size. In particular, each

infinite word determines a point on the circle, and every point on the circle
is represented by some infinite word.
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Figure 21. By allowing the Schottky circles to touch, we get a
tiling that is both Schottky and Fuchsian.

Figure 22. When U is disconnected, the quotient U/Γ becomes
a pair of punctured tori.
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• Points where two Schottky circles are tangent are represented by more than
one word. For example, aba−1b−1aba−1b−1 . . . and bab−1a−1bab−1a−1 . . .
both represent the point where Da and Db meet. This is reminiscent of
how 0.999 . . . and 1.000 . . . represent the same real number.

These observations are related. The image of the set of infinite words can only be
connected if some points are represented by more than one word.

Proposition 16. Let f be a continuous map from the space of infinite words to Ĉ.
If f is injective, then its image is totally disconnected.

Proof. The proof of this fact involves some topology concepts that are beyond the
scope of this course. But it is short, so we include it for the interested reader. Let
V be a closed subset of the space of infinite words. The space of infinite words is
compact, so V is also compact. Hence f(V ) is also compact. Since Ĉ is Hausdorff,
f(V ) must be closed. Therefore, f is a closed map. Since f is closed, continuous,
and injective, it induces a homeomorphism from the space of infinite words to the
image of f . In particular, the image must be totally disconnected. �

In Proposition 9, we asserted that when Da and Db are disjoint, the sequences
of discs (8) shrink to zero size. When the circles Da and Db touch, the discs can
actually fail to shrink to zero size; see the left half of Figure 24 for an example
where they don’t. However, when this happens, we can always perturb the circles
so that they do not touch, as shown on the right side of the figure. So we can
nonetheless assign a point to each infinite word.

Proposition 17. The infinite words

aba−1b−1aba−1b−1 . . . , bab−1a−1bab−1a−1 . . .

represent fixed points of aba−1b−1, and aba−1b−1 has no other fixed points. In
particular, if the infinite words aba−1b−1aba−1b−1 . . . and bab−1a−1bab−1a−1 . . .
represent the same point, then aba−1b−1 has only one fixed point.

Proof. It is clear that aba−1b−1 fixes the images of aba−1b−1aba−1b−1 . . . and
bab−1a−1bab−1a−1 . . .. So we just need to show that aba−1b−1 does not fix any
other points. Let z be a fixed point of aba−1b−1. We claim that z ∈ Da or
z ∈ Db. Indeed, if z /∈ Db, then b−1z ∈ Db−1 , a−1b−1z ∈ Da−1 , ba−1b−1z ∈ Db,
and z = aba−1b−1z ∈ Da. If z ∈ Da, then we can show by induction that
z ∈ D(aba−1b−1)na for all z, implying that z is represented by aba−1b−1aba−1b−1 . . ..
Likewise, if z ∈ Db, then z must be represented by bab−1a−1bab−1a−1 . . .. �

Figures 23 and 24 illustrate the importance of aba−1b−1 having only one fixed
point. In the left half of Figure 23, the Schottky circles are tangent to each other,
but the transformations transformations a and b do not map tangency points to
tangency points. So the point represented by the word aba−1b−1aba−1b−1 . . . is
not on the boundary of Db; hence it cannot be the same as the point represented
by bab−1a−1bab−1a−1 . . .. It is possible to move the Schottky circles so that they
no longer touch, as seen in the right half of the figure. In the right half of Figure
24, the transformations a and b do map tangency points of the circles to tangency
points of circles. So the tangency point of Da and Db is a fixed point of aba−1b−1.
This point is represented by bab−1a−1bab−1a−1 . . .. However, aba−1b−1aba−1b−1 . . .
represents the other fixed point of aba−1b−1, which is in the interior of Da.
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Figure 23. Left: Another tiling where the Schottky circles
touch. Although the fundamental domain is disconnected into two
pieces T1 and T2, aT2 borders both T1 and T2. So we still end up
getting a connected surface. Right: By moving the circles slightly,
we get a connected fundamental domain for the same group.

Figure 24. Left: a third tiling where the Schottky circles touch.
In this case, there are circles that the tiling never fills. The trans-
formation aba−1b−1 has two fixed points, one at the point where
Da and Db meet, and one inside Da. The discs Da, Dab, Daba−1 ,
Daba−1b−1 , Daba−1b−1a, . . . must contain both points, so this se-
quence of discs cannot shrink to zero size. Right: A different set of
Schottky circles for the same group. So this Schottky group cor-
responds to a closed surface; the original tiles just failed to cover
the whole thing.

In fact, this condition about fixed points is the key ingredient behind the fractals
in Figure 1: they were generated by choosing Möbius transformations a and b such
that aba−1b−1 has only one fixed point.

