
Algebraic de Rham cohomology

This is an old note on Algebraic de Rham cohomology written for a graduate student seminar in the Fall
of 2007 organized by Johan de Jong. It later became a chapter of the Stacks project. We strongly urge the
reader to read this online at

https://stacks.math.columbia.edu/tag/0FK4

instead of reading the old material below. In particular, we do not vouch for the correctness of what follows.

Setting. Let k be a field of characteristic 0. For any scheme X of finite type over k we have the algebraic
de Rham complex Ω∗X/k of X over k. This is a complex of abelian groups whose terms are coherent sheaves
on X. The algebraic de Rham cohomology of X is by definition the hyper cohomology of this complex:

H∗dR(X) := H∗(X,Ω∗X/k).

The hypercohomology of a bounded below complex of abelian sheaves is defined in the appendix.

Theorem. Assume k has characteristic 0. Algebraic de Rham cohomology is a Weil cohomology theory
with coefficients in K = k on smooth projective varieties over k.

We do not assume k algebraically closed since the most interesting case of this theorem is the case k = Q.
We will use the definition of Weil cohomology theories given in the note on Weil cohomology theories. Thus,
in order for this to make sense I have to give you more of the data.

(D1) The first (D1) we have given above, except that we did not explain how to define the cupproduct. The
cupproduct comes from wedge product on the de Rham complex:

Ω∗X/k ⊗Z Ω∗X/k −→ Ω∗X/k, s⊗ t 7→ s ∧ t.

The wedge product is graded commutative: if s is a local section of ΩaX/k and t is a local section of ΩbX/k,

then s ∧ t = (−1)abt ∧ s. Also, it is a derivation d(s ∧ t) = d(s) ∧ t + (−1)as ∧ d(t). It is these rules and
the cup product in cohomology that gives rise to a graded commutative algebra structure on H∗dR(X). See
appendix.

(D2) The pullback maps are defined by the functoriality of the de Rham complex: given a morphism
f : X → Y we obtain a map of complexes

f−1Ω∗Y −→ Ω∗X

which gives rise to a map f∗ : H∗dR(X) → H∗dR(Y ). This is a map of graded algebras because pulling back
forms is compatible with wedge products.

Before we continue, we need to point out some properties of algebraic de Rham cohomology. In other words,
we will first prove some of the axioms before introducing the trace map and cohomology classes. Note that
the axioms of a Weil cohomology theory do not provide for the existence of cohomology groups defined for
nonprojective varieties, but that we may use the fact that they are defined for de Rham cohomology in order
to prove the axioms.

Hodge to de Rham spectral sequence. For any finite type X over k there is a spectral sequence

Ep,q1 = Hq(X,ΩpX/k) => Hp+q
dR (X).

In particular, if X is affine then Hi
dR(X) = Hi(Γ(X,Ω∗X/k)). Going back to smooth projective X, the

existence of this spectral sequence implies axioms (W1) “finite dimensionality” and (W2) “vanishing”. Axiom
(W3) “functoriality” is obvious.

De Rham cohomology of projective space. For projective space Pn we have Hq(Pn,Ωp) = 0 if p 6= q
and 1-dimensional if 0 ≤ p = q ≤ n. (See Harthorne Chapter III, Exercise 7.3.) Hence, still in the case of
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Pn the spectral sequence degenerates and we conclude that Hodd
dR (Pn) = 0 and H2i

dR(Pn) is 1-dimensional
for 0 ≤ i ≤ n.

De Rham cohomology of affine space. Another example that can be computed by hand is the de Rham
cohomology of affine n-space An

k over k. Namely Hi
dR(An

k ) = k for i = 0 and zero else.

Mayer-Vietoris spectral sequence. Another spectral sequence arises when U = {Ui}i∈I is an open
covering of X. Namely, the Mayer-Vietoris spectral sequence

Ep,q1 = ⊕Hq
dR(Ui0...ip) => Hp+q

dR (X).

The construction of this spectral sequence is functorial in the following way. Suppose that f : Y → X is
a morphism of schemes of finite type over k. Set Vi = f−1(Ui), so V : Y =

⋃
Vi is a covering of Y . Then

f∗ : ⊕Hq
dR(Ui0...ip) → ⊕Hq

dR(Vi0...ip) extends to a morphism of spectral sequences. As an application, if U
is an affine open covering of X, and if X is separated of finite type over k, then we deduce that the (simple)
Cech complex sC∗(U ,Ω∗X/k) computes the algebraic de Rham cohomology of X over k (see the appendix for

the definition of this complex).

Künneth for affine varieties. Consider two projective nonsingular varieties X and Y over k. The product
X×Spec(k)Y is a smooth projective scheme over k. Its de Rham cohomology is the direct sum of the de Rham
cohomology of its irreducible components. Hence, in order to prove that we have a Künneth decomposition
we have to show that H∗dR(X × Y ) decomposes as the tensor product of H∗dR(X) and H∗dR(Y ). This will
take a bit of work. The first thing we use is that if A and B are finite type k-algebras, then

Ω1
A⊗kB

= Ω1
A/k ⊗k B ⊕A⊗k Ω1

B/k.

As a result we obtain a canonical identification of the de Rham complex of A ⊗k B over k as the complex
associated to the double complex Ω∗A/k ⊗ Ω∗B/k. Since there are no Tor groups to worry about as we’re
tensoring over a field, this proves the Künneth formula when X and Y are affine.

Cohomology of affine bundles. Next, suppose that n is an integer and f : Y → X is a morphism such
that for every point x ∈ X there exists a neighbourhood x ∈ U ⊂ X such that f−1(U) ∼= U × An as
schemes over U . We will call such a morphism an affine bundle of dimension n. Note that vector bundles
are affine bundles but in general an affine bundle need not have the structure of a vector bundle. In any
case, if f : Y → X is an affine bundle then f∗ : H∗dR(X)→ H∗dR(Y ) is an isomorphism. This can be seen by
choosing an affine open covering U = {Ui} such that f−1(Ui) ∼= Ui ×An and considering the morphism of
Mayer-Vietoris spectral sequences f∗ : ⊕Hq

dR(Ui0...ip)→ ⊕Hq
dR(Vi0...ip). By the above, we see that each map

Hq
dR(Ui0...ip)→ Hq

dR(Vi0...ip) is an isomorphism because of Künneth in the affine case and the computation
of H∗dR(An). We will use the result by Jouanolou that if X is quasi-projective, then there exists an integer
n and an affine bundle X ′ → X of dimension n such that X ′ is affine. See Proposition 1.1.3 in “Lectures
on Algebro-Geometric Chern-Weil and Cheeger-Chern-Simons Theory for Vector Bundles” by Bloch and
Esnault.

Künneth for quasi-projective schemes over k. We can now prove the Kn̈neth when X and Y are
quasi-projective as follows. Choose affine bundles X ′ → X and Y ′ → Y such that X ′ and Y ′ are affine.
Consider the commutative diagram

H∗dR(X)⊗H∗dR(Y ) −→ H∗dR(X × Y )
↓ ↓

H∗dR(X ′)⊗H∗dR(Y ′) −→ H∗dR(X ′ × Y ′)

Note that X ′×Y ′ → X ×Y is an affine bundle as well. Thus the Künneth decomposition for X ×Y follows
from the Künneth decomposition for the affine case. So finally (W4) follows.

