
1. Introduction

1.1. Cohomology of algebraic varieties. Let X be a proper smooth algebraic
variety over a field K. One can define various cohomology groups:

• For any embedding K ↪→ C, the Betti (singular) cohomology H∗B(X(C),Z),
an abelian group.
• The de Rham cohomology H∗dR(X/K), a filtered K-vector space.
• For any prime `, the `-adic étale cohomology H∗ét(XKsep ,Z`), a Z`-module

with GK := Gal(Ksep/K)-action.
• If K has characteristic p 6= 0, the crystalline cohomology H∗cris(X/W (K)),

a W (K)-module. Here W (K) is the ring of p-typical Witt vectors over K.

There are some relations between these. For example, given an embedding K ↪→ C,
there is an isomorphism

H∗(X(C),Z)⊗Z C ∼= H∗dR(X)⊗K C

given by integration of differential forms. A very concrete example is the following.
Let K = Q, X = P1. Then

H2(X(C),Z) ∼= Z
H2

dR(X) ∼= H1(X,ΩX) ∼= Q
The group H1(X,ΩX) can be computed using Čech cohomology. We choose the
covering X = (X \ {∞}) ∪ (X \ {0}). This gives us an exact sequence

k[z] · dz ⊕ k[z−1] · dz
z2
→ k[z, z−1] · dz → H1(X,ΩX)→ 0 .

Then H1(X,ΩX) is generated by the image of dz
z . There is an isomorphism

H2
dR(X)⊗Q C ∼−→ H2(X(C),Z)⊗Z C

which essentially integrates dz
z along a loop γ around the origin. We have∮

γ

dz

z
= 2πi

so the above isomorphism is not defined over Q. To get a natural isomorphism, we
really needed to tensor with C. The quantity 2πi is called a period.

(Note added after the lecture: applying the Mayer-Vietoris exact sequence to

the covering mentioned above gives an isomorphism H1(X \ {0,∞}) ∼−→ H2(X) for
both Betti and de Rham cohomology. This makes the concrete description of the
comparison isomorphism more transparent.)

The above isomorphism is complex analytic in nature. One of the aims of the
course is to explain a p-adic analogue of this result.

Definition 1.1.1. A p-adic field is a field K equipped with a discrete valuation,
such that:

• K has characteristic zero.
• K is complete.
• The residue field of K has characteristic p, and is perfect.

This includes finite extensions of Qp, as well as the completion of the maximal
unramified extension of Qp.

From now on, we will let K be a p-adic field.
1
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The p-adic version of the de Rham comparison theorem is the following. It
involves a “ring of periods” called BdR that will be defined later.

Theorem 1.1.2. Let X be a proper smooth algebraic variety over K. There is an
isomorphism of filtered BdR-vector spaces with Gal(K/K)-action

H∗dR(X/K)⊗K BdR
∼= H∗ét(XK ,Zp)⊗Zp

BdR .

Remark 1.1.3. Let χ : GK → Z×p be the character defined by gζ = ζχ(g) for all

p-power roots of unity ζ ∈ K
×

. We call χ the cyclotomic character. The group
H2

ét(P1
K
,Zp) is a free Zp-module of rank one, and GK acts on this group by χ−1.

So the ring BdR contains an element “2πi” and GK acts on “Qp · (2πi)” by the
character χ−1.

Let C be the completion of K with respect to the norm topology. We will show
in a later lecture that GK does not act by χ−1 on any nonzero subspace of C. So C
does not contain any element “2πi”, and Theorem 1.1.2 is not true if one replaces
BdR with C.

Remark 1.1.4. The field BdR is actually the fraction field of a ring that is a com-
pletion of K for a topology that is finer than the norm topology.

Remark 1.1.5. It turns out that BGK

dR = K, so we can recover the de Rham coho-
mology of X from its étale cohomology:

H∗dR(X/K) ∼=
(
H∗ét(XK ,Zp)⊗Zp

BdR

)GK
.

One can check that for any field K of characteristic zero,

dimK H
∗
dR(X/K) = dimQp

H∗ét(XK ,Qp) .

(Use the Lefschetz principle to reduce to the case where K embeds into C and
then compare each side to the Betti cohomology.) An arbitrary finite-dimensional
Qp-vector space representation V of GK satisfies

dimK(V ⊗Qp
BdR)GK ≤ dimQp

V .

If equality holds, we say that V is “BdR-admissible” or “de Rham”. In a later
lecture, we will see examples where this inequality can be strict. Therefore, not all
representations of GK can appear in the étale cohomology of varieties over K.

Remark 1.1.6. Theorem 1.1.2 holds more generally if X is a proper smooth rigid
analytic space over K.

1.2. Some examples of Galois representations. In p-adic Hodge theory, in ad-
dition to the cohomology of varieties, we also study representations of GK , whether
or not they come from the étale cohomology of a variety. Here are some examples
of Galois representations.

• Fix an algebraic closure K of K. Let µpn be the group of pnth roots of

unity in K. Let

Zp(1) = lim←−
n

µpn ;

it is a free Zp-module of rank 1.
• Local class field theory gives an explicit description of Gab

K :

Gab
K
∼= Ẑ×O×K ∼= Ẑ× Z[K:Q]

p × µ(O×K) ,
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where µ(O×K) is the group of roots of unity in O×K . So any representation

of Ẑ × O×K gives us a Galois representation. The representation Zp(1)
corresponds to the norm map

NK/Qp
: O×K → Z×p .

• If X is a semiabelian variety over K (e.g. the multiplicative group Gm or
an abelian variety), then we can consider its p-adic Tate module

Tp(X) := lim←−
n

X(K)[pn] .

In particular,

Zp(1) = Tp(Gm) .

• If X is an algebraic variety, then we can consider

Hi
ét(XK ,Zp) .

Note that if X is a semiabelian variety, then

Hi
ét(XK ,Zp) ∼= Tp(X)∗ = HomZp

(Tp(X),Zp) .

• If V and W are representations of GK over some ring R, then V ⊗RW and
HomR(V,W ) are also representations of GK .
• One can construct Galois representations by p-adic interpolation: if {Vn}

is an inverse system of Z/pnZ-representations of GK , then V = lim←−n Vn is

a Zp-representation of GK . There are examples where each Vn comes from
the étale cohomology of some algebraic variety over K but V does not.
This type of construction is used in the Langlands program.

1.3. Outline of the course. Here is an outline of some things that will be covered
in the course:

• (ϕ,Γ)-modules. It is difficult to write down GK explicitly, which makes it
difficult to write down representations of GK explicitly. We will introduce
a category of (ϕ,Γ)-modules, which is equivalent to the category of GK-
modules, but whose objects are easier to write down.
• Perfectoid fields and the tilting correspondence. The tilting correspondence

relates characteristic zero fields to characteristic p fields. For example, one
can use the tilting correspondence to show that Qp(µp∞) and Fp((t)) have
isomorphic Galois groups. Tilting allows one to use characteristic pmethods
to study p-adic fields. Tilting will also be used in the construction of “period
rings” such as BdR.

• The de Rham period ring BdR and de Rham representations. The field BdR

contains all integrals of differentials on algebraic varieties over K. We say
that a representation V of GK is BdR-admissible if dimK(V ⊗Qp

BdR)GK =
dimQp

V . In particular, representations appearing in the étale cohomology
of algebraic varieties over K are de Rham.

• The crystalline period ring Bcris and crystalline representations. The crys-
talline period ring Bcris ⊂ BdR contains integrals of differentials on proper
smooth algebraic varieties over OK . Representations appearing in proper
smooth algebraic varieties with good reduction over K are Bcris-admissible.

• A sketch of a proof of the p-adic de Rham comparison theorem.
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• (time permitting) The Fargues-Fontaine curve. This is a scheme of infinite
type over Qp that nonetheless behaves in many ways like a curve. Many
constructions in p-adic Hodge theory have geometric interpretations involv-
ing this curve.
• (time permitting) Prismatic cohomology. This is a cohomology theory for

formal schemes over OK that specializes to étale, de Rham, and crystalline
cohomology.

2. ϕ-modules and (ϕ,Γ)-modules

2.1. Representations of characteristic p Galois groups. It is difficult to write
down Galois groups explicitly, which in turn makes it difficult to write down Galois
representations explicitly. To deal with this problem, we will introduce ϕ-modules
and (ϕ,Γ)-modules, which can be described more explicitly. We will show that
categories of these modules are equivalent to categories of Galois representations.

There are many uses of (ϕ,Γ)-modules. Unfortunately, I will not be able to
describe any in detail in this lecture. To give one example, they turn out to be
useful for proving the p-adic local Langlands correspondence for GL2(Qp).

We will exploit the fact that the absolute Galois groups of p-adic fields are closely
related to the absolute Galois groups of characteristic p fields. For example, we have
the following result, which will be proved in a later lecture.

Theorem 2.1.1. The absolute Galois groups of Qp(µp∞) and Fp((t)) are isomor-
phic (as topological groups). Moreover, this isomorphism extends to an embedding
Gal(Qp/Qp)→ Aut(Fp((t))sep).

Now let E be a field of characteristic p. Let GE = Gal(Esep/E). Let ϕE : E → E
be the Frobenius map x 7→ xp.

Given an E-module M , we write ϕ∗E(M) for its Frobenius pullback E ⊗ϕE ,EM .
Any ϕE-semilinear map ϕM : M → M determines an E-linear map ϕ∗E(M) → M
by e⊗m 7→ eϕM (m).

Definition 2.1.2. A ϕ-module over E is a pair (M,ϕM ), where M is a finite-
dimensional E-vector space and ϕM is a ϕE-semilinear endomorphism. We say that
(M,ϕM ) is étale if the E-linear map ϕ∗E(M)→M induced by ϕ is an isomorphism
(equivalently, the image of ϕM generates M as an E-module).

We will denote the category of étale ϕ-modules over E by ϕ-Modét
E .

Let RepFp
(GE) denote the category of continuous finite-dimensional Fp-vector

space representations of GE .

Theorem 2.1.3. The functor DE : RepFp
(GE)→ ϕ-Modét

E defined by

V 7→ (V ⊗Fp
Esep)GE .

and the functor VE : ϕ-Modét
E → RepFp

(GE) defined by

M 7→ (M ⊗E Esep)ϕ=1 .

determine an equivalence of categories between RepFp
(GE) and ϕ-Modét

E .

Remark 2.1.4. One might think of Theorem 2.1.3 as a characteristic p version
of the Riemann-Hilbert correspondence, with the Frobenius action replacing the
connection. For a more geometric analogue, see [Kat73, Proposition 4.1.1].
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Proof of Theorem 2.1.3. Let V ∈ RepFp
(GE). We will check thatDE(V ) ∈ ϕ-Modét

E ,

and that there is a natural isomorphism VE(DE(V ))
∼−→ V . By Galois descent, the

ϕ- and GE-equivariant map

(2.1.5) DE(V )⊗E Esep → V ⊗Fp
Esep

is an isomorphism. Therefore, dimE DE(V ) = dimFp V ; in particular, DE(V ) is
finite dimensional.

To show that DE(V ) is étale, we just need to check that the matrix of Frobe-
nius in some (equivalently, any) basis is invertible. By base change, the matrix of
Frobenius on DE(V ) is invertible iff the matrix of Frobenius on DE(V )⊗E Esep =
V ⊗Fp E

sep is invertible iff the matrix of Frobenius on V is invertible. The action
of Frobenius on V is the identity.

Taking ϕ-invariants of (2.1.5) gives an isomorphism VE(DE(V ))
∼−→ V .

Now let M ∈ ϕ-Modét
E . We want to show that the natural map

(2.1.6) Esep ⊗Fp
VE(M)→ Esep ⊗E M

is an isomorphism. First we will show that it is injective. It suffices to show that
if some vectors in VE(M) = (Esep ⊗E M)ϕ=1 are linearly independent over Fp,
then they are also linearly independent over Esep. Suppose that there is a minimal
counterexample v1, . . . , vr ∈ VE(M), with

∑r
i=1 aivi = 0 for ai ∈ Esep. WLOG

we may take a1 = 1. Using ϕ(vi) = vi and ϕ(a1) = a1, we obtain 0 =
∑r
i=2(ai −

ϕ(ai))vi. By minimality of the counterexample, we must have (ai − ϕ(ai)) = 0 for
all i. Hence ai ∈ Fp for all i, which is a contradiction. Note that we did not need
to use the fact that M is étale to prove injectivity.

Now we show that (2.1.6) is surjective. Let cij be the matrix coefficients of
Frobenius in some basis. Let X be the scheme over E defined by the equations

xpi =
∑
j

cijxj .

Surjectivity of (2.1.6) is equivalent to |X(Es)| = pdimE M . Since the degree of X
over E is pdimE M , it suffices to show that X is étale over E, or equivalently that
ΩX/E = 0. The module ΩX/E is generated by the dxi subject to the relations∑
j cijxj = 0. Since the cij define an invertible matrix, ΩX/E = 0. This concludes

the proof that (2.1.6) is an isomorphism.
From (2.1.6), we see that VE(M) is finite dimensional over Fp. Then VE(M) =

(M⊗E F )ϕ=1 for some finite separable extension F/E, so the GE-action on VE(M)
is continuous. Therefore VE(M) ∈ RepFp

GE . Taking Galois invariants of (2.1.6)

gives an isomorphism DE(VE(M))
∼−→M . Hence we have shown that the functors

DE and VE are essential inverses of each other. �

Now we turn our attention to Zp-representations of GE . Let RepZp
GE denote

the category of finitely generated (not necessarily free) Zp-modules with continuous
GE-action.

One can show that for any E, there is a complete discrete valuation ring OE
such that the residue field of OE is E, and p is a uniformizer of OE . Such a ring is
called a Cohen ring for E. It is unique up to isomorphism. We can also find a lift
of Frobenius to OE .
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Example 2.1.7. If E = Fpn , then OE is the ring of integers of Qpn , the unramified
extension of Qp of degree n. More generally, if E is perfect, then OE ∼= W (E), the
ring of p-typical Witt vectors over E. If E = Fp((T )), then we can take

OE =

{ ∞∑
n=−∞

anT
n

∣∣∣∣∣an ∈ Zp, lim
n→−∞

an = 0

}
.

A commonly used choice of Frobenius action is T 7→ (1 + T )p − 1.

Definition 2.1.8. The category ϕ-Modét
OE of étale ϕ-modules over OE consists of

pairs (M,ϕM ) where M is a finitely generated OE -module and ϕM is a ϕ-semilinear
endomorphism of M such that ϕ∗OE (M)→M is an isomorphism.