So far, we have almost entirely avoided doing any calculations. But if we actually
want to construct fractals, we will need to do some. Let’s start by verifying that
Möbius transformations form a group.
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Proposition 18. The set of Möbius transpositions forms a group under composi-
tion.

Proof. The Möbius transformation z 7→ 1z+0
0z+1 = z is the identity. Next, we check

that the composition of two Möbius transformations is again a Möbius transforma-
tion.
(19)
a1

a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1
=
a1(a2z + b2) + b1(c2z + d2)

c1(a2z + b2) + d1(c2z + d2)
=

(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)

Composition of functions is always associative. Finally, we leave it as an exercise
to the reader to check that the inverse of z 7→ az+b

cz+d is z 7→ dz−b
−cz+a . �

You may notice that the formula (19) looks a lot like the formula for multiplica-
tion of 2× 2 matrices(

a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
.

Definition 20. We will write GL2(C) be the group of invertible 2 × 2 matrices
under multiplication.

This is short for “the general linear group of degree 2 over C”.

Proposition 21. There is a surjective homomorphism from GL2(C) to the group

of Möbius transformations that sends the matrix

(
a b
c d

)
to the transformation

z 7→ az+b
cz+d . The kernel consists of multiples of the identity. Hence the group of

Möbius transformations is isomorphic to the quotient GL2(C)/C×.

Definition 22. We will refer to the group of Möbius transformations as PGL2(C).

(The P stands for “projective”).
We would like to classify Möbius transformations. There is a classification of

matrices up to conjugacy, called Jordan normal form.

Theorem 23 (Jordan normal form). Every element of GL2(C) is conjugate to an
element of the form (

x 0
0 y

)
or

(
x 1
0 x

)
for some x, y ∈ C×.

This means that every Möbius transformation is conjugate to one of the form
z 7→ xz/y or z 7→ (xz + 1)(x) = z + 1/x. Note that transformations of the form
z 7→ z + 1/x are all conjugate to z 7→ z + 1 since x((z/x) + 1/x) = z + 1.

Corollary 24. Every element of PGL2(C) is conjugate to an element of the form
z 7→ λz for some λ ∈ C×, or to z 7→ z + 1.

The transformation z 7→ z+1 is a translation. If we write λ = reiθ with r, θ real,
then we see that z 7→ λz is the composition of the scaling z 7→ rz and the rotation
z 7→ eiθz.

To generate fractals, we saw that it was important to identify transformations
with only one fixed point. So let’s look at the fixed points of the transformations
above.
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The transformation z 7→ reiθz has two fixed points: 0 and ∞. If r < 1, then 0 is
an attracting fixed point in the sense that the transformation moves points closer to
0, and∞ is a repelling fixed point. If r > 1, then∞ is repelling and 0 is attracting.
If r = 1, then the fixed points are neither attracting or repelling; the points just
move around in a fixed circle.

The transformation z 7→ z+ 1 has one fixed point: ∞. It isn’t exactly attracting
or repelling.

4. Day Four

Definition 25. An element of PGL2(C) is called:

• Elliptic, if it is conjugate to z 7→ eiθz with eiθ 6= 1;
• Loxodromic, if it is conjugate to z 7→ reiθz with |r| 6= 1;
• Parabolic, if it is conjugate to z 7→ z + 1.

So, to draw fractals, we would like to construct elements a and b of PGL2(C) such
that aba−1b−1 is parabolic. But how do we determine which elements of PGL2(C)
are parabolic? To answer, that question, let’s look at Jordan normal form again,
and its relation to eigenvectors and eigenvalues.

Definition 26. Let M be a square matrix, let v be a vector, and let λ ∈ C. If
Mv = λv, the we say that v is an eigenvector of M and λ is the corresponding
eigenvalue.

There is a close connection between the eigenvalues and eigenvectors of a matrix,
and the fixed points of the corresponding Möbius transformation.

Proposition 27. Let

(
a b
c d

)
∈ GL2(C), and let w ∈ C. Then w is a fixed

point of the Möbius transformation z 7→ az+b
cz+d if and only if

(
w
1

)
is an eigenvector

of

(
a b
c d

)
. Likewise, ∞ is a fixed point of z 7→ az+b

cz+d if and only if

(
1
0

)
is an

eigenvector of

(
a b
c d

)
.

Anyway, conjugating a matrix preserves eigenvalues. It moves eigenvectors
around, but does not change the dimension of the space of eigenvectors. So, for

x 6= y, a matrix has Jordan normal form

(
x 0
0 y

)
if and only if its eigenvalues are

x and y. A matrix has Jordan normal form

(
x 1
0 x

)
if and only if x is its only

eigenvalue and it is not equal to

(
x 0
0 x

)
.