Remark. Of course the above argument employs a trick. The Künneth decomposition holds in general.
One way to prove it is to use the functoriality of the Mayer-Vietoris spectral sequence with regards to the
projection maps X × Y → Y and an affine open covering of Y . In order to make this work I think you have
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to show the resulting Mayer-Vietoris spectral sequence for X × Y is a spectral sequence in the category of
H∗dR(X)-modules. This takes a bit more work...

Trace map for finite morphisms of smooth varieties. There is a nice construction of a trace map for
a finite morphism of smooth projective varieties f : X → Y of the same dimension. Namely, there is an
obvious map

ip : f∗OX ⊗ ΩpY/k → f∗Ω
p
X/k.

It turns out that there is a unique map

Θp : f∗Ω
p
X/k → ΩpY/k

such that Θp ◦ ip = Tr ⊗ id, where Tr indicates the trace map Tr : f∗OX → OY . You can either show that
Θp exists directly (by looking in codimension 1 on Y ) or you can look at the article “An extension of the
trace map” by Emmanuelle Garel, where it is defined in a more general setting. Note that some assumptions
on the singularities of X and Y is necessary. It turns out (and it is easy to show this in the case of smooth
X and Y ) that Θ∗ is a map of complexes

Θ∗ : f∗Ω
∗
X/k −→ Ω∗Y/k

and that the composition
Ω∗Y/k −→ f∗Ω

∗
X/k −→ Ω∗Y/k

is multiplication by the degree of the finite map. In particular this implies that if f : X → Y is a finite
morphism of smooth projective varieties of the same dimension then f∗ is injective.

Some properties of the trace map. Continuing with notation as above, note that the complexes f∗Ω
∗
X/k

and Ω∗X/k are sheaves differential graded commutative algebras. The map Ω∗Y/k → f∗Ω
∗
X/k is a map sheaves

of graded commutative differential algebras and it gives rise to the map f∗ on cohomology. Note that
Θ∗ is not a map of sheaves of graded commutative differential algebras. It is a map of graded modules
over Ω∗Y/k. Therefore, indicating Θ : H∗dR(X) → H∗dR(Y ) the induced map on cohomology we deduce that

Θ(α) ∪ β = Θ(α ∪ f∗β).

Ring structure on the de Rham cohomology of projective space. Using this we can compute
the ring structure on H∗dR(Pn). Pick any nonzero element h ∈ H2

dR(P1). By degree reasons we have
H∗dR(P1) = k[h]/(h2). By Künneth it follows that H∗dR((P1)n) = k[h1, . . . , hn]/(h2

i ). The symmetric group
Sn acts via permutation of the hi. (There are no sign issues since all classes are in even degrees.) Consider
the Sn-equivariant finite map (P1)n → Pn where Sn acts trivially on Pn, see Exercise 17 of the note on Weil
cohomology. Note that the compostionP1 → P1 × 0 × . . . × 0 → (P1)n → Pn is the standard embedding
P1 → Pn, x 7→ (x, 0, . . . , 0). The injectivity of H∗dR(Pn)→ H∗dR((P1)n), combined with the Sn-equivariance
implies that H∗dR(Pn) ∼= k[h]/(hn+1) with (symbolically) h = h1 + . . .+ hn.

A mildly generalized Poincaré duality. Let X be a projective d-dimensional Gorenstein variety. This
means the dualizing sheaf ω = ωX/k is an invertible OX -module, there is a trace map Hd(X,ω) → k, and

there is a perfect duality paring Hi(X,F)×Extd−iOX
(F , ω)→ Hd(X,ω)→ k for every coherent sheaf F . Let

F∗, G∗, and H∗ be complexes of sheaves of k-vector spaces on X and let

γ : Tot(F∗ ⊗k G∗) −→ H∗

be a map of comlexes of sheaves with the following properties:
(1) We have Hi = 0 for i > 0,
(2) H0 ∼= ω,
(3) the map ω[0]→ H∗ induces an isomorphism Hd(X,ω) = Hd(X,H∗),
(4) there exist a ≤ b such that F i is zero unless i ∈ [a, b] and Gj = 0 unless j ∈ [−b,−a],
(5) each of the sheaves F i and Gj can be given the structure of a locally freeOX -module (but the differentials

are not necessarily OX linear) such that for each i ∈ [a, b] the pairing γ induces a perfect OX -linear
pairing of OX -modules F i⊗G−i → ω. In other words, it induces an isomorphism F i ∼= HomOX

(G−i, ω).
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We claim this kind of structure gives rise to a perfect pairing

Hi(X,F∗)×Hd−i(X,G∗) −→ Hd(X,H∗) ∼= Hd(X,ω)→ k

To prove this, we may argue by induction on b − a. The case b − a = 0 holds by assumption that X be
Gorenstein. For the general case we consider the following exact sequences of complexes

0→ Fb[−b]→ F∗ → F≤b−1 → 0, and 0→ G≥−b+1 → G∗ → G−b[b]→ 0

which give exact sequences

Hi−1(X,F≤b−1)
α // Hi(X,Fb[−b])

β // Hi(X,F∗)
γ // Hi(X,F≤b−1)

δ // Hi+1(X,Fb[−b])

and

Hj+1(X,G≥−b+1) Hj(X,G−b[b])αt
oo Hj(X,G∗)

βt

oo Hj(X,G≥−b+1)
γt

oo Hj−1(X,G−b[b])δtoo

Of course, we are especially interested in the case j = d − i which is what assume now. Note that the
complexes F≤b−1, G≥−b+1, H∗ combined with the restriction of γ form another datum satisfying (1)–(5)
above. Hence by induction the pairing between H`(X,F≤b−1) and Hd−`(X,G≥−b+1) is perfect for any `. By
duality on X the γ-induced pairing between H`(X,Fb[−b]) and Hd−`(X,G−b[b]) is perfect for any ` as well.
Now it is fairly easy to see that with these pairings we have that 〈βx, y〉 = 〈x, βty〉 for all x ∈ Hi(X,Fb[−b])
and y ∈ Hj(X,G∗). Similarly for γ and γt. In order to conclude from this we really also need to show that
(α, αt) and (δ, δt) are adjoint pairs up to sign. This is shown in the appendix on the cup product, and hence
the claim follows.

Poincaré duality. Let X be a smooth projective variety over k of dimension d. We verify the hypotheses
(1)–(5) above for the triple

(Ω∗X/k,Ω
∗
X/k[d],Ω∗X/k[d],∧).