Now let ǑE = Ôsh
E be the completion of the strict henselization of OE . There is

a unique continuous Frobenius on ǑE that extends the Frobenius on OE and Esep.

Theorem 2.1.9. The functor DE : RepZp
GE → ϕ-Modét

OE defined by

V 7→ (V ⊗Zp
ǑE)GE

and the functor VE : ϕ-Modét
OE → RepZp

GE defined by

M 7→ (M ⊗OE ǑE)ϕ=1

determine an equivalence of categories between RepZp
GE and ϕ-Modét

OE .

Finally, we consider Qp-representations of GE . Let RepQp
GE denote the cate-

gory of finite-dimensional Qp-vector space representation ofGE . Let E := OE [1/p], Ě :=

ǑE [1/p].

Definition 2.1.10. The category ϕ-Modét
E of étale ϕ-modules over E consists of

pairs (M,ϕM ) where M is a finite-dimensional E-vector space and ϕM is a ϕ-
semilinear endomorphism of M such that ϕ∗E(M)→M is an isomorphism, and M
admits a ϕM -stable OE -lattice.

Theorem 2.1.11. The functor DE : RepZp
GE → ϕ-Modét

E defined by

V 7→ (V ⊗Qp
Ě)GE

and the functor VE : ϕ-Modét
E → RepZp

GE defined by

M 7→ (M ⊗E Ě)ϕ=1

determine an equivalence of categories between RepQp
GE and ϕ-Modét

E .

3. (ϕ,Γ)-modules, Perfectoid fields, tilting, Witt vectors

3.1. (ϕ,Γ)-modules. The Galois group Gal(Qp/Qp) contains the closed normal

subgroup Gal(Qp/Qp(µp∞)) ∼= Gal(Fp((t))sep/Fp((t))). Moreover, this isomor-
phism can be extended to a map

Gal(Qp/Qp) ↪→ Aut(Fp((t))sep) .

This motivates us to consider the following setup.
Let G be a profinite group containing GE as a closed normal subgroup. Let

Γ = G/GE . Suppose that we are given a continuous action of Γ on OE . There is
an induced action of G on ǑE (again because compatible endomorphisms on Esep

and OE extend uniquely to ǑE).



7

Definition 3.1.1. A (ϕ,Γ)-module over OE is a ϕ-module over OE equipped with
a semilinear Γ-action commuting with the ϕ-action. We say that a (ϕ,Γ)-module
is étale if it is étale as a ϕ-module.

Write (ϕ,Γ)-Mod
ét
OE for the category of étale (ϕ,Γ)-modules over OE , and write

RepZp
G for the category of finitely generated Zp-modules with G-action.

Theorem 3.1.2. The functor DE : RepZp
G→ (ϕ,Γ)-Mod

ét
OE defined by

V 7→ (V ⊗Zp ǑE)GE

and the functor VE : (ϕ,Γ)-Mod
ét
OE → RepZp

G defined by

M 7→ (M ⊗OE ǑE)ϕ=1

determine an equivalence of categories between RepZp
G and (ϕ,Γ)-Mod

ét
OE .

A similar result holds for Fp- and Qp-representations.

Example 3.1.3. Let G = GQp
, E = Fp((T )), and embed G in AutEsep using

Theorem 2.1.1. We have Γ = Gal(Qp(µp∞)/Qp) ∼= Z×p . The action of Γ on Fp((T ))
is given by

γ · T = (1 + T )γ − 1 .

The action of Γ on OE can then also be taken to be γ · T = (1 + T )γ − 1.

3.2. Perfectoid fields. We have claimed that Qp(µp∞) and Fp((t)) have isomor-
phic Galois groups. To prove the isomorphism, we will make use of the concept of
perfectoid fields and the tilting correspondence.

Definition 3.2.1. A nonarchimedean field K is a field that is complete with respect
to a nontrivial nonarchimedean metric | · |. We will write

OK := {x ∈ K||x| ≤ 1}

mK := {x ∈ K||x| < 1}

Definition 3.2.2. A nonarchimedean fieldK of residue characteristic p is perfectoid
if its value group is nondiscrete and the Frobenius map

Φ: OK/p→ OK/p

is surjective.

Remark 3.2.3. Like most references but unlike [Ked15], we do not require that K
have characteristic zero.
Example 3.2.4.

• The field Cp is perfectoid. More generally, any algebraically closed nonar-
chimedean field of residue characteristic p is perfectoid.

• A nonarchimedean field of characteristic p is perfectoid if and only if it is
perfect.

Lemma 3.2.5. The field Qcyc
p := ̂Qp(µp∞) is perfectoid.

Proof. Let {ζpn}n≥0 denote a system of p-power roots of unity. Note that

OQcyc
p
/p ∼= lim−→

n

Zp[ζpn ]/p .
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Recall that the minimal polynomial of ζpn − 1 is

(1 + x)p
n − 1

(1 + x)pn−1 − 1
≡ xp

n−1(p−1) (mod p) .

So we can write Zp[ζpn ]/p ∼= Fp[x]/xp
n−1(p−1) ∼= Fp[tp

−n

]/t(p−1)/p, and there is a
commutative diagram

Fp[tp
−n

]/t(p−1)/p Fp[tp
−n−1

]/t(p−1)/p

Zp[ζpn ]/p Zp[ζpn+1 ]/p .

∼ ∼

The Frobenius on lim−→n
Fp[tp

−n

]/t(p−1)/p is clearly surjective. �

Definition 3.2.6. Let K be a perfectoid field. The tilt of K, denoted K[, is defined
by

K[ := lim←−
z 7→zp

K .

Define addition on K[ by (an) + (bn) = (cn), where

cn = lim
m→∞

(am+n + bm+n)p
m

and define multiplication on K[ by componentwise multiplication.
Define a homomorphism of multiplicative monoids ] : K[ → K by (an)] = a0.

Lemma 3.2.7.

(1) The limit in Definition 3.2.6 exists.
(2) K[ is a field of characteristic p.
(3) The function (an) 7→ |(an)]| = |a0| is a nonarchimedean norm on K[, and

K[ is a perfectoid field.
(4) We have

OK[ = lim←−
z 7→zp

OK ∼= lim←−
Φ

OK/p .

(5) |K×| = |K[×|.

Proof. Left as an exercise to the reader. Parts (1) and (4) use the following lemma.
�

Lemma 3.2.8. Let R be a ring, let x, y ∈ R, and let n be a positive integer. If
x ≡ y (mod pn), then xp ≡ yp (mod pn+1).

Example 3.2.9. From the analysis of Lemmas 3.2.5 and 3.2.7, we see that (Qcyc
p )[

is isomorphic to Fp((tp
−∞

)), the completion of lim−→n
Fp((tp

−n

)).

Definition 3.2.10. Let K be a perfectoid field of characteristic p. An untilt of K
is a perfectoid field K], along with an isomorphism (K])[

∼−→ K.

We would like to classify the untilts of a given characteristic p perfectoid field
K. In order to do that, we will need to introduce the ring W (OK).
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3.3. Witt vectors.

Definition 3.3.1. A strict p-ring is a ring R such that R is p-adically complete
and separated, R/pR is a perfect Fp-algebra, and p is not a zero divisor in R.

Example 3.3.2. If K is the completion of an unramified extension of Qp, then OK
is a strict p-ring. The p-adic completion of Z[xp

−∞
] is also a strict p-ring.

The main goal of this section is to prove the following theorem.

Theorem 3.3.3. The functor A 7→ A/pA from strict p-rings to perfect Fp-algebras
is an equivalence of categories.

We will write W for the functor from perfect Fp-algebras to strict p-rings de-
termined by the above equivalence. For R a perfect Fp-algebra, the ring W (R) is
called the ring of p-typical Witt vectors of R.

Lemma 3.3.4. Let R be a strict p-ring.

(1) There is a unique section [·] of the reduction map R → R/pR that is a
homomorphism of multiplicative monoids.

(2) Every element of R can be written uniquely in the form
∞∑
n=0

pn[an], an ∈ R/pR .

Proof. Left as an exercise to the reader. The first part uses Lemma 3.2.8. �

Lemma 3.3.5. Let R be a strict p-ring, and let a, b ∈ R. Suppose that a =∑∞
n=0[an]pn, b =

∑∞
n=0[bn]pn, a + b =

∑∞
n=0[sn]pn, ab =

∑∞
n=0[tn]pn. Then

sn and tn are polynomials in the ap
i−n

i , bp
i−n

i for 0 ≤ i ≤ n. Furthermore, sn is
homogeneous of degree 1 (where each ai and bi has degree 1), and tn is homogeneous
in the ai and bi separately, each of degree 1.

Proof. Repeatedly use the identity

[x+ y] ≡ ([xp
−n

] + [yp
−n

])p
n

(mod pn+1) ,

which follows from Lemma 3.2.8. �

Proposition 3.3.6. Let R be a strict p-ring, and let S be a p-adically complete
ring. Let ] : R/pR → S be a multiplicative map that induces a homomorphism of
rings R/pR→ S/pS. Then the formula

Θ

( ∞∑
n=0

pn[xn]

)
=

∞∑
n=0

pnx]n

defines a p-adically continuous homomorphism Θ: R→ S such that Θ ◦ [·] = ].

We are especially interested in applying this result in the case where R =
W (OK[) and S = OK for some perfectoid field K.

Proof. See [Ked15, Lemma 1.1.6]. �

Proof of Theorem 3.3.3. Full faithfulness follows from Proposition 3.3.6.
To prove essential surjectivity, let R be a perfect ring of characteristic p, and

write R = Fp[X−p
∞

]/I for some set X and ideal I ⊂ Fp[X−p
∞

]. Let R0 be the

p-adic completion of Zp[X−p
∞

]; then one can check that R0 is a strict p-ring and
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R0/pR0 = Fp[X−p
∞

]. Let I ⊂ R0 be the set of elements of the form
∑∞
n=0 p

n[xn]

with xn ∈ I. Then one can check that I is an ideal of R0 and R := R0/I is a strict
p-ring with R = R/pR. �

4. Untilting

4.1. Untilts and W (OK[). Let K be a perfectoid field.

Definition 4.1.1. An ideal I of W (OK[) is primitive of degree 1 if it is generated
by an element of the form p+ [π]α for some π ∈ mK[ , α ∈W (OK[).

Proposition 4.1.2. The map

Θ: W (OK[)→ OK
defined in Proposition 3.3.6 has the following properties:

(1) Θ is surjective.
(2) ker Θ is primitive of degree 1.

Proof. By Lemma 3.2.7(4), the map ] is surjective mod p. So by successive approx-
imation, every element of OK can be written as

∑∞
n=0 a

]
np
n for some an ∈ OK[ .

Therefore, Θ is surjective.
If K has characteristic p, then ker Θ = (p) is primitive of degree 1. Now suppose

K has characteristic 0. Choose π[ ∈ OK[ so that π := (π[)] satisfies |π| = |p|.
Choose x ∈ W (OK[) satisfying Θ(x) = −p/π. Since Θ(x) is a unit of K, the
constant term in the Teichmuller expansion of x must be a unit; then x is also a
unit. Let ξ = p + [π[]x; then ξ ∈ ker Θ. We claim that in fact ξ generates ker Θ.
Observe that ker Θ ⊆ ([π[], p) = (ξ, p). So any element of ker Θ can be written
as aξ + bp with Θ(pb) = pΘ(b) = 0. Since p is not a zero divisor in OK , we get
Θ(b) = 0. By successive p-adic approximation, we see that ker Θ = (ξ). �

Remark 4.1.3. If you find it dissatisfying that we used a separate argument for
p = 0, see [BMS18, Lemma 3.2ii, Lemma 3.10] for a version of the argument that
generalizes better. Essentially, the idea is to use Lemma 3.3.5 to prove that W (OK[)
is complete for the [π[]-adic topology; then we can use [π[]-adic approximation and
we can assume |p| ≤ |π| < 1 instead of |π| = |p|.

Proposition 4.1.4. The category of perfectoid fields is equivalent to the category
of pairs (K, I), where K is a perfectoid field of characteristic p and I ⊂W (OK) is
an ideal that is primitive of degree 1.

Proof. See [Ked15, Theorem 1.4.13]. �

Corollary 4.1.5. Let K be a perfectoid field. Then tilting induces an equivalence
of categories between perfectoid extensions of K and perfectoid extensions of K[.

Moreover, if L/K is an extension of perfectoid fields, then L/K is finite iff
L[/K[ is finite.

Lemma 4.1.6. If K is a perfectoid field and K[ is algebraically closed, then so is
K.

Proof. Let P (X) = Xd + ad−1X
d−1 + · · · + a0 ∈ K[X] be a monic irreducible

polynomial. Since K[ is algebraically closed, |K[×| is a Q-vector space, so |K×| is
as well. Therefore, by scaling the variable, we may assume that a0 ∈ O×K . Since P
is irreducible, its Newton polygon must be a straight line, so ai ∈ OK for all i.
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Let Q(X) ∈ O[K [X] be a monic polynomial such that P and Q have the same im-
age in (OK/pOK)[X]. Let y ∈ OK[ be a root ofQ(X). Then p | P (y]). If P (y]) 6= 0,
choose c ∈ OK so that |c|d = |P (y])|. Then replace P (X) with c−dP (cX + y]). By
repeating this process, we find a sequence of elements of OK converging to a root
of P . �

Proposition 4.1.7. Any finite extension of a perfectoid field is perfectoid.

Proof. Let K be a perfectoid field, and let C[ be the completion of an algebraic
closure of K[. By Corollary 4.1.5, C[ has an untilt C over K. Furthermore, C
is algebraically closed by Lemma 4.1.6. Let C0 be the union of the untilts of all
finite extensions of K[; then C0 is dense in C since the union of all finite extensions
of C[ is dense in C[. It follows from Krasner’s lemma that a dense subfield of
an algebraically closed nonarchimedean field is separably closed. Then C0 must
contain all finite extensions of K. So any finite extension L/K is contained in
a Galois extension M/K that is an untilt of some M [/K[. By Galois theory, any
subfield of M containing K must be the untilt of a subfield of M [ containing K[. �

Theorem 4.1.8. Let K be a perfectoid field. There is an equivalence of categories
between finite extensions of K and finite extensions of K[.

Hence there is an injection

Autcts(K) ↪→ Autcts(K[)

inducing an isomorphism

Gal(K/K) ∼= Gal(K[/K[) .

Proof. Combine Corollary 4.1.5 and Proposition 4.1.7. �

Corollary 4.1.9. The fields Qp(µp∞), Qcyc
p = ̂Qp(µp∞), Fp((tp

−∞
)), and Fp((t))

have isomorphic Galois groups.