The following proposition gives us a way of computing eigenvalues.

Proposition 28. Let A be a square matrix. The eigenvalues of A are precisely the
zeros of the characteristic polynomial det(Ix−A). Here I is the identity matrix.

If A is an n × n matrix, then its characteristic polynomial has degree n. So it
has n eigenvalues, up to multiplicity.
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In the 2× 2 case, we have

det

((
1 0
0 1

)
x−

(
a b
c d

))
= det

(
x− a −b
−c x− d

)
= (x−a)(x−d)−bc = x2−(a+d)x+(ad−bc) .

Observe that ad− bc is the determinant of A. The quantity a+d is called the trace
of A, denoted trA. So the characteristic polynomial can be written as

x2 − (trA)x+ detA .

In order for an element to be parabolic, it must have only one eigenvalue, so the
discriminant (trA)2 − 4 detA must be zero.

We would like to find matrices A, B such that ABA−1B−1 represents a par-
abolic transformation, i.e. tr(ABA−1B−1)2 − 4 det(ABA−1B−1) = 0. Note that
det(ABA−1B−1) = detA detB(detA)−1(detB)−1 = 1, so this is equivalent to
tr(ABA−1B−1)2 − 4 = 0, which in turn is equivalent to

tr(ABA−1B−1) = ±2 .

5. Day Five

Now we are finally ready to construct some fractals! We want to choose trans-
formations a, b such that aba−1b−1 is parabolic. For the moment, let us assume
that a is loxodromic. Since conjugating a and b just moves the fractal around Ĉ,
there is no harm in assuming that a fixes 0 and ∞. Therefore, we may assume a is

represented by the matrix

(
x 0
0 1

)
. Let

(
r s
t u

)
be a matrix representing b. Then

we compute

tr aba−1b−1 =
2st− ru(x+ x−1)

ru− st
.

(It’s feasible to do this by hand but I’m happy to use a computer algebra system.)
Then

tr aba−1b−1 − 2 =
ru(2− x− x−1)

ru− st
.

tr aba−1b−1 + 2 =
4st− ru(2 + x+ x−1)

ru− st
.

So we set

ru(2− x− x−1) = 0 or

4st− ru(2 + x+ x−1) = 0 .

The first equation has a problem: any solution will have the property that a and
b have a common fixed point. (They both fix ∞ if t = 0, they both fix 0 if s = 0,
and a is the identity if 2− x− x−1 = 0.) But the second equation is perfectly fine.
Choose a solution, plot some orbits, and you get fancy fractals!

Well, not always. If we chose a and b arbitrarily, there is no guarantee that
there is any choice of Schottky discs Da, Da−1 , Db, Db−1 compatible with a and
b. So there is no guarantee that the group generated by a and b is free or discrete.
Sometimes it is, sometimes it isn’t. But this procedure works a lot of the time.

The above construction is a bit ad hoc. For example, it’s not entirely obvious
when two different sets of parameters correspond to genuinely different fractals,
and when they are related by conjugation. So how many parameters do we need to
specify a fractal?
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Four complex numbers are needed to specify a matrix, so GL2(C) has (complex)
dimension four. Since a Möbius transformation is determined by a matrix up to
scaling, PGL2(C) is three-dimensional. So the space of all possible pairs a, b ∈
PGL2(C) is six-dimensional. But conjugating a and b by an element of PGL2(C)
gives an equivalent pair, so up to equivalence, there are only three dimensions’
worth of pairs. The equation tr aba−1b−1 = −2 imposes one constraint. So, the
space of possible fractals up to equivalence has complex dimension 2.

This means, for example, that if we use freedom to scale matrices to fix detA =
detB = 1, then specifying a fractal is (more or less) the same as specifying values
of trA and trB. This is what the program https://guests.mpim-bonn.mpg.de/

gulotta/kleinian/ does: given values of trA and trB, it finds matrices with
detA = detB = 1, trABA−1B−1 = −2, and attempts to plot the limit set of the
Kleinian group generated by the transformations A and B.

Below is a formula for finding A and B in terms of trA and trB, taken from the
book Indra’s Pearls.

ta := trA, tb := trB

tab :=
tatb −

√
t2at

2
b − 4t2a − 4t2b
2

z0 :=
(tab − 2)tb

tbtab − 2ta + 2itab

a :=

(
ta
2

tatab−2tb+4i
(2tab+4)z0

(tatab−2tb−4i)z0
2tab−4

ta
2

)

b :=

(
tb−2i

2
tb
2

tb
2

tb+2i
2

)
Since we are free to conjugate A and B, many other formulas are possible. This
particular formula has the property that it generates fractals that have 180 degree
rotational symmetry about the origin. (This actually means that the symmetry
group of the fractals is larger than the Schottky group. This is because we are
uniformizing a torus with a puncture (along with its mirror image), and every torus
with a puncture has an angle-preserving symmetry that is essentially a 180-degree
rotation around the puncture.)