Property (1) is clear. Since X is smooth and projective we have ωX/k ∼= ΩdX/k, and X is Gorenstein. For

a proof of this fact see for example Hartshorne, Chapter III, Corollary 7.12. This proves (2). To prove (3)
we have to show that the natural map Hd(X,ωX/k) = Hd(X,ΩdX/k → H2d

dR(X,Ω∗X/k) is an isomoprhism.
Consider the Hodge to de Rham spectral sequence for X. The only differential in the Hodge to de Rham
spectral sequence that can affect H2d

dR(X) is dd,d−1
1 : Hd(X,Ωd−1

X/k) → Hd(X,ΩdX/k). By Serre duality,

Hd(X,ΩnX/k) is a free rank 1 H0(X,OX)-module. The image of dd,d−1
1 is a H0(X,OX)-submodule. Thus

it suffices to show that Hd
dR(X) is not zero. Choose a finite surjective morphism π : X → Pd. By the

trace map for π introduced above we conclude that H2d
dR(X) 6= 0 because it contains a copy of H2d

dR(Pd).
This proves (3). Statements (4) and (5) are obvious. In particular axiom (W5) for “untwisted” algebraic
de Rham cohomology follows for any choice of isomorphism ωX/k ∼= ΩnX/k, which induces a nonzero k-linear

map H2d
dR(X)→ k.

Remark. But in fact any nonzero k-linear map γ : H2d
dR(X) → k will give rise to a Poincaré duality for

H∗dR(X). This is so because H2d
dR(X) is a free rank 1 H0(X,OX)-module, and any two such linear maps γ

and γ′ differ by multiplication by a unit u in the field H0(X,OX). Hence the two pairings 〈, 〉 and 〈, 〉′ on
algebraic de Rham cohomology will be related by the formula 〈α, β〉′ = 〈α, uβ〉. Whence the result.

(D3) Tate twists. We set K(−1) = H2
dR(P1

k), and we deduce all K(n) from this by tensor constructions.

Normalization of the cohomology groups of all projective spaces. Pick (temporarily) a generator
h of the 1-dimensional vector space K(−1). We claim that for every n ≥ 1 there is a unique h ∈ H2

dR(Pn)
such that
(i) for every linear map Pn → Pm the class h pulls back to h, and
(ii) the Segre map Pn ×Pm −→ Pnm+n+m pulls h back to 1⊗ h+ h⊗ 1.
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To see this, because we have Künneth, it is enough to show that for any pair of linear maps a, b : P1 → Pn

the pullback maps a∗ and b∗ are the same. (Note: we have seen previsously that the pull back map for
the standard line in Pn is nonzero.) But any linear map is corresponds to a point in the smooth connected
variety parametrizing linear embeddings of P1 into Pn. The claim follows from the fact below.

Homotopy invariance. Suppose that X, T , Y are quasi-projective varieties over k and that f : X×T → Y
is a morphism of schemes over k. Suppose that T is smooth and connected. Then for any pair of k-points
a, b ∈ T (k) the induced maps X → X × a→ Y and X → X × b→ Y induce the same map on cohomology.
This follows immediately from Künneth for X × T and the fact that H0

dR(T ) = k under the assumptions
given (note that the existence of a ∈ T (k) implies that T is geometrically irreducible, and hence the only
“constant” global functions on T correspond to the elements of k).

The twisted cohomology of Pn. We collect the information obtained above as follows⊕n

i=0
H2i
dR(Pn)(i) = k[ξ]/(ξn+1)

where ξ ∈ H2
dR(Pn)(1) = Homk(H2

dR(P1), H2
dR(Pn)) is the inverse of the pullback map. In terms of our

choice of h upstairs this is the element h ⊗ h∗; use this to verify some of the claims below. By the above,
under the Segre map ξ maps to ξ ⊗ 1 + 1⊗ ξ.

Chern classes of invertible sheaves. We use the following method to define Chern classes of invertible
sheaves

cdR1 : Pic(X)→ H2(X)(1).

This will be a homomorphism of abelian groups functorial in X. First of all, we define

cdR1 (OPn(1)) = ξ.

For any quasi-projective X, any invertible sheaf L and any morphism f : X → Pn such that L ∼= f∗O(1) we
define cdR1 (L) = cdR1 (f∗O(1)) = f∗ξ. This is independent of the choice of f by the results on linear maps of
projective spaces above. In particular, this defines a chern class for any very ample invertible sheaf. Since
on a quasi-projective X every invertible sheaf can be written as the difference of ample invertible sheaf this
defines cdR1 in general. To see that cdR1 is well defined, we have to verify that cdR1 (L1⊗L2) = cdR1 (L1)+cdR1 (L2)
for semi-ample invertible sheaves Li. This follows from our results on the Segre maps. By construction, this
chern class is functorial with respect to pullbacks.

Cohomology of projective space bundles. Consider a quasi-projective variety X and a finite locally
free OX -module E . Our convention is that

P(E) = Proj(Sym∗(E))
π // X

over X with OP(E(1) normalized so that π∗(OP(E)(1)) = E . In particular there is a surjection π∗E →
OP(E)(1). Let c = cdR1 (OP(E(1)) ∈ H2

dR(P(E))(1). We claim that⊕r−1

i=0
H∗dR(X)(−i) −→ H∗dR(P(E)), (α0, . . . , αr−1) 7→ α0 + α1 ∪ c+ . . .+ αr−1 ∪ cr−1

is an isomorphism where r = rank(E). When X is affine and E is trivial this holds by Künneth. In general,
choose an affine open covering of X such that E is trivial on the members and use the functoriality of the
Mayer-Vietoris spectral sequence. (Actually, it is probably easier to use induction on the number of such
affine opens needed to cover X and to use the “usual” Mayer-Vietoris long exact sequence for a covering by
two opens.) Details left as an exercise.

Chern classes of vector bundles. Let X be a quasi-projective scheme over k. We define the de Rham
Chern classes of a finite locally free sheaf E of rank r as follows. They are the elements cdRi (E) ∈ H2i

dR(X)(i),
i = 0, . . . r such that cdR0 (E) = 1, and

−cr =
∑r

i=1
(−1)icdRi (E) ∪ cr−i.
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where c = cdR1 (O(1)P(E)). This makes sense by our computation of the cohomology of a projective space
bundle above. These chern classes are obviously compatible with pullbacks. Note that by our conventions,
the first chern class of an invertible sheaf is unchanged. The total chern class of E is the element

cdR(E) = cdR0 (E) + cdR1 (E) + . . .+ cdRr (E)

At this point there is one trivial remark we can make. Suppose that E ′ = E ⊗ L. In this case there is a
canonical morphsm

P(E)

π

!!D
DD

DD
DD

D
g // P(E ′)

π′||yy
yy
yy
yy

X

such that g∗OP(E′)(1) = OP(E) ⊗ π∗L. It follows easily from this that cdRi (E ⊗L) =
∑i
j=0 c

dR
j (E)∪ cdR1 (L)j .