Proof. By the above theorem, Qcyc
p = ̂Qp(µp∞) and Fp((tp

−∞
)) have isomorphic

Galois groups. By Krasner’s lemma, taking completions does not change the Galois
group, and taking perfections also does not change the Galois group. �

4.2. Ax–Sen–Tate theorem. Let K be a p-adic field, and let C := K̂ be the
completion of its algebraic closure with respect to the norm topology. In a previous
lecture, I claimed that there is no element “2πi” in C so that GK acts on “2πi” ·Qp
by the cyclotomic character χ.

Theorem 4.2.1. CGK = K.
Let K∞ := K(µp∞), Kcyc := K̂∞, Γ := Gal(K∞/K). If χ : Γ→ K× has infinite

order, then C(χ)GK = 0.

Remark 4.2.2. One can also show that H1(GK , C) is a one-dimensional K-vector
space and that H1(GK , C(χ)) = 0. In the interest of space, we omit the proof. See
[Tat67, §3].

For an elementary (but calculation-heavy) proof that CGK = K, see [Ax70] or
[FO, Proposition 3.8].

The proof breaks down into the following steps.

Lemma 4.2.3. The field Kcyc is perfectoid.
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Proof. Let k be the residue field of K. Then W (k)[1/p]cyc is perfectoid by the same
argument as in Lemma 3.2.5. Since K is finite extension of W (k)[1/p], the result
follows from Lemma 4.1.7. �

Proposition 4.2.4. If L is a perfectoid field, then (L̂)GL = L. In particular,

CGal(K/K∞) = Kcyc.

Proposition 4.2.5. (Kcyc)Γ = K.
If χ : Γ→ K× has infinite order, then Kcyc(χ)Γ = 0.

To prove Proposition 4.2.4, we will need a few lemmas.

Lemma 4.2.6. Let M/L be a finite extension of perfectoid fields. Then trM/L(mM ) =
mL.

Proof. Since M [/L[ is separable, trM[/L[(mM[) is a nonzero ideal of OL. By ap-
plying the inverse of Frobenius, we see that it must be all of mL[ . Since there are
compatible surjective ring homomorphisms OM[ � OM/pOM , OL[ � OL/pOL,
this implies that trM/L(mM ) = mL. �

Lemma 4.2.7. Let L be a perfectoid field, and let y ∈ L. Let c > 1 be a real
number. Then there exists z ∈ L so that

|y − z| ≤ c max
σ∈GL

|σy − y| .

Proof. Choose a finite extension M of L containing y. We will write tr for the trace
from M to M . By Lemma 4.2.6, we can find x ∈M with |x| < 1, | trx| ≥ c−1. Let

z = tr(xy)
tr y . Then

y − z =

∑
σ∈Gal(M/L)(σx)(y − σy)

trx
.

Hence |y − z| ≤ cmaxσ∈HK
|σy − y|, as desired. �

Proof of Proposition 4.2.4. Let x ∈ (L̂)GL . Then for any real ε > 0, we can find
y ∈ L so that |x − y| < ε and |σy − y| < ε for all σ ∈ GL. By Lemma 4.2.7, we
can find z ∈ L so that |y − z| ≤ cε; hence |x− z| < cε. Since this is true for any ε,
x ∈ L. �

5. Ax–Sen–Tate continued, BdR

5.1. Ax–Sen–Tate continued.

Proof of Proposition 4.2.5. There is a “normalized trace” map t : K∞ → K satisfy-
ing t|L = 1

[L:K] trL/K for every finite extension L/K inside K∞. We claim that t is

continuous. Indeed, this can be checked explicitly if K = W (k)[1/p], and in general
we can use the fact that K∞ is a direct summand of W (k)[1/p]∞ ⊗W (k)[1/p] K.
Therefore, we can extend t to a continuous map Kcyc → K, which we will also
denote by t. Since t is idempotent, we get a direct sum decomposition Kcyc =
K ⊕ ker t.

We claim that for x ∈ K∞,

|x− t(x)| ≤ |p|−1|x− γx| ,
and hence 1 − γ has a continuous inverse on ker t. There is no harm in replacing
K by a finite cyclotomic extension, so we may assume Γ ∼= Zp. Choose a generator
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γ ∈ Γ. For each n, let Kn be the fixed field of pnΓ. We will prove the inequality
on each Kn by induction. The base case n = 0 is trivial. Since 1 − γ divides

p−
(

1 + γp
n−1

+ · · ·+ γp
n−1(p−1)

)
, we have∣∣x− p−1 trKn/Kn−1

x
∣∣ ≤ |p−1| |((1− γ)x| .

By the induction hypothesis,∣∣p−1 trKn/Kn−1
−t(x)

∣∣ ≤ |p−1|
∣∣((1− γ)(p−1 trKn/Kn−1

x)
∣∣ ≤ |p−1||(1− γ)x| ,

where we used the fact that 1− γ commutes with the normalized trace in the last
inequality. Then the claim follows from the triangle inequality.

So we have shown that (ker t)Γ = 0, and (Kcyc)Γ = K.
Finally, suppose that χ : Γ → K× is a character of infinite order. We will show

that Kcyc(χ−1)Γ = 0. Since Γ is p-adically complete, we must have |χ(γ)− 1| < 1.
After replacing K by a finite cyclotomic extension (and thus replacing γ by a
power), we may assume that |χ(γ)− 1| < |p|. On ker t,

γ − χ(γ) = (γ − 1)(1− (χ(γ)− 1)(γ − 1)−1)

and (1 − (χ(γ) − 1)(γ − 1)−1)−1 has a convergent power series, so γ − χ(γ) is
invertible. On K, γ − χ(γ) = 1− χ(γ) is invertible since χ has infinite order. �

5.2. The ring BdR. Now we define the ring BdR that appeared in Theorem 1.1.2.
Let K be a p-adic field, and let C be the completion of its algebraic closure with

respect to the norm topology. We define the ring

Ainf := W (OC[) .

By Proposition 3.3.6, there is a homomorphism

Θ: Ainf → OC .
We will consider the localization

ΘQ : Ainf [1/p]→ C .

Lemma 5.2.1. For each positive integer n, (ker ΘQ)n ∩ Ainf = (ker Θ)n, and⋂
n(ker ΘQ)n = 0.
Let

B+
dR := lim←−

n

Ainf [1/p]/(ker ΘQ)n .

Then B+
dR is a complete discrete valuation ring with residue field C.

Proof. Left as an exercise to the reader. �

Define
BdR := FracB+

dR .

Define a decreasing filtration on BdR by letting FiliBdR be the fractional ideal
(ker ΘQ)i. Now we will define an element t ∈ B+

dR that is the p-adic analogue of
2πi. Let ε ∈ OC[ be an element with ε0 = 1, ε1 6= 1. Then [ε] − 1 ∈ ker Θ, so it
makes sense to define

t := log[ε] =

∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
.

Lemma 5.2.2. For any a ∈ Qp, log([εa]) = a log[ε]. Hence GK acts on t · Qp by
the cyclotomic character χ.
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Proof. It is formal that for a ∈ Q, log([εa]) = a log[ε].
We would like to argue that the equality holds for a ∈ Qp by continuity. But

the GK-action on B+
dR is not jointly continuous for the ker ΘQ-adic topology, so we

need to find a “better” topology.
Let ξ be a generator of ker Θ. Using Lemma 3.3.5 and the fact that the GK-

action on OC[ is jointly continuous, we can verify that the GK-action on Ainf is
jointly continuous for the (p, ξ)-adic topology on Ainf . Give Ainf/ξ

n the quotient
topology. Extend this topology to Ainf [1/p]/ξ

n by letting Ainf/ξ
n be open. Finally,

give B+
dR = lim←−nAinf [1/p]/ξ

n the inverse limit topology. Then GK acts jointly

continuously for this topology, and log is continuous on the open set 1 + mAinf
+

ξB+
dR ⊂ B

+
dR, where mAinf

is the maximal ideal of Ainf . �

Lemma 5.2.3. t is a uniformizer of B+
dR.

Proof. It is clear that t ∈ Fil1B+
dR, so we just need to check that t /∈ Fil2B+

dR. For

this, it is enough to check that [ε]− 1 /∈ Fil2B+
dR, or equivalently, [ε]− 1 /∈ (ker Θ)2.

For simplicity, we will assume p 6= 2. See [BC, Proposition 4.4.8] for the case
p = 2.

Recall from the proof of Proposition 4.1.2 that ker Θ ⊂ (p, [π[]), where π[ ∈ OC[

satisfies |π[| = |p|. So it is enough to check that [ε]−1 /∈ (p, [π[]2), i.e. |ε−1| > |p|2.

Recall that if ζpn is a primitive nth root of unity, then |ζpn − 1| = |p|1/pn−1(p−1).
Therefore,

|ε− 1| = lim
n→∞

|ζpn − 1|p
n

= |p|p/(p−1) > |p|2 .

�

Proposition 5.2.4. There is a natural Galois-equivariant inclusion K ↪→ BdR.

Proof. Let k be the residue field of K. There is a natural inclusion k ↪→ OC[ sending

x 7→
(

[xp
−n

]
)

, which induces inclusions W (k) ↪→ Ainf , W (k)[1/p] ↪→ B+
dR. Any

x ∈ K satisfies an irreducible monic polynomial over W (k)[1/p]. This polynomial
splits completely in C, the residue field of B+

dR, so it also splits in B+
dR by Hensel’s

lemma. So there is a unique inclusion K ↪→ B+
dR that makes the following diagram

commute.

W (k)[1/p] B+
dR

K C

�

Proposition 5.2.5. There is a natural isomorphism K ∼= (B+
dR)GK = BGK

dR .

Proof. By Proposition 5.2.4, we get an inclusion K ↪→ (B+
dR)GK .

Now we show that the map K ↪→ (B+
dR)GK is also surjective and that (B+

dR)GK =

BGK

dR . For any n, by Lemma 5.2.2, we have an exact sequence

0→ Filn+1BdR → FilnBdR → C(n)→ 0 .

Here we write C(n) for C(χn). It induces an exact sequence

0→ (Filn+1BdR)GK → (FilnBdR)GK → C(n)GK .
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By Theorem 4.2.1, CGK = K and C(n)GK = 0 if n 6= 0. Then (Fil1BdR)GK = 0,

BGK

dR = (B+
dR)GK , and the map

(B+
dR)GK → CGK = K

is injective. On the other hand, the composition K → (B+
dR)GK → K is the identity,

so (B+
dR)GK → K must also be surjective. �

Definition 5.2.6. Let V be a finite-dimensional Qp-representation V of GK . De-
fine DdR(V ) to be the filtered K-vector space (V ⊗Qp

BdR)GK .
We say that V is de Rham if dimK DdR(V ) = dimQp V .
If V is de Rham, then the Hodge–Tate weights of V are the integers i such that

griDdR(V ) 6= 0.

Example 5.2.7. The Hodge-Tate weight of Qp(n) = Qp(χn) is −n.

Theorem 5.2.8. If X is a proper smooth variety over K, then Hi
ét(XK ,Qp) is de

Rham, with Hodge–Tate weights between 0 and i, inclusive.

This is proved as part of the de Rham comparison theorem.

Lemma 5.2.9. Let L be a finite extension of K. Then a representation of GK is
de Rham if and only if its restriction to GL is de Rham.

Proof. This follows from Galois descent. �

Lemma 5.2.10. A tensor product of two de Rham representations is de Rham.
A subquotient of a de Rham representation is de Rham.

Proof. See [BC, §6.3]. �

Example 5.2.11. Let ψ : Z×p → Z×p be a character. The character ψ ◦ χ : GK → Z×p
is de Rham if and only if ψ is a product of a finite order character and a character
of the form z 7→ zn for some n ∈ Z. In particular, there exist characters that are
not de Rham. The “only if” direction follows from Theorem 4.2.1 by the same
argument as in Proposition 5.2.5. For the “if” direction, we can use Lemma 5.2.9
to reduce to the case where the finite order character is trivial, and then apply
Lemma 5.2.2.

6. BdR and differentials

6.1. BdR and differentials. It is not immediately obvious from the definition of
BdR that it should have anything to do with integrals of differential forms. We
will now give an alternate characterization of B+

dR that suggests a connection to
differential forms.

Let k be the residue field of K. Let

Ainf,K := Ainf ⊗W (k) OK .

There is a map ΘK : Ainf,K → OC , and for each positive integer n, B+
dR/FilnBdR

∼=
Ainf,K/(ker ΘK)n[1/p]. So

B+
dR
∼= lim←−

n

(Ainf,K/(ker ΘK)n[1/p]) .

Inductively define

O(0)

K
:= OK
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Ω(n) := OK ⊗O(n−1)

K

ΩO(n−1)

K
/OK

O(n)

K
:= ker

(
d(n) : O(n−1)

K
→ Ω(n)

)
Theorem 6.1.1.

(1) For any nonnegative integer n, the preimage of Ainf,K/(ker ΘK)n+1 under

the inclusion K ↪→ B+
dR/Filn+1BdR is O(n)

K
.

(2) For any nonnegative integers m, n, the map O(n)

K
/pm → Ainf,K/((ker ΘK)n+1, pm)

is an isomorphism.
(3) B+

dR is the completion of K for the topology defined by letting the sets

pmO(n)

K
for nonnegative integers m, n be a basis of open neighborhoods

of the identity.
(4) For any nonnegative integer n, d(n) is surjective.

Corollary 6.1.2. The inclusion K ↪→ B+
dR cannot be extended to a continuous

map C → B+
dR.

Proof. Since K is dense in B+
dR and the projection B+

dR → C is continuous and not

injective, the topology on K considered as a subspace of BdR must be finer than
the topology on K considered as a subspace of C. �

Lemma 6.1.3. The image of O(n)

K
in B+

dR is contained in Ainf,K + Filn+1BdR.

Proof. We will use induction on n. The case n = 0 follows from the surjectivity of
Θ.

Let x ∈ O(n−1)

K
. By the induction hypothesis, the image of x in B+

dR can be

written (non-uniquely) as x0 + ε, with x0 ∈ Ainf and ε ∈ FilnBdR. Consider the
map

O(n−1)

K
→ FilnBdR/

(
(ker ΘK)n + Filn+1BdR

)
x 7→ ε

This map is anOK-linear derivation taking values in aOK-module. By the universal

property of Ω(n), the map factors through d(n). In particular, its kernel contains

ker d(n) = O(n)

K
. �

Lemma 6.1.4. Let x ∈ OK . Let P ∈ OK [X] be a polynomial satisfying P (x) = 0,
and let r be a nonnegative integer such that pr | P ′(x) in OK . For each nonnegative
integer n, let an = (2n − 1)r, bn = (2n+1 − 2n− 1)r. Then for any positive integer

m, panxm ∈ O(n)

K
, and xp

bn ∈ O(n)

K
.