So, given Möbius transformations a and b, how do we plot the limit set? A
relatively convenient way is the following. First, we find one point in the limit set.
For example, we can choose a fixed point z of a. This amounts to solving an equation
of the form rz+s

tz+u = z. After clearing denominators, this becomes a quadratic

equation. Then we plot z, az, a−1z, bz, b−1z, a2z, . . . until we get tired of plotting.
Alternatively, we can just repeatedly apply a random element of {a, a−1, b, b−1}.

The downside of the above method is that it doesn’t cover the fractal very evenly,
so we will get more detail in some areas than others.

What my program actually does is to create some “fake Schottky discs” Da, Db,
Da−1 , Db−1 . In general, these will intersect each other. It then defines smaller discs
using the usual rules Da2 = aDa, Dab = aDb, etc. It repeatedly replaces the largest
disc with three smaller ones. After a fixed number of iterations, it plots the centers
of the remaining discs. I don’t have a proof that the limit set is contained in the
“fake Schottky discs” or that the discs shrink to zero size, but this seems to work
well in practice.

https://guests.mpim-bonn.mpg.de/gulotta/kleinian/
https://guests.mpim-bonn.mpg.de/gulotta/kleinian/
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Figure 25. A set of Schottky “discs” for the Apollonian gasket.
In this case, one of the “discs” is actually a half plane.

So now we have a procedure for producing fractals! Some typical examples
are found in the top row of Figure 1. They were generated with the parameters
tr a = tr b = 1.91 + 0.05i and tr a = 1.87 + 0.1i, tr b = 1.87− 0.1i, respectively.

The fractal on the bottom left of Figure 1 is a special case known as an Apollonian
gasket. An Apollonian gasket is a figure constructed by drawing a set of four
pairwise tangent circles, and then repeatedly drawing circles that are tangent to
three existing circles. All sets of four pairwise tangent circles are related by Möbius
transformations. So, up to Möbius transformations, there is a unique Apollonian
gasket.

It admits a set of Schottky circles. These are shown in Figure 25. Because there
are extra tangency points between the circles, the Apollonian gasket group has
more parabolic elements than usual. In fact, it was generated using the parameters
tr a = tr b = 2.

We don’t have much time to discuss the Apollonian gasket, but I want to mention
one more interesting fact about it. Define the curvature of a circle to be the
reciprocal of its radius. In the figure that we have drawn, if the curvature of the
large circle is taken to be 1, then the curvature of every circle is a integer! Some of
these curvatures are shown in Figure 26. In fact, if the four initial circles used to
construct the gasket have integer curvature, then all of the circles will have integer
curvature.

The last few chapters of Indra’s Pearls contain some other interesting special
cases that we unfortunately don’t have time to cover in detail. I’ll briefly describe
one of these. Figure 27 is another fractal composed of tangent circles. It was
generated by choosing a and b so that aba−1b−1, b, and a3b−1a2b−1 are parabolic.
This fractal is part of an infinite family. For any rational number p

q , it is possible

to generate a fractal such that there is a chain of p tangent circles between the
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Figure 26. The curvatures of circles in an Apollonian gasket.
The curvatures are all integers. Moreover, if k1, k2, k3, k4 are curva-
tures of a pair of mutually tangent circles, then (k1+k2+k3+k4)2 =
2(k21 + k22 + k23 + k24). Given the curvatures of the initial four cir-
cles, the remaining curvatures can be computed using a technique
known as “Vieta jumping”.

Figure 27. Another fractal composed of tangent circles. It was
generated with parameters tr a = 1.64213876− 0.76658841i, tr b =
2.
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topmost circle and the rightmost circle, and a chain of q−1 tangent circles between
the topmost circle and the bottommost circle. (So the fractal shown has p = 2,
q = 5.) Correspondingly, there is a word with q a’s and p b−1’s that is parabolic.
The fractal on the bottom right of Figure 1 is a limiting case of these fractals, as p

q

approaches the golden ratio!
One last thing I’d like to mention is that, although we have only considered

the action of PGL2(C) on Ĉ, it is also the symmetry group of three-dimensional
hyperbolic space. There is a lot of interesting research on three-manifolds formed
by taking a quotient of hyperbolic space by Kleinian groups!
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