The chern classes of the sum of invertible sheaves. Let X be a quasi-projective scheme and let Li,
i = 1, . . . , r be invertible OX -modules on X. Set cdR1 (Li) = xi. We claim that

cdR(L1 ⊕ . . .⊕ Lr) =
∏r

i=1
(1 + xi)

By the last property of the section definiting the chern classes we see that we may tensor all Li with some
hugely ample invertible OX -module. Hence we may assume that there are morphisms fi : X → Pni (with
ni >> 0) such that Li = f∗i (O(1). In other words, we have reduced our claim to the case that X =

∏r
i=1 Pni ,

and Li = pr∗iO(1). The projection E := L1 ⊕ . . .⊕ Lr → Li gives rise to a unique section

σi : X → P(E))

such that σ∗i (OP(E)(1) = Li. Thus the chern classes cj = cdRj (E) satisfy the relations

−xri =
∑r

j=1
(−1)jcjx

r−j
i

for all i = 1, . . . r. Note that this relation says that xi is a root of the polynomial T r−c1T r−1 + . . .+(−1)rcr.
Since the cohomology ring of X is basically just the polynomial ring k[x1, . . . , xr] (some relations occur but
they are sitting in high degrees), we obtain the desired result by some simple algebra.

Splitting princliple. For any finite locally free sheaf E on any quasi-projective scheme X over k there
exists a smooth quasi-projective morphism f : Y → X such that

f∗ : H∗dR(X)→ H∗dR(Y ) is injective, and
f∗E ∼= L1 ⊕ . . .⊕ Lr for some invertible OY -modules Li.

To prove this we first reduce to the case where E has a finite filtration F ∗ whose graded pieces are invertible
OX -modules. For example one pull back E the total flag bundle of E . This choice has the benefit that
we’ve already shown the induced map on de Rham cohomology H∗dR(X)→ H∗dR(Y ) is injective since it is a
repeated projective space bundle. After this, note that given a surjection of finite locally free OX -modules
E → F the space of sections is an affine bundle over X. Hence the result follows.

Additivity of chern classes. Suppose that E sits in an exact sequence

0→ E1 → E → E2 → 0

We claim that cdR(E) = cdR(E1) ∪ cdR(E2). The space of splittings of the exact sequence is an affine bundle
over X and hence we may assume that E = E1⊕E2. Next, by the splitting principle, we may assume that E1
and E2 are direct sums of invertible sheaves. In this case the result follows from our calculation of the chern
class of a direct sum of invertible sheaves.
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Splitting principle revisited. Using the above we formally write

cdR(E) =
∏

(1 + xi)

and we call xi the Chern roots of E . Of course it really doesn’t make sense in the cohomology of X, but it
does make sense in some other variety Y such that the cohomology of X injects into it. As is customary,
any symmetric polynomial in the xi then corresponds to a cohomology class on X because the chern classes
of E are up to sign the elementary symmetric functions in the xi.

Remark. It is especially nice to work in the cohomology of the Flag variety of E because
⊕
H2i(FlagE)(i) =(⊕

H2i
dR(X)(i)

)
[x1, . . . , xr]/I where I is smallest ideal such that the following equation holds true:

∏r
i=1(T−

xi) = T r − cdR1 (E)T r−1 + . . . + (−1)rcr(E). This can be proved by repeated application of the projective
space bundle formula. (And of course there is a corresponding statement for the odd cohomology.)

Chern classes and tensor product. We define the Chern character of a finite locally free sheaf of rank
r to be the expression

chdR(E) :=
∑r

i=1
exi

if the xi are the chern roots of E . By the above we have, in case of an exact sequence 0→ E1 → E → E2 → 0
that chdR(E) = chdR(E1) + chdR(E2). Using the Chern character we can express the compatibility of the
chern classes and tensor product as follows:

chdR(E1 ⊗OX
E2) = chdR(E1) ∪ chdR(E2)

The proof follows directly from the splitting principle.

Tiny bit of K-theory. Let X be a smooth quasi-projective variety over k. We will use the following facts:
(1) For any coherent OX -module F there exists a finite complex of finite locally free OX -modules F∗ and

a quasi-isomorphism F∗ → F [0]. We will call such a quasi-isomorphism F∗ → F [0] a resolution of F .
(2) For any short exact sequence 0 → F1 → F2 → F3 → 0 there exist resolutions F∗i → Fi[0] and a short

exact sequence 0 → F∗1 → F∗2 → F∗3 → 0 of complexes that recovers the short exact sequence upon
taking cohomology sheaves.

In these statements it is convenient to have complexes supported in degrees ≤ 0 but it is not necessary.
Basically, (1) and (2) follow from the following two statements: (a) for every coherent sheaf F on X there
exists a direct sum ⊕OX(−n) which surjects onto F , and (b) given an exact complex 0→ G → FN → . . .→
F0 → F → 0 with F coherent, and Fi finite locally free, and N ≥ dimX − 1 then G is locally free. The
first is standard, see Hartshorne, Chapter II, Corollary 5.18. The second is Serre’s pd + depth = dim, see
Matsumura, Commutative Algebra, page 113.

For any variety X we define two abelian groups K0(X) and K0(X). The group K0(X) is the free abelian
group generated by finite locally free OX -modules modulo the relation that [E2] = [E1] + [E3] whenever
0→ E1 → E2 → E3 → 0 is a short exact sequence of finite locally free OX -modules. The group K0(X) is the
free abelian group generated by coherent OX -modules modulo the relation that [F2] = [F1] + [F3] whenever
0 → F1 → F2 → F3 → 0 is a short exact sequence of coherent OX -modules. These relations signify that if
E∗ (resp. F∗) is a finite exact complex of finite locally free (resp. coherent) OX -modules then

∑
(−1)i[Ei] = 0

(resp.
∑

(−1)i[Fi] = 0) in K0(X) (resp. K0(X)). These groups satisfy the following functorialities
If f : X → Y is any morphism then there is a map f∗ : K0(Y )→ K0(X) defined by pullback.
If f : X → Y is a flat morphism of schemes of finite type over k there is a map f∗ : K0(Y ) → K0(X)
defined by pullback.
If f : X → Y is a proper morphism of finite type schemes over k there is a map f∗ : K0(X) → K0(Y )
defined by the rule f∗([F ]) =

∑
i(−1)i[Rif∗(F)].

Finally, there is an obvious homomorphism of abelian groups

K0(X) −→ K0(X).

Claim: If X is a smooth quasi-projective variety then this homomorphism is an isomorphism. As an inverse
we map the class [F ] in K0(X) to I(F) :=

∑
(−1)i[F i] in K0(X), if F∗ → F [0] is a resolution as above. The
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main problem is to show that this is well defined. Let us say that a coherent OX -module has property P
if this is the case. A finite locally free OX -module has property P as is clear from the definition of K0(X).
Furthermore, assertion (2) above says that if 0→ F1 → F2 → F3 → 0 is a short exact sequence of coherent
OX -modules having property P, then I(F2) = I(F1) + I(F3). We argue that every coherent OX -module
has property P by induction on the projective dimension of the sheaf F . Suppose that F∗1 → F [0] and
F∗2 → F [0] are two resolutions of a coherent OX -module F with F ji = 0 for j > 0. Consider the sheaf F12

fitting into the following exact diagram

0

��

0

��
K2

��

K2

��
0 // K1

// F12
//

��

F0
2

//

��

0

0 // K1
// F0

1
//

��

F

��

// 0

0 0

where Ki is the kernel of F0
i → F . Note that the projective dimensions of K1, K2, and F12 are less than

the projective dimension of F (unless F was locally free to begin with). Hence, our induction hypothesis
applies to these sheaves. In particular we see that I(K1) + I(F0

2 ) = I(K2) + I(F0
1 ). Since we may use the

complex F≤−1
i [1] as a resolution of Ki we have I(Ki) =

∑
(−1)j+1[F ji ]. The desired result

∑
i(−1)i[F i1] =∑

i(−1)i[F i2] follows.