Proof. Use induction on n. The base case n = 0 is trivial. Now assume that for

some fixed n and all m, panxm ∈ O(n)

K
, and that xp

bn ∈ O(n)

K
. By repeated use of

the product rule, we see that

(6.1.5) d(n+1)(p2anxm) = mpanxm−1d(n+1)(panx)

for each m. In particular, this implies

0 = d(n+1)(p2anP (x)) = panP ′(x)d(n+1)(panx) .

Hence

(6.1.6) 0 = d(n+1)(p2an+rx) .
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Then multiplying (6.1.5) by pr and applying (6.1.6) yields

0 = d(n+1)(p2an+rxm) = d(n+1)(pan+1xm) .

In the case m = pbn , since pr | m, we get the stronger result

0 = d(n+1)
(
p2anxp

bn
)

= p2and(n+1)
(
xp

bn
)
.

Then

d(n+1)
(
xp

bn+1
)

= d(n+1)
(
xp

bn+2an
)

= p2an(xp
bn

)p
2an−1d(n+1)

(
xp

bn
)

= 0 .

�

Lemma 6.1.7. O(n)

K
is dense in Ainf/(ker ΘK)n.

Proof. Let π be a uniformizer of K. We claim that it suffices to check that O(n)

K
→

OC/π = OK/π is surjective. Indeed, for any integer m, Ainf/(π
m, (ker Θk)n) is

generated as an OK-module by the elements [x] for x ∈ OK[ , and there is an integer

r (independent of x) so that ([xp
−r

] + (π, ker ΘK))p
r ⊆ [x] + (πm, (ker ΘK)n).

Now let x ∈ OK , and let P be the minimal polynomial for x over k. Let xm
satisfy xp

m

m + πxm = x. Then xp
m

m ≡ x (mod π). We claim that for sufficiently

large m, xp
m

m ∈ O(n)

K
. Indeed, let Pm(X) = P (Xpm + πX); then Pm(xm) = 0 and

P ′m(xm) = (pmxp
m−1
m + π)P ′(x), so |P ′m(xm)| = |π||P ′(x)|. Then the claim follows

from Lemma 6.1.4. �

Proof of Theorem 6.1.1(2). First, we prove item (2), that

O(n)

K
/pm → Ainf/(p

m, (ker Θ)n+1)

is an isomorphism. Denote this map by fm,n. We will construct an inverse map
gm,n. First, we need to prove the following claim.

Consider the map

θm,n : O(n)

K
/pm → OC/pm .

We will show by induction on n that (ker θm,n)n+1 = 0. The base case n = 0
is trivial. Assume (ker θm,n−1)n = 0. It suffices to show that for x ∈ ker θm,n,

y ∈ (ker θm,n)n, xy = 0. Choose lifts x̃, ỹ ∈ O(n)

K
. By the induction hypothesis,

ỹ ∈ pmO(n−1)

K
. Then x̃ · p−mỹ ∈ O(n−1)

K
and

d(n)(x̃ · p−mỹ) = p−mỹ · d(n)x̃+ p−mx̃ · d(n)ỹ = 0 .

So x̃ỹ is a multiple of pm in O(n)

K
, implying xy = 0.

Now that we have proved the claim, we construct

gm,n : Ainf/(p
m, (ker Θ)n+1)→ O(n)

K
/pm

by sending [x] 7→ x̃p
n+m+1

, where x̃ is some lift of x(n+m+1) + pmOC . It is easy to
see that fm,n ◦ gm,n = 1.

Now we prove that gm,n ◦ fm,n = 1. Since O(n)

K
has no p-torsion, Ô(n)

K
also has

no p-torsion. So it suffices to show that the induced maps

fn : Ô(n)

K
[1/p]→ B+

dR/Filn+1B+
dR

gn : B+
dR/Filn+1B+

dR → Ô
(n)

K
[1/p]
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satisfy gn ◦ fn = 1. We can construct a map K ↪→ ÔK
(n)

[1/p] by the same method

as for K → BdR. It is not hard to see that gn ◦ fn fixes K, so gn ◦ fn must send
K to itself. Since gn ◦ fn induces the identity on the residue field C, it must fix

K. But K is dense in ÔK
(n)

[1/p], so gn ◦ fn = 1. This concludes the proof of item
(2). �

7. BdR and differentials, Hodge–Tate decomposition for abelian
varieties, p-divisible groups

7.1. BdR and differentials, continued.

Proof of Theroem 6.1.1(1,3,4). Next, we prove item (1), that the preimage ofAinf,K/(ker ΘK)n+1

under the inclusion K ↪→ B+
dR/Filn+1BdR is O(n)

K
. Denote the preimage by O′.

Let x ∈ O′. Then by Lemma 6.1.4, there exists m so that pmx ∈ O(n)

K
. By item

(2), O(n)

K
/pm → Ainf/(p

m, (ker ΘK)(n+1)) is injective, so pmx must be a multiple of

pm in O(n)

K
as well. Hence x ∈ O(n)

K
.

Item (3) follows immediately from items (1) and (2).
Finally, we prove item (4). Each element of Ω(n) is of the form xd(n)y for

x ∈ OK and y ∈ O(n−1)

K
. By Lemma 6.1.4, we can find m so that pmd(n)y = 0,

and by Lemma 6.1.7, we can find z ∈ O(n)

K
so that x− z ∈ pmOK . Then xd(n)y =

zd(n)y = d(n)(yz). �

Corollary 7.1.1. For each positive integer n, there is a natural isomorphism

HomZp(Qp,Ω(n)) ∼= FilnBdR/Filn+1BdR .

Proof. By Theorem 6.1.1(4), there is an exact sequence

0→ O(n)

K
→ O(n−1)

K
→ Ω(n) → 0 .

Recall that the functor Ext1
Z(Qp/Zp,−) is p-adic completion. So we get an exact

sequence

0→ HomZ(Qp/Zp,Ω(n))→ Ainf,K/(ker ΘK)n+1 → Ainf,K/(ker ΘK)n → 0 .

Observe that HomZ(Qp/Zp,Ω(n)) ∼= HomZp(Qp/Zp,Ω(n)), and since Ω(n) is p-power

torsion, HomZp
(Qp/Zp,Ω(n)) ⊗Zp

Qp ∼= HomZp
(Qp,Ω(n)). Then inverting p gives

an exact sequence

0→ HomZp
(Qp,Ω(n))→ B+

dR/Filn+1B+
dR → B+

dR/FilnB+
dR → 0 .

�

7.2. Hodge-Tate decomposition for abelian varieties. Recall the comparison
isomorphism

Hn
dR(X/K)⊗K BdR

∼= Hn
ét(XK ,Zp)⊗Zp

BdR .

This is an isomorphism of filtered vector spaces with GK-action. Taking the zeroth
graded piece gives an isomorphism

n⊕
i=0

Hn−i(X,ΩiX/K)⊗K C(−i) ∼= Hn
ét(XK ,Zp)⊗Zp

C .
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In the case where X is an abelian variety, this decomposition can actually
be made fairly explicit. In that case, all cohomology groups are wedge pow-
ers of H1, so it suffices to consider n = 1. Recall that H1

ét(XK ,Zp) is dual

to the Tate module Tp(X) := lim←−nX(K)[pn]. Therefore, giving a C-linear map

H0(X,Ω1
X/K)⊗K C(−1)→ H1

ét(XK ,Zp)⊗Zp
C is equivalent to giving a map

H0(X,Ω1
X/K)× Tp(X)→ C(1)

that is K-linear in the first variable and Zp-linear in the second.
We will sketch the construction of the map, but we refer the reader to [Fon82]

for the technical details.
Let X be a proper flat model of X over OK . We can define a map

H0(X,Ω1
X/OK

)× X(OK)→ Ω(1)

(ω, x) 7→ x∗(ω) .

It is possible to use the group law on the generic fiber show that for some r, the
restriction

prH0(X,Ω1
X/OK

)× X(OK)→ Ω(1)

is bilinear.
By the valuative criterion of properness, X(OK) = X(K). Using Hom(Qp/Zp, X(K)) ∼=

Tp(X) and Hom(Qp/Zp,Ω(1)) ∼= ker ΘK/(ker ΘK)2, we obtain a map

prH0(X,Ω1
X/OK

)× Tp(X)→ (ker ΘK)/(ker ΘK)2 .

Finally, we invert p to get a bilinear map

H0(X,Ω1
X/K)× Tp(X)→ C(1) .

Now we have a constructed map (which can be shown to be injective)

(7.2.1) H0(X,Ω1
X/K)⊗K C(−1) ↪→ H1

ét(XK ,Zp)⊗Zp
C .

If X∨ is the dual abelian variety, then we get a map

H0(X∨,Ω1
X∨/K)⊗K C(−1) ↪→ H1

ét(X
∨
K
,Zp)⊗Zp C .

The Weil pairing determines a perfect pairing

H1
ét(XK ,Zp)×H

1
ét(X

∨
K
,Zp)→ Zp(−1)

and there is also a perfect pairing

H1(X,OX)×H0(X∨,Ω1
X∨/K)→ K .

So we get a map

H1(X,OX)∗ ⊗K C(−1) ↪→ H1
ét(XK ,Zp)

∗ ⊗Zp
C(−1) .

Taking the dual and twisting, we get a map

(7.2.2) H1
ét(XK ,Zp)⊗Zp

C � H1(X,OX)⊗K C .

The composite of (7.2.1) and (7.2.2) must be zero since C(1)GK = 0. Then, by
dimension counting, the sequence
(7.2.3)

0→ H0(X,Ω1
X/K)⊗K C(−1)→ H1

ét(XK ,Zp)⊗Zp
C → H1(X,OX)⊗K C → 0

must be exact. Since H1(GK , C(−1)) = 0 (see Remark 4.2.2), this sequence
has a GK-equivariant splitting. Since C(−1)GK = 0, this splitting is unique.
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subsectionp-divisible groups Now we introduce p-divisible groups, another source
of Galois representations.

Definition 7.2.4. Let S be a scheme. A finite locally free group scheme over S is
a commutative group scheme G over S such that the pushforward of OG is a finite
locally free OS-module.

A p-divisible group of height h over S is an inductive system G = (Gv, ιv), v ∈ N,
where Gv is a finite locally free group scheme over S of order pvh and ιv : Gv → Gv+1

has the property that

0→ Gv
ιv−→ Gv+1

pv−→ Gv+1

is exact.

Remark 7.2.5. In the literature, the term “finite flat group scheme” is often used.
If S is locally noetherian, then there is no difference between these two notions,
but in general, finite locally free group schemes are better behaved. See [Sta, Tag
02K9].

Example 7.2.6. Some examples of finite locally free group schemes are:

• If G is a finite abelian group, then the functor G that sends a scheme X
to the set of continuous maps |X| → G is representable by a finite locally
free group scheme over Z. As a scheme, it is a disjoint union of |G| copies
of SpecZ.
• µ(N), the group of Nth roots of unity, is a finite locally free group scheme

over Z. Its Hopf algebra is Z[X]/(XN − 1), with coproduct X 7→ X ⊗X.
• αp is a finite locally free group scheme over Fp. Its Hopf algebra is Fp[X]/(Xp),

with coproduct X 7→ X ⊗ 1 + 1⊗X.
• If A is a semiabelian variety over a field K and N is a positive integer, then

the N -torsion subgroup A[N ] is a finite locally free group scheme.

Example 7.2.7. Some examples of p-divisible groups are:

• Qp/Zp is a p-divisible group over Z of height 1 (Gv = p−vZ/Z)

• µ(p∞) is a p-divisible group over Z of height 1 (Gv = µ(pv) = SpecZ[T ]/((1+
T )p

v − 1))
• If A is an semiabelian variety over a field K, then A[p∞] is a p-divisible

group over S (Gv = A[pv]). If A is an abelian variety, then the height of
A[p∞] is 2 dimA. If A is a torus, then the height of A[p∞] is dimA.

8. More on p-divisible groups

8.1. Constructions involving p-divisible groups.

Definition 8.1.1. Let G be a finite locally free group scheme over a scheme S.
Then the Cartier dual of G, denoted G∨, is the finite locally free group scheme rep-
resenting the functor from schemes over S to sets given by T 7→ Hom(GT , (Gm)T ).
Here Hom is taken in the category of group schemes.

The Cartier dual of a p-divisible group G = (Gv) is G∨ := (G∨v ). It represents
the functor from schemes over S to sets given by T 7→ Hom(GT , µ(p∞)). Here Hom
is taken in the category of p-divisible groups.

The Hopf algebra of G∨ is dual to the Hopf algebra of G. Let f : G → S be
the projection map. Then there is a product f∗OG ⊗OS

f∗OG → f∗OG induced by
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multiplication on OG and a coproduct f∗OG → f∗OG ⊗OS
f∗OG induced by the

group operation G×G→ G. Taking the duals of these maps gives us a coproduct
and product, respectively, on (f∗OG)∨, and we can take G∨ = Spec((f∗OG)∨).

From the above description, we see that for any finite locally free group scheme
or p-divisible group G, (G∨)∨ is naturally isomorphic to G.

If G is a finite locally free group scheme, then there is a canonical bilinear pairing
G×G∨ → Gm. If G is a p-divisible group, then there is a canonical bilinear pairing
G×G∨ → µp∞ .
Example 8.1.2.

(1) Z/pnZ and µ(pn) are a Cartier dual pair of finite locally free group schemes.

(2) Qp/Zp and µ(p∞) are a Cartier dual pair of p-divisible groups.

(3) If A is an abelian variety over a field K and A∨ is the dual abelian variety,
then A[pn] and A∨[pn] are Cartier duals, as are A[p∞] and A∨[p∞].

(4) αp is its own Cartier dual. The bilinear pairing αp × αp → Gm is given by

given by (x, y) 7→
∑p−1
n=0

(xy)n

n! .

Definition 8.1.3. Let G be a p-divisible group over a field K. Define the Tate
module

T (G) := lim←−
v

Gv(K
sep) .

Example 8.1.4. If G = Qp/Zp, then T (G) ∼= Zp with trivial Galois action. If

G = µ(p∞), then T (G) ∼= Zp(1).

Proposition 8.1.5. Let G be a finite locally free group scheme over a Henselian
local ring R. There is an exact sequence

0→ G0 → G→ Gét → 0

where G0 is (geometrically) connected and Gét is étale over R.
A similar result holds for p-divisible groups.

Proof. See [Tat97, §3.7]. �

Remark 8.1.6. If p is invertible in R, then every finite locally free group scheme
over R is étale over R.

Example 8.1.7. Qp/Zp is étale over Z.

Suppose that R is a Henselian local ring with residue characteristic p. Then the
p-divisible group µp∞ over R is connected. Let E be an elliptic curve over R. If
the special fiber of E is supersingular, then E[p∞] is connected. If the special fiber
is ordinary, then E[p∞]0 and E[p∞]ét each have height 1.

Theorem 8.1.8. Let K be a nonarchimedean field of mixed characteristic. Let G
be a p-divisible group over OK . Let NilpOK

be the category of OK-algebras on which
p is nilpotent. The contravariant functor NilpOK

→ Set that sends R 7→ lim−→v
Gv(R)

is representable by a formal scheme G over Spf OK .

Proof. Combine Proposition 8.1.5 with [SW13, Lemma 3.1.1]. The connected case
is proved in [Mes72, Theorem II.2.1.8]. �

If R is a p-adically complete and separated OK-algebra, then we will abuse
notation and write G(R) for

G(R) = lim←−
n

lim−→
v

Gv(R/p
nR) .
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Example 8.1.9. The formal scheme associated with µ(p∞) is is the formal multiplica-

tive group Ĝm = Spf OK JT K. (Here 1 + T is the coordinate on the open unit disc
of radius 1 centered at 1). Somewhat counterintuitively, µ(p∞)(OC) = (1 + mC)×,
not the group of roots of unity of OC . This is because any x ∈ mC has the property
that (1 + x)p

n → 1 as n→∞.
Theorem 8.1.10.

(1) Let
LieG := ker

(
G(OK [ε]/(ε2))→ G(OK)

)
be the tangent space to G at the origin. Then LieG is a finite free OK-
module.

(2) If G is connected, then G ∼= Spf OK JX1, . . . , XnK, where n is the rank of
LieG.

Proof. See [Mes72, Theorem II.2.1.8], or [Tat67, §2.2] in the case where K is dis-
cretely valued. �

Definition 8.1.11. The dimension of G is the rank of LieG.

8.2. Hodge–Tate decomposition for p-divisible groups over OC . Let C be
an algebraically closed nonarchimedean field of mixed characteristic (0, p), and let
OC be the ring of integers of C. Define

T (G) := T (GC) = lim←−
v

Gv(C) .

Recall that Cartier duality gives a pairing

G×G∨ → µp∞ .

There are induced pairings

T (G)× T (G∨)→ T (µp∞) = Zp(1)

LieG× T (G∨)→ Lieµp∞ = OC
T (G)× LieG∨ → Lieµp∞ = OC

The first pairing is perfect, so we can identify T (G∨) ∼= T (G)∨(1). So we get
maps

(LieG)(1)→ T (G)⊗Zp
OC

T (G)⊗Zp
OC → (LieG∨)∨ .

If we tensor with C, we get

(8.2.1) LieG⊗OC
C(1)→ T (G)⊗Zp C

(8.2.2) T (G)⊗Zp C → Lie(G∨)∨ ⊗OC
C .

Theorem 8.2.3. The maps (8.2.1) and (8.2.2) induce an exact sequence

(8.2.4) 0→ LieG⊗C C(1)→ T (G)⊗Zp C → (LieG∨)∨ ⊗ C → 0 .

Proof. See [Far08, Thm. II.1.1], or [Tat67, Thm. 3] for the case where K is discretely
valued. �

IfG = A[p∞] for some abelian varietyA overOC , then we can identifyH0(AC ,Ω
1
AC/C

) ∼=
(LieG)∨ ⊗OC

C, H1(AC ,OAC
) ∼= LieG∨ ⊗OC

C, and the above exact sequence is
dual to

0→ H1(AC ,OAC
)→ H1

ét(AC ,Zp)⊗Zp
C → H0(AC ,Ω

1
A/C)⊗C C(−1)→ 0 .
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Remark 8.2.5. Note that the maps in this sequence are in the opposite direction to
those in (7.2.3). In section 7.2, we assumed that A is defined over a p-adic field K,
in which case the sequences have a unique GK-equivariant splitting. But over C,
there is not a canonical splitting.

Theorem 8.2.6. Let K be a p-adic field, and let H1 and H2 be p-divisible groups
over OK . Any homomorphism (H1)K → (H2)K extends uniquely to a homomor-
phism H1 → H2.

Remark 8.2.7. The assumption that K is a p-adic field (i.e. it is discretely valued)
is necessary. If C is algebraically closed, then any two p-divisible groups over C of
the same height are isomorphic, but the same is not true over OC .

Proof. We will just give a sketch; see [Tat67, Thm. 4] for details.
The first step in the proof is to show that if H1 → H2 is a map of p-divisible

groups over OK that induces an isomorphism on the generic fibers, then the map
itself is an isomorphism. For each v, let (H1)v = SpecRv, (H2)v = SpecSv. Then
Sv[1/p] ∼= Rv[1/p], and Sv → Rv is an isomorphism iff Sv and Rv have the same
discriminant over OK . One can show (without the discrete valuation assumption)
that the discriminant depends only on the height and dimension of the group. We
claim that the height and dimension of Hi can be recovered from T (Hi), which
depends only on the generic fiber of Hi. Indeed, htHi = rkT (Hi) and the Hodge–
Tate decomposition (8.2.4) implies dimHi = dimK(T (Hi) ⊗ C(−1))GK . (Here
we use that C(−1)GK = 0, which relies on the assumption that GK is discretely
valued.)

Suppose we have a homomorphism f : (H1)K → (H2)K . Let ΓK be the image
of the graph morphism id×f : (H1)K → (H1)K × (H2)K , and let Γ be the closure
of ΓK in H1×H2. Then the projection Γ→ H1 is an isomorphism since it induces
an isomorphism on generic fibers. So composing the inverse H1 → Γ with the
projection Γ→ H2 gives the desired map H1 → H2. �

9. Classifications of p-divisible groups, crystalline representations

9.1. Classifications of p-divisible groups.

Proposition 9.1.1. Let R be a Henselian local ring with residue field k. The
functor G 7→ G(Rsh) induces an isomorphism between the category of étale finite
locally free group schemes over R and the category of finitely generated torsion
Zp-modules with continuous Gal(ksep/k)-action.

The functor T induces an equivalence between the category of étale p-divisible
groups over R and the category of finite free Zp-modules with continuous Gal(ksep/k)-
action.

In characteristic p, Tate modules are less useful, since the Tate module of a
connected p-divisible group is zero. However, over a perfect field k, Dieudonné
modules provide a convenient way of describing p-divisible groups.

Definition 9.1.2. Let k be a perfect field. The Dieudonné ring Dk is the (noncom-
mutative) ring over W (k) generated by element F and V subject to the relation
FV = V F = p, Fc = φ(c)F , cV = V φ(c) for c ∈ k. Here φ is the Frobenius
endomorphism of W (k).
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Theorem 9.1.3. There is an anti-equivalence of categories G 7→ D(G) between
the category of finite locally free group schemes of p-power order over k and the
category of left Dk-modules of finite W (k)-length.

Theorem 9.1.4. There is an anti-equivalence of categories G 7→ D(G) between the
category of p-divisible groups over k and the category of left Dk-modules that are
finite free W (k)-modules.

I will not say exactly how the functor is defined, but the basic idea is that D(G)
is the set of maps from G to the scheme of “Witt co-vectors”. If R is perfect,
then the group of R-points of this scheme is isomorphic to the additive group
W (R)[1/p]/W (R).

Remark 9.1.5. The actions of F and V are induced by maps of group schemes.
More specifically, there is a commutative diagram

G G(p) G

Spec k Spec k

F

Fabs

Fabs

.

Here Fabs is the absolute Frobenius, F is the geometric Frobenius, and G(p) is
defined to make the square Cartesian. Furthermore, since multiplication by p is
completely inseparable, it factors through F . There is a commutative diagram

G G(p) GF

p

V .

One can also define V to be the Cartier dual of F : G∨ → (G∨)(p).
Example 9.1.6.

(1) D(Z/pnZ) ∼= W (k)/pn and D(Qp/Zp) ∼= W (k), where F [x] = [xp] and

V [x] = p[x1/p].
(2) D(µ(pn)) ∼= W (k)/pn and D(µp∞) ∼= W (k), where F [x] = p[xp] and V [x] =

[x1/p].
(3) D(αp) = k, where F = V = 0.
(4) IfA is an abelian varety, then V ·D(A[p∞]) can be identified withH1

cris(A/W (k)).
(5) Let E be an elliptic curve, and let M = D(E[p∞]). Then M is a free W (k)-

module of rank 2. If E is ordinary, then M/FM ∼= W2(k) = W (k)/p2W (k).
If E is supersingular, then M/FM ∼= k2.

Definition 9.1.7. A Honda system over W (k) is a pair (M,L) consisting of a left
Dk-module M and a W (k)-submodule L such that M is a finite free W (k)-module
and the induced map L/pL→M/FM is an isomorphism.

A finite Honda system over W (k) is a pair (M,L) consisting of a left Dk-module
M and a W (k)-submodule L such that M has finite W (k)-length, the induced map
L/pL→M/FM is an isomorphism, and kerV ∩ L = 0.

Theorem 9.1.8. Let k be a perfect field of characteristic p > 2.
There is a natural anti-equivalence of categories G 7→ (D(Gk), L(G)) between the

category of p-divisible groups over W (k) and the category of Honda systems.
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There is a natural anti-equivalence of categories G 7→ (D(Gk), L(G)) between the
category of finite locally free group schemes over W (k) and the category of finite
Honda systems.
Example 9.1.9.

(1) If G is étale, then L = 0.
(2) If G∨ is étale, then L = D(Gk).
(3) If A is an abelian variety over W (k), and M = D(Ak[p∞]), then we can

identify VM ∼= H1
dR(A/W (k)), and V L is the subspace corresponding to

H0(A,Ω1
A/W (k)).

(4) If E is an elliptic curve with supersingular reduction and G = E[p∞], then
L is one-dimensional, and it is generated by an element not in the image of
F .

Theorem 9.1.10. Let C be an algebraically closed nonarchimedean field of residue
characteristic p, and let OC be the ring of integers of C. There is an equivalence
of categories between the category of p-divisible groups over OC and the category of
free Zp-modules T of finite rank together with a C-sub-vector space W of T⊗C(−1).
The equivalence is characterized by

T = T (G)

W = im (LieG⊗OC
C → T (G)⊗ C(−1)) .

Proof. See [SW13, Theorem 5.2.1]. �

9.2. The crystalline comparison theorem. Let K be a p-adic field. Let OK be
the ring of integers of K, and let k be the residue field of K. Let K0 = W (k)[1/p].

Theorem 9.2.1. Let X be a proper smooth scheme over OK . Then there is a GK-
and Frobenius- equivariant isomorphism

H∗ét(XK ,Zp)⊗Zp
Bcris

∼= H∗cris(Xk/W (k))⊗W (k) Bcris .

We will define Bcris later. It has the following properties.

• Bcris is a subring of BdR (hence Bcris is an integral domain).
• (Bcris)

GK = (FracBcris)
GK = K0.

• (Bcris ⊗K0 K)GK = (FracBcris ⊗K0 K)GK = K.
• Ǩ0 := W (k)[1/p] ⊂ Bcris

• t ∈ Bcris

Definition 9.2.2. Let k be a perfect field of characteristic p, and let K0 =
W (k)[1/p]. An isocrystal overK0 is a finite-dimensionalK0-vector spaceD equipped
with a bijective Frobenius-semilinear endomorphism φD : D → D.
Example 9.2.3.

(1) If X is a proper smooth scheme over k, then Hi
cris(X/W (k)) ⊗W (k) K0 is

an isocrystal over K0.
(2) If G is a p-divisible group over k, then D(G)⊗W (k)K0 is an isocrystal over

K0.
(3) If V is a finite-dimensional representation of GK , then (V ⊗Qp

Bcris)
GK is

an isocrystal over K0.
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10. Filtered φ-modules and crystalline representations

10.1. Filtered φ-modules.

Definition 10.1.1. Let K be a p-adic field with residue field k, and let K0 =
W (k)[1/p]. A filtered φ-module over K is a pair (D,Fil•) consisting of an isocrystal
D over K0 and a decreasing exhaustive and separated filtration Fil• on DK :=
D ⊗K0

K.
Example 10.1.2.

(1) Let X is a proper smooth scheme over OK . Then there is an isomorphism

Hi
cris(Xk/W (k))⊗W (k) K ∼= Hi

dR(XK/K) .

Then the pair consisting of Hi
cris(Xk/W (k)) ⊗W (k) K0 and the Hodge fil-

tration on Hi
dR(XK/K) is a filtered φ-module over K.

(2) If V be a finite-dimensional Qp-representation of GK , then let Dcris(V )
be the pair consisting of (V ⊗Qp

Bcris)
GK and the filtration induced from

(V ⊗Qp
Bcris ⊗K0

K)GK ↪→ DdR(V ) is a filtered φ-module over K.

Definition 10.1.3. A finite-dimensional Qp-representation V of GK is crystalline
if dimK0

Dcris(V ) = dimQp
V .

Example 10.1.4. Let V be an unramified representation of GK . Then we can also
view V as a representation of Gk. Then V is crystalline and Dcris(V ) ∼= DE(V ),
where DE is the functor of Theorem 2.1.11. In this case, the field E is K0.

One might ask which filtered φ-modules come from crystalline representations.
To answer this question, we will need to introduce Newton and Hodge polygons.

Theorem 10.1.5 (Dieudonné–Manin decomposition). Let k be an algebraically
closed field of characteristic p, and let K0 = W (k)[1/p].

Let r be a positive integer, and let s be an integer relatively prime to r. Define
the isocrystal Dr,s over K0 to be (K0)r, with Frobenius action given by φ(ei) = ei+1

for 1 ≤ i ≤ r, φ(er) = pse1.
If (r, s) 6= (r′, s′), then Hom(Dr,s, Dr′,s′) = 0. Moreover, any isocrystal D over

K0 is isomorphic to a direct sum of copies of modules of the form Dr,s.

Definition 10.1.6. Let k be a perfect field of characteristic p, let K0 = W (k)[1/p],
and let Ǩ0 = W (k)(1/p). LetD be an isocrystal overK0. The fractions s

r appearing

in the decomposition of D ⊗K0
Ǩ0 of Theorem 10.1.5 are called the slopes of D.