The Chern character of a coherent sheaf. For any quasi-projective variety X over k we can extend the
Chern character to a homomorphism

chdR : K0(X) −→
⊕

H2i
dR(X)(i).

In the smooth case we use the isomorphism K0(X) → K0(X) to define the Chern character of a coherent
OX -module F . The recipe is that we choose a resolution F∗ → F as in (1) and we set

chdR(F) := chdR(F∗) :=
∑

i
(−1)chdR(F i).

This is well defined because of the isomorphism K0(X)→ K0(X) above. We have additivity for this chern
character. Namely, suppose that 0→ H → G → F → 0 is a short exact sequence of coherent sheaves on X.
Then chdR(G) = chdR(H) + chdR(F). In general we no longer have chdR(F ⊗OX

G) = chdR(F) ∪ chdR(G)
for a pair of coherent sheaves F , G on X. The correct statement is

chdR(F ⊗L
OX
G) =

∑dimX

i=0
(−1)ichdR(TorOX

i (F ,G)) = chdR(F) ∪ chdR(G).

The derived tensor product F ⊗L
OX
G can be computed by taking a resolution F∗ → F [0] and taking the

complex F∗ ⊗OX
G. A final obvious fact is that if f : X → Y is a flat morphism of smooth quasi-projective

varieties over k then f∗(chdR(F)) = chdR(f∗F) for any coherent OY -module F . In fact, it suffices that f is
flat at all points of f−1(Supp(F)). The reason is that in this case a resolution will pull back to a resolution.

Example. The cohomology class of a skyscraper sheaf on Pn. Let p ∈ Pn(k) be a rational point
and denote kp the skyscraper sheaf at the point p. There is a finite locally free resolution

0→ O(−n)→ O(−n+ 1)n → . . .→ O(−i)(
n
i) → . . .→ O(−1)n → O → kp → 0.
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By definition we get

chdR(kp) =
∑n

i=0
(−1)ichdR(O(−i)(

n
i)) =

∑n

i=0
(−1)i

(
n

i

)
e−iξ = (1− e−ξ)n = ξn

because ξn+1 = 0.

Chern character in flat families. Suppose that T is a smooth quasi-projective connected variety over
k. Let X be a smooth projective variety over k. Suppose F is a coherent OX×T -module which is flat
over T . Finally, let a, b ∈ T (k) be rational points and let Fa be the pullback of F via the morphism
X → X × a→ X × T , and similarly for Fb. We claim that

chdR(Fa) = chdR(Fb).

This would be completely clear if F were a locally free OX×T -module, by an argument similar to the one
proving “homotopy invariance”. In general, flatness of F over T implies that if F∗ → F [0] is a resolution
(as in (1) above) then F∗a → Fa is a resolution as well. Detail left to the reader.

The Chern character of a skyscraper sheaf. Suppose that x, x′ are closed points in the smooth quasi-
projective variety X over k. Set d = degk(x) and d′ = degk(x′). Denote κ(x), κ(x′) the skyscraper sheaves
(of residue fields). We claim that

d′ chdR(κ(x)) = d chdR(κ(x′)).

Of course this follows from the above because the family of all zero cycles of a given degree form an irreducible
family, and we have invariance of Chern character in flat families. The details are slightly harder than you
would think at first since we do not assume a variety is geometrically irreducible. Observe that the structure
morphism X → Spec(k) factors as

X −→ Spec(k′) −→ Spec(k)

where k′ is the algebraic closure of k in the function field k(X). Recall that k′ ⊃ k is a finite extension.
Set e = [k′ : k]. Since the characteristic of k is zero, since X is irreducible, and since X is smooth over k
we conclude that X is geometrically irrreducible over k′. Hence we can find a smooth curve C ⊂ X with
x, x′ ∈ C which is geometrically irreducible over k′ as well. (Using Bertini over k, see the excellent book
“Theoremes de Bertini et Applications” by Jouanolou.) In this case x and x′ give rise to effective Cartier
divisors (x′) and (x) on C of degree d/e, respectively d′/e over k′. Then d′(x) and d(x′) correspond to

k′-points a′, b′ of the smooth geometrically irreducible variety Sym
dd′/e
k′ (C) over k′. Consider the restriction

of scalars
T := Resk′/k

(
Sym

dd′/e
k′ (C)

)
.

A R-point t of T is by definition a R⊗ k′ point of Sym
dd′/e
k′ (C) for any k-algebra R. In particular there is a

canonical morphism T ×Spec(k) Spec(k
′) → Sym

dd′/e
k′ (C). From general properties of restrictions of scalars

we get that T is smooth and geometrically irreducible over k. Also, a′, b′ correspond to k-points a, b of T .

Let D′ ⊂ Sym
dd′/e
k′ (C) ×Spec(k′) C be the universal degree dd′/e divisor over k′. Let D ⊂ T ×Spec(k) C be

the divisor which is the inverse image of D′ under

T ×Spec(k) C = T ×Spec(k) Spec(k
′)×Spec(k′) C −→ Sym

dd′/e
k′ (C)×Spec(k′) C

Then D is a flat family of closed subschemes of C of length dd′ over k and Da = d′(x) and Db = d(x′) as
closed subschemes over k. Thus we conclude that chdR(Od′(x)) = chdR(Od(x′)) in the cohomology of X. We

leave it as an exercise to show that chdR(Od′(x)) = d′chdR(κ(x)) and similarly for the other side. (Hint: Use
additivity of the Chern character.)

The cohomology class of a point. The upshot is that the element

uX :=
1

degk(x)
chdR(κ(x))

9



for any closed point x ∈ X is a canonical element of H2 dimX(X)(dimX). If f : X → Y is a generically
finite morphism of smooth projective varieties of the same dimension then f∗uY = deg(f)uX . Namely we
can find a point y ∈ Y such that f−1(y) = {x1, . . . , xt} is finite and such that f is flat and unramified in all
points of f−1(y) (uses characteristic zero). Since in this case deg(f) degk(y) =

∑
degk(xi) we conclude.

Nonvanishing. Sofar we have not argued that uX is nonzero. The reason that it is nonvanishing is that it is
equal to ξn 6= 0 in the case of Pn, and by the fact that choosing a finite surjective morphism π : X → PdimX

gives an injection H∗dR(PdimX)→ H∗dR(X) (by the trace map for π, see above).

(D4) Trace map. Let X be a smooth projective variety over k. The trace map TrX : H2 dimX(X)(dimX)→
k is the unique map such that

TrX(cuX) = Tr(c)

where c ∈ H0(X,OX) = H0
dR(X) and Tr(c) is the trace for the separable field extension k ⊂ H0(X,OX).