Lemma 10.1.7. Let D be an isocrystal over Qpn . Then the slopes of D are vp(λ)/n,
where λ runs over eigenvalues of φn.

Proof. Factor the characteristic polynomial of φn into irreducibles; each irreducible
determines a subspace of D on which all eigenvalues of φn have the same p-adic
valuation. So we can reduce to the case where all eigenvalues have the same valu-
ation.

For any (r, s), we can find Dr,s,Qp
over Qp so that Dr,s,Qp

⊗Qp
Q̌p ∼= Dr,s and

the eigenvalues of φ are the rth roots of ps. By tensoring with Dr,s,Qp
, we reduce

to the case where the eigenvalues have valuation zero.
Now suppose that the eigenvalues of φn have valuation zero. Then D admits a

lattice Λ such that φΛ = Λ, so D ⊗Qpn
Q̌p does as well. Then all slopes of D must

be zero. �
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Definition 10.1.8. Let k be a perfect field of characteristic p, let K0 = W (k)[1/p],
and let Ǩ0 = W (k)[1/p]. Let D be an isocrystal over K0. Suppose that D ⊗K0

Ǩ0
∼=
⊕n

i=1Dri,si with the si/ri in nondecreasing order. Then the Newton polygon
PN (D) of D is the polygon with vertices(

j∑
i=1

ri,

j∑
i=1

si

)
for j ∈ {0, . . . , n}.

Example 10.1.9. Let E be an elliptic curve over an algebraically closed field k of
characteristic P . Let K0 = W (k)[1/p]. Let D = H1

cris(E/(W (k))⊗W (k) K0. Then
D ∼= D1,0 ⊕D1,1 if E is ordinary, and D ∼= D2,1 if E is supersingular.

ordinary

supersingular

Definition 10.1.10. Let D be a finite-dimensional vector space equipped with a
decreasing filtration that is separated and exhaustive. The Hodge polygon PH(D)
of D is the polygon with endpoints∑

i<j

dim gri V,
∑
i<j

i dim gri V


for j ∈ Z.

Example 10.1.11. Let E be an elliptic curve over a field K, and let D = H1
dR(E).

Then gr0D and gr1D are one-dimensional and all other graded pieces are zero.

Definition 10.1.12. A filtered φ-module D is admissible if for each subobject
D′ ⊆ D, PH(D′) lies below PN (D′), and the rightmost vertices of PH(D) and
PN (D) coincide.

Remark 10.1.13. Although the category of filtered φ-modules is not abelian, the
category of admissible filtered φ-modules is abelian.

Theorem 10.1.14. The functor Dcris induces an equivalence of categories between
the category of crystalline GK-representations and the category of admissible filtered
φ-modules.

Example 10.1.15. We will classify two-dimensional admissible filtered φ-modules D
over Qp with Hodge–Tate weights 0 and 1. In order for the Newton and Hodge
polygons to have the same endpoints, the p-adic valuations of the eigenvalues of φ
must sum to 1. In order for the Newton polygon to lie above the Hodge polygon,
the valuations must be either 0 and 1 or 1

2 and 1
2 .
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In the latter case, D has no subobjects, so any choice of one-dimensional subspace
Fil1D makes D admissible. Any two choices yield isomorphic filtered φ-modules.

In the former case, the φ-eigenspaces are subobjects, and D is admissible if and
only if Fil1D is not the eigenspace whose eigenvalue has valuation 0. If Fil1D is the
other eigenspace, then D is a direct sum of two one-dimensional admissible filtered
φ-modules. If Fil1D is not an eigenspace, then D is a nonsplit extension of two
one-dimensional admissible filtered φ-modules. Any two choices of Fil1D that are
not eigenspaces yield isomorphic filtered φ-modules.

11. Bcris

11.1. The ring Bcris. Let A0
cris be the divided power envelope of Ainf = W (OC[)

with respect to ker Θ, i.e. we adjoin xn

n! for all x ∈ ker Θ and all positive integers n.
Define

Acris := lim←−
n

A0
cris/p

n

B+
cris := Acris[1/p]

Proposition 11.1.1. There are natural inclusions

A0
cris ↪→ Acris ↪→ B+

cris ↪→ B+
cris ⊗K0 K ↪→ B+

dR .

Proof. The ring A0
cris is naturally a subring of Ainf [1/p], hence also of B+

dR. The in-

clusion A0
cris ↪→ B+

dR is continuous for the p-adic topology on A0
cris and the canonical

topology on B+
dR. Hence the inclusion factors as A0

cris ↪→ Acris → B+
dR.

Since p is not a zero divisor in A0
cris, it is also not a zero divisor in Acris, so Acris

injects into B+
cris.

I don’t know of a reference for the injectivity of B+
cris → B+

cris ⊗K0 K → B+
dR. In

[BC, Thm. 9.1.5] it is claimed that one can give a proof similar to that of [Fon82,
§4.7] (which proves that the ring B+

max defined below injects into B+
dR).

�

Corollary 11.1.2. (B+
cris)

GK = (FracB+
cris)

GK = K0

Proof. Since there are GK-equivariant injections K0 ↪→ Ainf [1/p] ↪→ B+
cris ↪→ B+

dR,

we see that K0 ⊆ (B+
cris)

GK ⊆ K. Since B+
cris ⊗K0

K injects into B+
dR, it must be

the case that (B+
cris)

GK = K0. By a similar argument, (FracB+
cris)

GK = K0. �

Lemma 11.1.3. A0
cris is the ring obtained by adjoining [p̃]n

n! to Ainf for all integers

n. Here p̃ = (p, p1/p, p1/p2 , . . . ).

Proof. Recall from the proof of Proposition 4.1.2 that ker Θ is generated by p− [p̃].

Then the lemma follows after observing that pn

n! ∈ Zp for each n. �

Lemma 11.1.4. Let φ : Ainf [1/p]→ Ainf [1/p] be the Frobenius map. Then φ(A0
cris) ⊆

A0
cris.

Proof. Apply Lemma 11.1.3. It is clear that [p̃]pn

n! ∈ A
0
cris for each n. �

In particular, there is a Frobenius action on Acris and B+
cris.
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Lemma 11.1.5. For any x ∈ Acris ∩ ker ΘQ, the power series

log(1 + x) =

∞∑
n=1

(−1)n+1xn

n

converges in Acris.

Proof. This follows from the fact that n!
n = (n − 1)! goes to zero p-adically as

n→∞. �

In particular, t = log[ε] ∈ Acris. We then define

Bcris := B+
cris[1/t] .

Remark 11.1.6. In fact, tp−1 is a multiple of p in Acris [BC, Prop. 9.1.3] [FO,
Prop. 6.6], so Bcris = Acris[1/t].

Lemma 11.1.7. The Frobenius map φ : Acris → Acris is injective.

Proof. A proof is unfortunately missing from [BC], but see the proof of Lemma
11.1.9 below. �

The ring Bcris is not particularly nice. Sometimes it is easier to work with the
ring Bmax, defined as follows.

B+
max :=

{ ∞∑
n=0

xn
ξn

pn
∈ B+

dR, xn ∈ Ainf [1/p], lim
n→∞

xn = 0

}
Here, “xn → 0” means that all but finitely any of the xn are in Ainf and the
sequence goes to zero for the (p, [p̃])-adic topology on Ainf .

Bmax := B+
max[1/t]

Remark 11.1.8. B+
max is a Huber ring.

Lemma 11.1.9.

(1) ϕ(B+
max) ⊂ B+

cris ⊂ B+
max.

(2) For any Qp-representation of GK , (V ⊗ Bcris)
GK → (V ⊗ Bmax)GK is an

isomorphism.

Proof. Item (1) follows from the inequality
n

p− 1
− logp(n+ 1) ≤ vp(n!) ≤ n

p− 1
.

(See for example [FF18, Prop. 1.10.12].) Since the Frobenius operator on B+
max is

injective [FF18, §1.10.1], the Frobenius operator on (V ⊗Bmax)GK is also injective.
Since this vector space is finite-dimensional, the Frobenius must be an isomorphism.
Then item (2) follows from item (1). �

Define a filtration on Bcris by pulling back the filtration from BdR.

Remark 11.1.10. Fil0Bcris is strictly larger than B+
cris; see [Dia17, Problem 25].

Proposition 11.1.11. The sequence

0→ Qp → Fil0Bcris
ϕ−1−−−→ Bcris → 0

is exact.

Proof. See [FO, Thm. 6.25]. �
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Corollary 11.1.12. Dcris induces a fully faithful functor from the category of crys-
talline representations of GK to the category of filtered φ-modules.

We already mentioned the stronger statement Theorem 10.1.14, but that is sub-
stantially harder to prove.

Proof. If V is crystalline, then the natural map Bcris⊗K0
Dcris(V )→ Bcris⊗Qp

V is
a Galois- and Frobenius-equivariant isomorphism of filtered vector spaces. Taking
the φ-invariant subspace of Fil0 gives Fil0(Bcris ⊗K0

Dcris(V ))φ=1 ∼= V . This gives
us a left inverse of Dcris. �

One can also use Proposition 11.1.11 to prove that if V is crystalline, then
Dcris(V ) is admissible. Again, the converse is much harder to prove.

Example 11.1.13. In example 10.1.4, we showed that unramified representations of
GK are crystalline. Moreover, since the image of DE consists of étale φ-modules, an
unramified representation must have all Hodge–Tate weights equal to zero. Con-
versely, the full faithfulness of Dcris implies that any crystalline representation with
all Hodge–Tate weights equal to zero is unramified.

Example 11.1.14. It is not difficult to construct representations that are potentially
unramified (i.e. the restriction to some open subgroup of GK is unramified) but not
unramified. Such representations are potentially crystalline but not crystalline.
They are also de Rham since any potentially de Rham representation is de Rham
by Lemma 5.2.9.

11.2. Bst. So far, we have defined a ring BdR that contains the periods of all
algebraic varieties over K, and a ring Bcris that contains the periods of all proper
smooth varieties with good reduction over K. We will now describe an intermediate
ring Bst that contains the periods of all proper smooth varieties with semistable
reduction over K.

There is a GK- and Frobenius-equivariant group homomorphism log : (O[C)× →
Bcris, defined as follows. If x ∈ O[C satisfies |x − 1| < 1, then the power series for
log[x] converges in Bcris, and we define log x := log[x]. We extend the logarithm to
(O[C)× by setting log x = 0 for x in the image of the residue field of C.

If we want to extend the logarithm to (C[)×, we need to replace Bcris with a
larger ring.

Definition 11.2.1. The ring Bst is the polynomial ring Bcris[λ], with Galois action
given by

g · λ = λ+ log

[
g · p̃
p̃

]
and Frobenius action given by φ(λ) = pλ.

One can then define aGK- and Frobenius-equivariant logarithm map log : (C[)× →
Bst sending p̃ 7→ λ.

12. Semistable representations, adic spaces

12.1. Properties of Bst and semistable represntations. Next, we embedBst⊗K0

K in BdR. The power series for log[p̃] does not converge in BdR. However, the power
series for log([p̃]/p) does converge. For any x ∈ K, the map Bst ⊗K0 K → BdR

that extends the usual map Bcris ⊗K0
K → BdR and sends λ → log([p̃]/p) + x is
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GK-equivariant. We (somewhat arbitrarily) choose x = 0. (See [FO, Lem. 6.12] for
a proof that this map is injective.)

The different embeddings of Bst⊗K0K into BdR are related by an action of K on
Bst ⊗K0

K. Under this action, x ∈ K sends λ 7→ λ+ x. We define the monodromy
operator N : Bst → Bst to be the unit tangent vector of this group action, i.e N
is the derivation that annihilates Bcris and sends λ 7→ 1. The operator N satisfies
Nφ = pφN .

One reason for studying Bst is the following theorem.

Theorem 12.1.1. Any de Rham representation V of GK is potentially semistable,
i.e. there exists a finite extension L of GK so that dimL0

(V ⊗Qp
Bst)

GL = dimQp
V .

Here L0 = (Bst)
GL = W (`)[1/p], where ` is the residue field of L.

Definition 12.1.2. A (φ,N)-module over K0 is an isocrystal D over K0 equipped
with at K0-linear endomorphism N : D → D satisfying Nφ = pφN .

A filtered (φ,N)-module over K is a pair consisting of a (φ,N)-module D over
K0 and a filtration on D ⊗K0

K.

Definition 12.1.3. Let V be a Qp-representation of GK . Then Dst(V ) is the
filtered (φ,N)-module with underlying (φ,N)-module (V ⊗Qp

Bst)
GK , with the

filtration inherited from DdR(V ).

Remark 12.1.4. Different embeddings Bst⊗K0K ↪→ BdR induce different filtrations
on Bst ⊗K0

K, but these are all related by the action of the additive group K on
Bst⊗K0

K. Since Dst(V ) is a finite-dimensional K0-vector space and φ is injective,
the identity Nφ = pφN implies that the action of N on Dst(V ) must be nilpotent.
Then we can recover the action of K on Dst(V ) ⊗K0 K by exponentiating N . So
any two choices of embedding Bst ⊗K0 K ↪→ BdR yield naturally isomorphic Dst

functors.

Definition 12.1.5. A Qp-representation V of GK is semistable if dimK0
(V ⊗Qp

Bst)
GK = dimQp V .

Definition 12.1.6. A filtered (φ,N)-module D is admissible if for each subobject
D′ ⊆ D, PH(D′) lies below PN (D′), and the rightmost vertices of PH(D) and
PN (D) coincide.

Theorem 12.1.7. A filtered (φ,N)-module D is admissible if and only if it is
isomorphic to Dst(V ) for some semistable representation V of GK .

Example 12.1.8. Choose q ∈ K with |q| < 1. One can take the quotient Gm/qZ in
the category of rigid analytic spaces, and the result is an elliptic curve E. Then
the Tate module T (E) is isomorphic to the p-adic completion of the subgroup
of (C[)× generated by ε and q̃ = (q, q1/p, . . . ). Then T (E) is isomorphic as a
GK-representation to the Zp-submodule of Bst generated by log ε and log q̃. In
particular, Dst(H

1
ét(EK ,Qp)) ∼= HomGK

(T (E), Bst) is two-dimensional, generated
by log and N ◦ log. Hence H1

ét(EK ,Qp) is semistable.
Note that the (φ,N)-module structure of Dst(H

1
ét(EK ,Qp)) does not depend on

q, but the filtration does depend on q.

12.2. Adic spaces. In the remaining part of the course, we will do some geometry.
We are intersted in the following spaces:

• Rigid analytic spaces, which are a p-adic analogue of complex manifolds.
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• Very large covers of rigid analytic spaces, especially perfectoid spaces.
• The Fargues–Fontaine curve, which parameterizes untilts of a perfectoid

field K of characteristic p.

These all fit into the framework of adic spaces, which we will define next.

Definition 12.2.1. A Huber ring is a topological ring A such that there exists an
open subring A0 ⊂ A and a finitely generated ideal I ⊂ A0 so that A0 has the
I-adic topology (powers of I form a basis of neighborhoods of the identity).

We say that A0 is a ring of definition of A and I is an ideal of definition of A0.

Example 12.2.2. The following topological rings are Huber rings.

• Any ring with the discrete topology (A0 = any subring, I = 0).
• Zp, (A0 = Zp, I = (p))
• Qp, (A0 = Zp, I = (p))
• Qp 〈T 〉, the ring of analytic functions converging on the closed unit disc

(A0 = Zp 〈T 〉, I = (p))
• W (OK[) for a perfectoid field K (A = W (OK[), I = (p, [π]) where π ∈ OK[

satisfies 0 < |π| < 1)

Definition 12.2.3. Let A be a ring. A valuation on A is a map | · | : A→ Γ∪ {0},
where Γ is a totally ordered abelian group (written multiplicatively), satisfying the
following properties:

(1) |xy| = |x||y| for all x, y ∈ A
(2) |x+ y| ≤ max(|x|, |y|) for all x, y ∈ A
(3) |0| = 0, |1| = 1

If A is a topological ring, then we say that a valuation is continuous if for all γ ∈ Γ,
{a ∈ A : |a| < γ} is open.

We say that two valuations | · | and | · |′ are equivalent if |a| ≤ |b| ⇐⇒ |a|′ ≤ |b|′
for all a, b ∈ A.

Definition 12.2.4. Let A be a topological ring. Define Cont(A) to be the set of
equivalence classes of continuous valuations of A.

Give Cont(A) the topology with a sub-basis of open sets consisting of sets the
form

{x||f(x)| ≤ |g(x)| 6= 0} .
for f, g ∈ A. Here |f(x)|, |g(x)| denote the valuations of f and g under a represen-
tative of the equivalence class x.

Definition 12.2.5. Let A be a topological ring. A subset S of A is bounded if
for all open neighborhoods U of 0, there is an open neighborhood V of 0 such that
V S ⊂ U .

Definition 12.2.6. Let A be a Huber ring. An element f ∈ A is power-bounded if
{fn|n ∈ N} is bounded.

We will write A◦ for the subring of power-bounded elements of A.

Definition 12.2.7. Let A be a Huber ring. A subring A+ ⊂ A◦ is a ring of integral
elements if it is open and integrally closed in A.

A Huber pair is a pair (A,A+), where A is a Huber ring, and A+ ⊂ A is a ring
of integral elements.

For a Huber pair (A,A+), define Spa(A,A+) ⊂ Cont(A) to be the subspace
consisting of those valuations x for which |f(x)| ≤ 1 for all f ∈ A+.
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13. Adic spaces, Fargues–Fontaine curve

13.1. Adic spaces.

Definition 13.1.1. A rational subset of Spa(A,A+) is a subset defined by in-
equalities |a1|, |a2|, . . . , |an| ≤ |a0| 6= 0, where a0, a1, . . . , an ∈ A generate an open
ideal.

Lemma 13.1.2. Rational subsets form a basis for the topology of Spa(A,A+).

Proposition 13.1.3. Let X = Spa(A,A+), and let U be a rational subset of X.
There exists a complete Huber pair (B,B+) over (A,A+) such that Spa(B,B+)→
Spa(A,A+) factors through U , and is universal for such maps. Moreover, the map
Spa(B,B+)→ U is a homeomorphism.

Definition 13.1.4. For any Huber pair (A,A+), we define a presheaf of topological
rings OX on X = Spa(A,A+) as follows. If U is rational, we define OX(U) to be
the ring B of Proposition 13.1.3. For general U , we define

OX(U) = lim←−
W⊂U rational

OX(W ) .

We define O+
X(U) similarly.

This presheaf OX is not a sheaf in general. But in all examples that we will
consider in this course, OX will be a sheaf. If OX is a sheaf, then O+

X is also a
sheaf.

Lemma 13.1.5. The completion (A,A+) → (Â, Â+) induces a canonical isomor-

phism Spa(Â, Â+)→ Spa(A,A+).

Let X = Spa(A,A+). Then OX(X) ∼= Â, O+
X(X) ∼= Â+.

Definition 13.1.6. A v-ringed space is a triple (X,OX , (| · (x)|)x∈X) where X is
a topological space, OX is a sheaf of topological rings on X, and for each x ∈ X,
| · (x)| is an equivalence class of continuous valuations on OX(x). A morphism of
v-ringed spaces is a a morphism of ringed spaces, such that the maps on sections
are continuous, and valuations are preserved.

Definition 13.1.7. An affinoid adic space is a v-ringed space that is isomorphic to
some Spa(A,A+). (In particular, we require that the structure presheaf is a sheaf.)

An adic space is a v-ringed space that has an open covering by affinoid adic
spaces.

13.2. Rigid analytic spaces. Let K be a nonarchimedan field. The closed unit
disc over K is defined to be the adic space D := Spa(K 〈T 〉 ,OK 〈T 〉), where

K 〈T 〉 =

{ ∞∑
n=0

anT
n

∣∣∣∣∣an ∈ K, lim
n→∞

an = 0

}
and OK 〈T 〉 = K 〈T 〉◦ is the subring consisting of those series with all an ∈ OK .

Let C = K̂. For any z ∈ OC , f 7→ |f(z)| determines a point of D (and two
elements that are related by the Galois action determine the same point). These
are not the only points of D. For example, there is the Gauss point η corresponding
to the norm ∑

anT
n 7→ sup

n
|an| = sup

z∈OC

∣∣∣∣∣∑
n

anz
n

∣∣∣∣∣ .
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More generally, for any closed disc D′ ⊆ D(C), f 7→ supz∈D′ |f(z)| also determines
a point of D. The underlying topological space of D is a sort of infinite tree. In
partcular, it is connected, unlike OC .

Example 13.2.1. Let C = K̂ for some p-adic field K. The points on the closed unit
disc over C can be classified into five types:

(1) For any α ∈ OC , f 7→ |f(α)|.
(2) The supremum norm on a disc with radius in |C×|.
(3) The supremum norm on a disc with radius not in |C×|.
(4) The limit of supremum norms on a decreasing sequence of discs with empty

intersection (“dead ends”).
(5) Tangent directions to type 2 points: for α ∈ OC , r ∈ |C×| with r ≤ 1:∑

an(T − α)n 7→ max
n
|an|rnγn

where γ is either infinitesimally larger or smaller than 1.

All points except type 2 points are closed. The closure of a type 2 point consists
of type 5 points, and looks like P1

Fp
(or A1

Fp
for the Gauss point).

Definition 13.2.2. A topological K-algebra is topologically of finite type if it is of
the form K 〈T1, . . . , Tn〉 /I for some n and some ideal I ⊂ K 〈T1, . . . , Tn〉.

Definition 13.2.3. Let K be a nonarchimedean field. A rigid analytic space over
K is an adic space X over (K,K◦) such that X has a covering by open sets of the
form Spa(A,A◦), where A is topologically of finite type over K.
Proposition 13.2.4. Let K be a nonarchimedean field. There is a faithful functor
(·)ad from the category of varieties over K to the category of rigid analytic spaces
over (K,K◦).
Example 13.2.5.

(1) (P1
k)ad is formed by gluing two closed discs along an annulus.

(2) (A1
k)ad is an increasing union of closed discs.

13.3. The Fargues–Fontaine curve.

Definition 13.3.1. Let K be a perfectoid field of characteristic p.

Y[0,∞] := Spa(W (OK),W (OK)) \ {|p| = |π| = 0}
Y(0,∞) := Y[0,∞]\{|p[π]| = 0}
X := Y(0,∞)/φ

Z .

Here π is any element of OK satisfying 0 < |π|K < 1. We call X the adic Fargues-
Fontaine curve for K.

More generally, for an interval I ⊂ R≥0∪{∞}, we define YI to be the the (open)
subspace of Y satisfying | log[π]|/| log p| ∈ I.

Remark 13.3.2. The group φZ acts properly discontinuously on Y(0,∞), so there are
no issues with taking the quotient.

Remark 13.3.3. One can also consider an equal-characteristic Fargues–Fontaine
curve, in which W (OK) is replaced with OK JT K.

Example 13.3.4. Let K] be an untilt of K. Then there is a point xK] corresponding

to the valuation z 7→ |Θ(z)|. In the case K] = C, K = C[, we have ÔX ,xC
∼= B+

dR.
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Example 13.3.5. Let K = C[, and let π = p̃, so that Y[1,∞] ⊂ Y[0,∞] is open

subspace defined by the inequality |[p̃]| ≤ |p| 6= 0. Then OY[0,∞]
(Y[1,∞]) ∼= B+

max.

14. Fargues–Fontaine curve continued

14.1. Vector bundles on the Fargues–Fontaine curve. Define a functor E
from the category of isocrystals over W (K)[1/p] to the category of vector bundles
on X as follows. Given an isocrystal D over W (K)[1/p], D ⊗W (K)[1/p] OY(0,∞)

is
a φ-equivariant vector bundle on Y(0,∞). This bundle descends to a vector bundle
E(D) on X.
Theorem 14.1.1.

(1) E is faithful (but not full).
(2) If K is algebraically closed, then E induces a bijection between isomorphism

classes of isocrystals over W (K)[1/p] and vector bundles on X ; hence there
is a Dieudonné–Manin decomposition for vector bundles on X .

We will write O(−s/r) for E(Dr,s).
Note the resemblance to the classification of vector bundles on P1.

Theorem 14.1.2 (Grothendieck). Let k be an algebraically closed field. Every
vector bundle on P1

k is a direct sum of line bundles of the form O(n) for some
n ∈ Z.
Proposition 14.1.3.

• H0(X ,O(0)) ∼= Qp
• H0(X ,O(λ)) = 0 if λ < 0.
• H0(X ,O(λ)) is an infinite-dimensional Qp-vector space if λ > 0.
• H1(X ,O(λ)) = 0 if λ ≥ 0.
• H1(X ,O(λ)) is an infinite-dimensional Qp-vector space if λ < 0.
• Hi(X ,O(λ)) = 0 for i > 1.

Remark 14.1.4. These cohomology groups are examples of Banach–Colmez spaces.
Roughly, for any untilt K], these are extenions or quotients of K]-vector spaces by
Qp-vector spaces. For example, assuming Qcyc

p ⊆ K], there are exact sequences

0→ Qp(1)→ H0(X ,O(1))→ K] → 0

0→ H1(X ,O)→ K](−1)→ Qp(−1)→ 0

The exact sequences depend on the choice of untilt: different untilts give different
choices of one-dimensional Qp-vector subspaces of H0(X ,O(1)).

Corollary 14.1.5. Assume K is algebraically closed, and let G be a closed subgroup
of AutK. Then there is an equivalence of categories between Qp-representations of
G and G-equivariant vector bundles on X that are trivial as vector bundles.

Now let K be a p-adic field, and let C = K̂. As mentioned in Example 13.3.4,
there is a point xC on XC[ corresponding to z 7→ |Θ(z)|.

Definition 14.1.6. A modification of vector bundles on X at xC is a meromorphic
map of vector bundles E 99K F that is an isomorphism away from xC .

Example 14.1.7. The power series for t = log[ε] converges on Y(0,∞). Then multi-
plication by t induces a modification of vector bundles O → O(1) on X.
Example 14.1.8.
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(1) Given a de Rham representation V of GK , we can define a GK-equivariant
modification of vector bundles on X at xC as follows. Let F := O ⊗Qp V .
To define a modification of vector bundles E 99K F at xC , we just need
to define a B+

dR-lattice inside V ⊗Qp
BdR. (The trivial modification would

correspond to V ⊗Qp
B+

dR.) We choose the lattice DdR(V )⊗K B+
dR.

(2) The representation V is potentially semistable, so we can find a finite Ga-
lois extension L/K so that the restriction of V to GL is semistable. Let
Dpst(V ) = (V ⊗Qp

Bst)
GL ; it is a filtered (φ,N)-module over L with an

action of Gal(L/K).
(3) Given a filtered (φ,N)-module D over L with an action of Gal(L/K),

we can define a modification of vector bundles as follows. Observe that
(D⊗L0 B

+
st)

N=0 is a finite free B+
cris-module with semilinar GK and Frobe-

nius actions. Since B+
cris ⊂ B+

max, this module determines a vector bun-
dle on Y[1,∞]. After pulling back along the Frobenius, we get a GK- and
Frobenius-equivariant vector bundle on Y(0,∞], which descends to a vector
bundle E on X . Specifying a modification E → F is equivalent to specifying
a B+

dR lattice inside D⊗L0BdR. We choose the one induced by the filtration
on D ⊗L0

L.

Theorem 14.1.9. Let V be a de Rham representation of GK . Then the mod-
ifications of vector bundles associated with V under Example 14.1.8(1) and with
Dpst(V ) under Example 14.1.8(3) are naturally isomorphic.

In the situation of Example 14.1.8(3), the slopes of E are minus the slopes of D.
The bundle F is pure of slope zero if and only if D is admissible.

15. More on the Fargues–Fontaine curve, prismatic cohomology

15.1. Schematic Fargues–Fontaine curve.

Definition 15.1.1. Let K be a perfectoid field. The schematic Fargues-Fontaine
curve is defined by

X = Proj

∞⊕
n=0

H0(X ,OX (n))

Proposition 15.1.2.

(1) X is a Noetherian scheme of Krull dimension one.
(2) Let x ∈ X, and let kx be its residue field. Then kx is perfectoid and k[x is

a finite extension of K. (In particular, X is not locally of finite type over
Qp).

(3) If K is algebraically closed, then the closed points of X are in bijection with
isomorphism classes of untilts of K modulo Frobenius.

(4) X is complete in the sense that for any rational function f on X,
∑
x∈X(deg x)(ordx f) =

0. Here ordx f is the valuation of f in the DVR OX,x and deg x = [kx : K].
(5) There is an equivalence of categories between vector bundles on X and vec-

tor bundles on X .

15.2. Analogy with complex Hodge theory. When thinking about the Fargues–
Fontaine curve, it can sometimes be helpful to think about its archimedean ana-
logue, the twistor line.