Remarks. (i) By the remark following our discussion of Poincaré duality we have Poincaré duality with this
trace map.
(ii) As usual the structure of Poincaré duality on a contravariant cohomology theory allows us to define
pushforwards formally as the adjoint of pullback. More precisely, if f : X → Y is a morphism of smooth
projective varieties over k we define

f∗ : H∗dR(X) −→ H∗−2r
dR (Y )(−r)

where r = dimX − dimY by the rule TrY (f∗(α) ∪ β) = TrX(α ∪ f∗β) for all α ∈ Hi
dR(X) and β ∈

HdimX−i
dR (Y )(dimX).

Exercise. Show that if f : X → Y is a generically finite morphism of smooth projective varieties over k of
the same dimension then f∗ ◦ f∗ = deg(f)idH∗

dR
(Y ).

Exercise. Show that if f : X → Y is a finite morphism of smooth projective varieties over k of the same
dimension, then the map f∗ agrees with the map Θ induced by the trace map on de Rham complexes

Θ∗ : f∗Ω
∗
X/k −→ Ω∗Y/k.

Hint: Let α ∈ Hi
dR(X) and β ∈ H2d−i

dR (Y )(d) where d = dimX = dimY . We have Θ(α) ∪ β = Θ(α ∪ f∗β).
Hence it suffices to show that Θ(uX) = uY . Finish by using that Θ ◦ f∗ = deg(f) and f∗uY = deg(f)uX .

(W6). Suppose that X, Y are smooth quasi-projective varieties over k. Let x ∈ X and y ∈ Y be closed
points. Then x × y ⊂ X × Y is a finite disjoint union of closed points. Note that Ox×y = pr∗1(Ox) ⊗OX×Y

pr∗2(Oy). In fact this is an equality of derived tensor products, which can be seen by a local calculation.
Since the projection maps are flat we conclude that

uX×Y = pr∗1(uX) ∪ pr∗2(uY ).

From this axiom (W6) follows when X and Y are projective.

Logarithmic de Rham complex. Let X be a smooth projective variety over k, and let Y be a nonsingular
divisor on X. In this case the logarithmic de Rham complex Ω∗X/k(log(Y )) is defined and sits in a short
exact sequence of complexes

0→ Ω∗X/k → Ω∗X/k(log(Y ))→ i∗(Ω
∗
Y/k)[−1]→ 0.

Here i : Y → X is the inclusion morphism. Zariski locally on X the subscheme Y is cut out by a single
equation f . The complex Ω∗X/k(log(Y )) is generated by d log(f) = df/f over Ω∗X/k. The residue map to

i∗(ΩY/k)[1] is defined by the rule Res(d log(f) ∧ ω) = ω|Y . Let U = X \ Y and let j : U → X be the open
immersion. There are canonical maps

Ω∗X/k(log(Y )) −→ j∗(Ω
∗
U/k) −→ Rj∗(Ω

∗
U/k).
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The second arrow is a quasi-isomorphism because the morphism j is affine and hence Rj∗(Ω
p
U/k) = j∗(Ω

p
U/k).

The first arrow is a quasi-isomorphism also; this is shown by filtering j∗(Ω
∗
U/k) by pole order and a local

computation. See the following papers for this and much more:
A. Grothendieck, On the De Rham cohomology of algebraic varieties. Publications Mathématiques
IHES 29 (1966).
P. Deligne, Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Math. 163.
N. Katz, Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin.
Publ. Math. IHES 39 (1970).

The upshot is that there exists a long exact cohomology sequence Hi−1
dR (U) → Hi−2

dR (Y ) → Hi
dR(X) →

Hi
dR(U) whose formation is compatible with restriction to opens.

Lemma. Suppose that X is a smooth quasi-projective variety over k and suppose that Z ⊂ X is a closed
subset of codimension p with complement U = X \ Z. Then
(a) Hi

dR(X)→ Hi
dR(U) is injective for 0 ≤ i ≤ 2p− 1.

(b) if Z is geometrically irreducible over k then dimkKer(H
2p
dR(X)→ H2p

dR(U)) ≤ 1.

We prove this by induction on the dimension of X and then by descending induction on the codimension p.
Since the singular locus of Z has higher codimension in X, we may replace X by X \ Sing(Z) and assume
that Z is smooth over k. Next, we choose a general very ample divisor Y ⊂ X with Z ⊂ Y . A simple Bertini
type argument – using that Z is nonsingular – shows that the singular locus of Y has codimension > p in
X. Hence we may reduce to the case where we have Z ⊂ Y ⊂ X with Z and Y smooth closed subschemes
of X and Y of codimension 1. Now we use the following exact diagram

Hi−1
dR (U) // Hi−2

dR (Y ) //

��

Hi
dR(X) //

��

Hi
dR(U) // Hi+1

dR (Y )

��
Hi−1
dR (U) // Hi−2

dR (Y \ Z) // Hi
dR(X \ Z) // Hi

dR(U) // Hi+1
dR (Y \ Z)

The result (a) for Z ⊂ X follows from the result for Z ⊂ Y . The result (b) is reduced to the case where
Z ⊂ X is a divisor, and then follows from the fact that H0

dR(Z) = k in the geometrically irreducible case.

Chern character of the structure sheaf of a subvariety. Let X be a smooth quasi-projective variety
over k. Suppose that Z ⊂ X is a closed subvariety of codimension p. As usual we think of OZ as a coherent
sheaf on X. We claim that chdRi (OZ) = 0 for i = 0, . . . , p− 1. Namely, the open immersion j : X \ Z ↪→ X
is flat and hence j∗chdR(OZ) = chdR(j∗OZ) = chdR(0) = 0. Combined with the lemma above this gives the
claim.

More generally, let F be a coherent OX -module such that the codimension of the support of F is ≥ p. Then
chdRi (F) = 0 for i = 0, . . . , p− 1. This is shown in exactly the same way as above.

Definition (D5) We define the cohomology class of an irreducible subvariety Z ⊂ X of codimension p to
be the element

cldR(Z) := chp(OZ) ∈ H2p
dR(X)(p).

We extend this linearly to general cycles on X. Note that with this definition we have cldR(x) = degk(x)uX
for a closed point x of a projective X.

Exercise. Suppose that F is a coherent OX -module with dim(Supp(F)) ≤ d. Write d+ p = dimX. Recall
that we associated a d-cycle [F ]d to F . Show that cldR([F ]d) = chdRp (F).

Exercise. Show that the cohomology class of Pr ⊂ Pn is equal to ξn−r ∈ H2n−2r
dR (Pn)(n− r).

Exercise. Show that if Y ⊂ X is a codimension 1 subvariety of a smooth variety over k, then cldR(Y ) =
cdR1 (OX(Y )).

Compatibility of cupproduct and intersection product via cycle classes. Suppose that V , W are
closed subvarieties of the smooth quasi-projective variety X. Assume that V and W intersect properly.

11



Write V ·W =
∑
ni[Zi] as in the note on intersection theory. Then we claim that

cldR(V ) ∪ cldR(W ) =
∑
i

nicl
dR(Zi).

This follows from the exercise above, the Tor formula for the intersection product (see note on intersection
theory), and the multiplicativity of chdR under (derived) tensor products.