Let P̃1
R := ProjR[X,Y, Z]/(X2 +Y 2 +Z2). It is the unique (up to isomorphism)

genus zero curve over R with no real points. We can also think of it as the quotient
of P1

C by the antiholomorphic map z 7→ z̄−1.
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Choose an arbitrary point ∞ ∈ P̃1
R. For example, we can take ∞ to be the point

X = 0. The group PGO3 acts on P̃1
R, and the stabilizer of ∞ is PGO2. The group

PGO2 has two connected components. The identity component is PSO2. We can
identify PGO2(C) with the Weil group of R and PSO2(C) with the Weil group of
C.

Proposition 15.2.1. The category of PSO2-equivariant semistable vector bundles
on P̃1

R is equivalent to the category of pure R-Hodge structures.

15.3. Diamonds and the Fargues–Fontaine curve.

Definition 15.3.1. Let X be an adic space. A point x ∈ X is analytic if the kernel
of the valuation | · |x is not open. We say that X is analytic if every point of X is
analytic.

Example 15.3.2. Spa(Zp,Zp) consists of two points. The generic point, correspond-
ing to the p-adic valuation, is analytic. The closed point, corresponding to the
discrete norm on Fp, is not analytic. Spa(Qp,Zp) contains just the generic point,
so it is analytic.

The closed disc Spa(Qp 〈T 〉 ,Zp 〈T 〉) is analytic. More generally, rigid analytic
spaces are analytic.

Let K be a perfectoid field of characteristic p. Spa(W (OK),W (OK)) is not
analytic, but Y[0,∞] is analytic.

Definition 15.3.3. A Tate ring is a Huber ring containing a topologically nilpotent
unit.

Proposition 15.3.4. An adic space is analytic if and only if it can be covered by
affinoids of the form Spa(A,A+) with A Tate.

Definition 15.3.5. A Huber ring is uniform if A◦ is bounded (equivalently, A◦ is
a ring of definition).

Definition 15.3.6. A complete Tate Zp-algebra A is perfectoid if it is uniform,
there exists a topologically nilpotent unit π ∈ A× so that πp | p in A◦, and the
Frobenius map A◦/π → A◦/πp is an isomorphism.

Definition 15.3.7. A perfectoid space is an adic space that can be covered by
affinoids of the form Spa(A,A+) with A perfectoid.

As with perfectoid fields, one can define the tilt of a perfectoid space.

Definition 15.3.8. Let Perf denote the category of characteristic p perfectoid
spaces. Let X be an adic space over Spa(Zp,Zp). Define X♦ to be the functor
Perf → Set sending Y ∈ Perf to the set of pairs consisting of an untilt Y ] of Y and
a map Y ] → X.

For a Huber pair (A,A+), we will write Spd(A,A+) for Spa(A,A+)♦.

Remark 15.3.9. If X is analytic, then the functor X♦ is a “diamond”. In particular,
it is a sheaf on certain sites, including the “pro-étale site” and the “v-site”.
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Proposition 15.3.10.

Spd(W (OK),W (OK)) ∼= Spd(OK ,OK)× Spd(Zp,Zp)

Y♦
(0,∞]

∼= Spd(OK ,OK)× Spd(Qp,Zp)

Y♦
[0,∞)

∼= Spd(K,OK)× Spd(Zp,Zp)

Y♦
(0,∞)

∼= Spd(K,OK)× Spd(Qp,Zp)

In particular, there is a projection Y♦
(0,∞) → Spd(K,OK), even though there is

no map Y(0,∞) → Spa(K,OK).

Question 15.3.11. Let Z be a rigid analytic space over a nonarchimedean field K.

Let C = K̂. For any nonnegative integer i, the GK-representation Hi
ét(XC ,Qp)

determines a φ-equivariant modification of vector bundles E 99K F on YC[,(0,∞).
Can this modification be described as some sort of derived pushforward along the
map

(ZC)♦ × Spd(Qp,Zp)→ Spd(C,OC)× Spd(Qp,Zp) ?

We will not answer this exact question, but we will see in the next section that
the answer to a very similar question is “yes”.

15.4. Prismatic cohomology. We will give an overview of prismatic cohomology.
Let C be a complete algebraically closed extension of Qp, and let OC be its ring of
integers. Let X be a smooth formal scheme over OC . We have seen that the p-adic
étale cohomology and de Rham cohomology of the generic fiber and the crystalline
cohomology of the special fiber are all closely related. There is cohomology theory
called prismatic cohomology that specializes to all three of these. It has coefficients
in Ainf .

I will define prisms later in the lecture, but for now, let me just say that a prism
consists of pair (A, I), where A is a ring with additional structure and I ⊂ A is
an ideal satisfying certain properties. The example that you should keep in mind
for now is A = W (OK[), I = ker Θ. The additional structure includes a Frobenius
map φA on A.

For any perfect field k, A = W (k), I = (p) is also an example of a prism.
Both of these examples are “perfect” and “bounded”.
Given a bounded prism (A, I) and a smooth formal scheme X over A/I, one

can define the prismatic site ((X/A)�,O�). One can then define the prismatic
cohomology

RΓ�(X/A) := RΓ((X/A)�,O�) .

It is an object in the derived category of A-modules, and it is equipped with a
φA-linear map φ.
Theorem 15.4.1.

(1) (Crystalline comparison) If I = (p), then there is a canonical φ-equivariant
isomorphism

RΓcris(X/A) ∼= φ∗ARΓ�(X/A) .

(2) (de Rham comparison) There is a canonical isomorphism

RΓdR(X/(A/I)) ∼= RΓ�(X/A)⊗̂LA,φA
A/I .
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(3) (Étale comparison) Assume A is perfect. Let Xη be the generic fiber of X.
For any n ≥ 0, there is a canonical isomorphism

RΓét(Xη,Z/pnZ) ∼=
(
RΓ�(X/A)/pn[1/I]

)φ=1
.

(4) (Base change) Let (A, I) → (B, J) be a map of bounded prisms, and let
Y = X ×Spf(A/I) Spf(B, J). Then there is a canonical isomorphism

RΓ�(X/A)⊗̂LAB ∼= RΓ�(Y/B) .

Remark 15.4.2. In particular, (4) can be applied with A = W (OK[), I = ker Θ,
B = W (k), I = (p), where k is the residue field of K. Combined with (1), we
obtain a comparison of the prismatic cohomology of X and with the crystalline
cohomology of its special fiber.

16. Prismatic cohomology: examples and definition

16.1. Examples.

Example 16.1.1. Let K be a perfectoid field. Let k be the residue field of K.
Suppose A = W (OK[), I = ker Θ, X = Spf(A/I) = Spf(OK). Then RΓ�(X/A) is
just A in degree 0.

If Qcyc
p ⊆ K, define

A{1} := φ−1
A (µ)A .

where µ = [ε] − 1. (To make this construction functorial, we should with Zp(−1),
but for simplicity, we will ignore this issue.) We will compare the crystalline, étale,
and de Rham specializations of A and A{1}. We may as well take the Frobenus
twist now; we have φ∗AA

∼= A, φ∗AA{1} ∼= µA.
The crystalline specialization of A is W (k) with the usual Frobenius action. The

crysatlline specialization of A{1} is a free W (k)-module of rank 1 generated by µ.

The Frobenius sends µ 7→ pµ since the image of φ(µ)/µ = [ε]p−1
[ε]−1 = 1+[ε]+· · ·+[ε]p−1

in W (k) is p.
The étale specialization of A is(

A⊗AW (K[)/pn
)φ=1 ∼= W (Fp)/pn ∼= Z/pnZ .

Since ε−1 6= 0, µ is a unit in W (K[), we again get Z/pnZ for the étale specialization.
The de Rham specialization in each case is a free OC-module of rank 1 We

recover the Hodge filtration as follows. We have

A⊗A BdR
∼= A{1} ⊗A BdR

∼= Zp ⊗Zp
BdR

where Zp is the inverse limit of the étale specializations. We take the usual filtration
on Zp ⊗Zp

BdR and pull it back to A ⊗A B+
dR and A{1} ⊗A B+

dR. We see that

A⊗A B+
dR = Fil0 and A{1} ⊗A B+

dR = µB+
dR = Fil1.

16.2. Consequences.

Theorem 16.2.1. Let C be an algebraically closed nonarchimedean field of mixed
characteristic, and let k be its residue field. Let X be a proper smooth formal scheme
over OC . Then

dimkH
i
dR(Xk) ≥ dimFp

Hi
ét(XC ,Fp) .
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Proof. We have

RΓét(XC ,Fp) ∼=
(
RΓ�(X/Ainf)⊗LAinf

C[
)φ=1

Since C[ is separably closed, every étale φ-module over C[ is trivial. So

RΓét(XC ,Fp)⊗LFp
C[ ∼= RΓ�(X/Ainf)⊗LAinf

C[ .

On the other hand,

RΓdR(Xk) ∼= RΓ�(X/Ainf)⊗LAinf
k .

The proof is then analogous the proof in algebraic topology that

dimFp
Hi(Y,Fp) ≥ dimQH

i(Y,Q)

for a real manifold Y . Here Fp and Q are replaced by k and C[, respectively. See
[BMS18, Thm. 14.5(ii)] for details. �

16.3. Definition of prisms. Let A be a ring. Let φ : A→ A be an endomorphism
of A lifting the Frobenius on A/pA. Then φ(x) = xp + pδ(x) for some function
δ : A→ A. An arbitrariy chosen δ will not necessarily give us an endomorphism of
A. If we impose the following constraints on δ, then we will get an endomorphism.

δ(0) = δ(1) = 0(16.3.1)

δ(x+ y) = δ(x) + δ(y)−
p−1∑
n=1

(p− 1)!

n!(p− n)!
xnyp−n(16.3.2)

δ(xy) = ypδ(x) + xpδ(y) + pδ(x)δ(y)(16.3.3)

Definition 16.3.4. A δ-ring is a pair (A, δ) where A is a commutative ring and
δ : A→ A is a map of sets satisfying equations (16.3.1–16.3.3).

Remark 16.3.5. If p is not a zero divisor in A, then δ-ring structures on A are in
bijection with lifts of Frobenius on A. On the other hand, the identity δ(pn) =
pn−1 − ppn−1 shows that if p is nilpotent in A (and A is not the zero ring), then A
has no δ-ring structures.

Definition 16.3.6. A prism is a pair (A, I) where A is a δ-ring and I is an ideal
of A such that A is derived (p, I)-complete, and p ∈ I + φ(I)A.

We will not attempt to define what it means for a ring to be derived (p, I)-
complete. However, “complete” implies “derived complete” and “derived complete
and separated” implies “complete”.

Definition 16.3.7. A prism is perfect if the Frobenius map φ : A → A is an
isomorphism.

A prism is bounded if it has bounded p∞-torsion, i.e. A[p∞] = A[pn] for some n.
Example 16.3.8.

(1) As mentioned before, for any perfectoid field K, (W (OK[), ker Θ) is a prism
with A/I ∼= OK , and for any perfect field k, (W (k), (p)) is a prism with
A/I ∼= k. These are perfect and bounded.

(2) Let A = Zp JT K with Frobenius T 7→ T p, and let I = (T − p). Then (A, I)
is a bounded prism with A/I ∼= Zp.

(3) Let A = Zp JT K with Frobenius T 7→ (1 + T )p− 1, and let I =
(

(1+T )p−1
T

)
.

Then (A, I) is a bounded prism with A/I ∼= Zp[ζp].
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16.4. The prismatic site.

Lemma 16.4.1. Let (A, I) be a prism, and let J ⊂ I be an ideal of A such that
(A, J) is a prism. Then J = I.

Corollary 16.4.2. If (A, I)→ (B, J) is a map of prisms, then J = IB.

Definition 16.4.3. Let (A, I) be a bounded prism. Let X be a smooth p-adic
formal scheme over A/I. Define (X/A)� to be the category of maps (A, I) →
(B, IB) of bounded prisms, together with a map Spf(B/IB)→ X over A/I.

A morphism in (X/A)� is a flat cover if the induced map of prisms (B, IB) →
(C, IC) is faithfully flat, i.e. C is (p, IB)-completely flat over B (C/(p, I)C is a flat
B/(p, I)B-module and TornB(C,B/(p, I)B) = 0 for n > 0).

The prismatic site of X/A is the category (X/A)� along with the topology

defined by flat covers. Define sheaves O�, O� on (X/A)� by

O�(Spf(B)←↩ Spf(B/IB)→ X) = B

O�(Spf(B)←↩ Spf(B/IB)→ X) = B/IB

16.5. Vector bundles on the Fargues–Fontaine curve and cohomology. It
would seem that a similar construction might be possible on the Fargues–Fontaine
curve. Let Y be a proper smooth rigid space over C. Then one could try construct-
ing a site where the objects are diagrams

Z ×X
C[
xC Z

Y XC[ .

I don’t know exactly what sort of morphisms and coverings should be allowed,
though.

Now I will mention a similar cohomology theory for quasicompact rigid spaces
over Spa(C,ØC). It takes values in vector bundles over the Fargues–Fontaine curve
XC[ .

Note that we do not require properness. The étale cohomology of non-proper
rigid spaces is generally huge. We saw in an earlier lecture that the closed unit disc
is not simply connected; in fact it has many Artin-Schreier Zp-covers. Taking the de
Rham cohomology of a non-proper rigid space is also tricky, as the antiderivative of
a power series converging on the unit disc does not necessarily converge on the unit
disc. To deal with this problem, one considers the overconvergent de Rham complex
Ω•,†. For example, a function on the closed unit disc is called overconvergent if it
converges on some larger disc. The antiderivative of an overconvergent function is
then overconvergent.

Theorem 16.5.1. There is a cohomology thery FF on the category of quasicom-
pact, separated, taut rigid spaces to Db(CohX

C[
) satisfying the following properties:

(1) Hi
FF (Z) = 0 for i < 0, i > 2 dimZ

(2) If Z is defined over a p-adic field K and is proper and smooth, then Hi
FF (ZC)

is the GK-equivariant vector bundle associated with the GK representation
Hi

ét(ZC ,Qp).
(3) If Z is defined over a p-adic field K, then the completion of the stalk of

Hi
FF (ZC) at xC is isomorphic to Hi

dR(Z/K)† ⊗K B+
dR.
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(4) If Z is a proper smooth formal scheme over OC with generic fiber Z and
special fiber Zs, then Hi

FF (ZC) is the vector bundle associated with the
isocrystal Hi

cris(Zs)⊗Zp
Qp.
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