Exercise: Axiom (W7). Compatibility of cycle classes and exterior product. Suppose given smooth
quasi-projective varieties X, Y over k, and closed sub varieties V ⊂ X, W ⊂ Y Show that

OV×W = pr∗1(OV )⊗L
OX×Y

pr∗2(OV ).

and deduce that pr∗1cl
dR(V ) ∪ pr∗2cldR(W ) = cldR(V ×W ).

Rational equivalence and cycle classes. Let X be a smooth quasi-projective variety over k. Let
W ⊂ X × P1 be a closed subvariety of dimension d + 1 dominating P1. Let W0, and W∞ be the scheme
theoretic fibres of W → P1 over 0,∞ ∈ P1. Note that the skyscraper sheaves κ(0) and κ(∞) are coherent
sheaves on P1 which represent the same element in K0(P1). Hence, by flat pullback K0(P1)→ K0(X ×P1)
we observe that OX×0 and OX×∞ have the same class in K0(X ×P1). Hence we deduce that the structure
sheaves of the scheme theoretic intersections

OW∩X×0 = OW ⊗OX×P1 OX×0 = OW ⊗L
OX×P1

OX×0

and OW∩X×∞ have the same class in K0(X ×P1). Using the pushforward homomorphism prX,∗ : K0(X ×
P1)→ K0(X) we deduce that

OW0
= prX,∗(OW∩X×0) = RprX,∗(OW∩X×0)

and OW∞ have the same class in K0(X). We conclude that cldR(W0) = cldR(W∞) in the algebraic de Rham
cohomology of X. In other words, the cycle class map into algebraic de Rham cohomology factors through
rational equivalence.

Remark. At this point we basically have all the axioms of a Weil cohomology theory except for (W8), which
is the compatibility of cycle classes with pushforward. Namely, (W10) is obvious and (W9) will follow if
we can prove (W8) because pullback of cycles under a map f : X → Y of smooth projective varieties is
defined via the rule f∗α = prX,∗(Γf · pr∗Y α) and we already have compatibility of cycle classes with rational
equivalence, (proper) intersection products and flat pullback.

Lemma. Suppose that for every morphism of smooth projective varieties f : X → Y we have f∗(1) =
cldR(f∗[X]). Then cycle classes are compatible with pushforward, i.e., axiom (W8) holds.

Let f : X → Y be a morphism of smooth projective varieties over k. Let Z ⊂ X be a closed subvariety. Let
e be the degree of the map Z → f(Z). Consider a nonsingular projective alteration Z ′ → Z. Say the degree
of Z ′ → Z is d. Hence the degree of Z ′ → f(Z) is de. We get a commutative diagram

Z ′
g //

h

  A
AA

AA
AA

A X

f

��
Y

.

The assumption of the lemma says that g∗(1) = d cldR(Z) and h∗(1) = de cldR(f(Z)). Hence

f∗(cl
dR(Z)) = (1/d)f∗(g∗(1)) = (1/d)h∗(1) = (1/d)ed cldR(f(Z)) = e cldR(f(Z))

as desired.
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Lemma. Suppose that for every closed immersion of smooth projective varieties i : X → Y we have
i∗(1) = cldR(f∗[X]). Then cycle classes are compatible with pushforward, i.e., axiom (W8) holds.

Proof. Let f : X → Y be a morphism of smooth projective varieties over k. Choose a closed immersion
X → Pn with n >> 0. This gives a factorization X → Y × Pn → Y of the morphism f . Hence in
order to prove the lemma (by functoriality of pushforward) it suffices to prove that pushforward along
prY : Y ×Pn → Y commutes with cycle classes. For this we use the ring isomorphism

A∗(Y ×Pn) = A∗(Y )⊗Q A∗(Pn)

of Q-Chow rings modulo rational equivalence from intersection theory. (It is a very special case of the
projective space bundle formula.) Since both pushforward on cohomology and on cycles satisfies the projection
formula it suffices to check that prY,∗(cl

dR(Y ×Pr)) = 0 for 0 < r ≤ n and = 1 for r = 0. Left as an exercise.
EndProof.

Pushforward along an effective very ample divisor. Let Y ⊂ X be a smooth divisor on the smooth
projective variety X over k. Let i : Y → X denote the closed immersion. Assume that Y is a very ample
divisor. Then i∗(1) = cldR(Y ).

Because Y is very ample there exists a finite morphism f : X → Pn with n = dimX such that Y =
f−1(Pn−1) scheme theoretically. We get the following commutative diagram

Y
i //

f ′

��

X

f

��
Pn−1 i′ // Pn.

We claim that (f ′)∗ ◦ i∗ = (i′)∗ ◦ f∗ on algebraic de Rham cohomology. Perhaps the easiest way of seeing
this is to consider the trace maps on the de Rham complexes. These are the vertical maps in the following
diagram

f∗Ω
∗
X/k

//

Θ

��

(i′)∗(f
′)∗Ω

∗
Y/k

Θ

��
Ω∗Pn/k

// (i′)∗Ω∗Pn−1/k.

and the horizontal maps correspond to the pullback maps. Using that the maps induced by Θ are equal to
the pushforward on cohomology, the claim follows by verifying that the diagram of maps of complexes is
commutative. This (local) verification is left to the reader.

We deduce from (f ′)∗ ◦ i∗ = (i′)∗ ◦ f∗ formally that i∗(1) = f∗(i′)∗(1). Since also f∗cldR(Pn−1) = cldR(Y )
by flatness of f , we see that it suffices to prove (i′)∗(1) = cldR(Pn−1). This is clear from the computation of
cohomology of Pn above.

Pushforward along an effective divisor. Let Y ⊂ X be a smooth divisor on the smooth projective
variety X over k. Let i : Y → X denote the closed immersion. Then i∗(1) = cldR(Y ).

Choose a very ample divisor Y ′ ⊂ X such that Y ∪ Y ′ is very ample as well. We may choose Y ′ such that
Y ′ is smooth and Y ∩ Y ′ is smooth of codimension 2 in X. Now we argue as above using a finite morphism
f : X → Pn such that f−1(Pn−1) = Y ∪Y ′ scheme theoretically. We get the following commutative diagram

Y
∐
Y ′

i,i′ //

f ′

��

X

f

��
Pn−1 i′′ // Pn.
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We claim that (f ′)∗ ◦ (i∗ ⊕ (i′)∗) = (i′′)∗ ◦ f∗ on algebraic de Rham cohomology. Perhaps the easiest way
of seeing this is to consider the trace maps on the de Rham complexes. These are the vertical maps in the
following diagram

f∗Ω
∗
X/k

//

Θ

��

(i′′)∗(f
′)∗Ω

∗
Y/k ⊕ (i′′)∗(f

′)∗Ω
∗
Y ′/k

Θ

��
Θ

��
Ω∗Pn/k

// (i′′)∗Ω∗Pn−1/k.

and the horizontal maps correspond to the pullback maps. Using that the maps induced by Θ are equal to
the pushforward on cohomology, the claim follows by verifying that the diagram of maps of complexes is
commutative. This (local) verification is left to the reader.

Because (f ′)∗(1) = 1 ⊕ 1 we deduce from (f ′)∗ ◦ (i∗ ⊕ (i′)∗) = (i′′)∗ ◦ f∗ formally that i∗(1) + (i′)∗(1) =
f∗(i′′)∗(1). Since also f∗cldR(Pn−1) = cldR(Y ) + cldR(Y ′) by flatness of f , and since (i′)∗(1) = cldR(Pn−1)
we obtain i∗(1) + (i′)∗(1) = cldR(Y ) + cldR(Y ′). Now the result follows from the fact that we already proved
(i′)∗(1) = cldR(Y ′) above (because Y ′ is very ample).

Pushforward along a global complete intersection morphism. Suppose that X is a smooth projective
variety over k. Let H1, . . . ,Hc be effective divisors on X such that for every 1 ≤ i ≤ c the intersection
H1 ∩ . . . ∩Hi is a smooth variety. Set Y = H1 ∩ . . . ∩Hc, and denote i : Y → X the closed immersion. We
claim that i∗(1) = cldR(Y ) in H2c

dR(X)(c).

Proof. We do this by induction on c; the case c = 1 is done above. Assume c > 1. Set X ′ = H1

and denote i′ : Y → X ′ and i′′ : X ′ → X the closed immersions. Also denote H ′2, . . . ,H
′
c the intersections

X ′∩H2, . . . , X
′∩Hc. By induction on the codimension we have (i′)∗(1) = cldRX′ (Y ) in the de Rham cohomology

of X ′, and (i′′)∗(1) = cldRX (X ′) in the de Rham cohomology of X ′. Since we have see that taking cohomology
classes is compatible with intersection products we obtain that cldRX′ (Y ) = clX′(H

′
2) ∪ . . . ∪ clX′(H ′c). By an

exercise above we have clX′(H
′
i) = cdR1 (OX′(H ′i)). Since Chern classes are functorial for pullbacks we deduce

clX′(H
′
i) = cdR1 (OX′(H ′i)) = (i′′)∗cdR1 (OX(Hi)) = (i′′)∗clX(Hi). Therefore,

i∗(1) = (i′′)∗(i
′)∗(1)

= (i′′)∗cl
dR
X′ (Y )

= (i′′)∗clX′(H
′
2) ∪ . . . ∪ clX′(H ′c)

= (i′′)∗(i
′′)∗
(
clX(H2) ∪ . . . ∪ clX(Hc)

)
= (i′′)∗(1) ∪ clX(H2) ∪ . . . ∪ clX(Hc)

= clX(H1) ∪ clX(H2) ∪ . . . ∪ clX(Hc)

= clX(Y ).

EndProof.

Pushforward along a general closed immersion. Let i : Y → X be a closed immersion of smooth
projective varieties over k. Say the codimension is c > 1. Denote b : X̃ → X the blow up of X in Y , and
denote E the exceptional divisor. We have the usual commutative diagram

E
i′ //

π

��

X̃

b

��
Y

i // X

Let H1, H2, . . . ,Hc−1 be very ample divisors on X̃. By Bertini, we may choose these such that the intersection
Y ′ = E ∩H1 ∩ . . .∩Hc−1 is a smooth variety of codimension c− 1 in E. Note that we may also assume that
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the induced morphism g : Y ′ → Y is finite. So now the diagram looks like

Y ′
i′′ //

g

  @
@@

@@
@@

@ E
i′ //

π

��

X̃

b

��
Y

i // X

Since g is finite, say of degree d we have that g∗(1) = d · 1. Thus we see that

i∗(1) = (1/d)g∗i∗(1) = (1/d)f∗(i
′)∗(i

′′)∗(1) = (1/d)f∗cl
dR(Y ′).

The last step because Y ′ is a global complete intersection in X̃. We show below that (f∗cl
dR(Y ′))|U =

cldR(Y ′)|U . (This is not trivial with our definition of f∗!) Since cycle classes are compatible with flat
pullbacks we conclude that cldR(Y ′)|U = 0 and hence we conclude that i∗(1)|U = (1/d)(f∗cl

dR(Y ′))|U =
(1/d)cldR(Y ′)|U = 0. The seemingly innocuous statement i∗(1)|U = 0 is the key to proving axiom (W8).

Assume that Y is geometrically irreducible over k. In that case we now know that both i∗(1) and cldR(Y )
lie in the 1-dimensional subspace

Ker(H2p
dR(X)(p) −→ H2p

dR(X \ Y ))

(see earlier result). Hence it suffices to show that TrX(i∗(1) ∪ β) = TrX(cldR(Y ) ∪ β) for one class β such
that the cup products are nonzero. Take β = cldR(H)dimY , where H is a very ample divisor on X. We have
enough theory at our disposal to see that

TrX(i∗(1) ∪ cldR(H)dimY ) = degH(Y ) = TrX(cldR(Y ) ∪ cldR(H)dimY )

in this case. (The RHS because classes are compatible with intersection products and the LHS because
classes of divisors are compatible with pullbacks – via chern classes.) This finishes the proof in the case that
Y is geometrically irreducible.

The general case follows from the geometrically irreducible case by doing a base field extension. This is true
but it is a bit annoying to write out completely†. Namely, one has to show that for a variety X over k, and
a finite field extension k ⊂ k′ one has H∗dR(X ×Spec(k) Spec(k

′)) = H∗dR(X)⊗k k′ and moreover that this is
compatible with all the constructions we made above. In our situation Y ⊂ X as above we then choose k′

such that Y × Spec(k′) becomes a union of geometrically irreducible varieties. Details left to the reader.

The trace map for a nonsingular blowup. Let i : Y → X be a closed immersion of smooth projective
varieties over k. Say the codimension is c > 1. Denote b : X̃ → X the blow up of X in Y , and denote E the
exceptional divisor. Let U = X \ Y = X̃ \ E. We have the usual commutative diagram

E
i′ //

π

��

X̃

b

��

U
joo

Y
i // X Uoo

We want to show that
f∗(α)|U = α|U

for any α ∈ H∗dR(X̃). This is not a triviality since we have only defined the pushforward map on cohomology
for morphisms of smooth projective varieties.

Proof.♥ First we introduce the complex

K∗ := Ker(Ω∗
X̃/k
→ (i′)∗Ω

∗
E/k).

† Is there is a formal argument deducing the general case from the geometrically irreducible one?
♥ This proof is absolutely horrid. It uses the compactly supported de Rham cohomology of U without

properly introducing compactly supported cohomology.
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A local calculations shows that K∗ is a complex of abelian groups, whose terms are finite locally free OX̃ -
modules and that the cupproduct on Ω∗

X̃/k
extends to a pairing

K∗ × Ω∗
X̃/k

(logE) −→ Ω∗
X̃/k

which satisfies the conditions (1)–(5) of the section on duality above. Hence we deduce for a+ b = 2 dimX
that Hb(X̃,K∗) and Ha

dR(U) = Ha(X,Ω∗
X̃/k

(logE)) are canonically dual. This duality has the property that

the maps
Ha
dR(X̃) −→ Ha

dR(U)

and
Hb(X̃,K∗) −→ Hb

dR(X̃)

are transpose of each other. Below we will write this as follows: for α ∈ Ha
dR(X̃), and β ∈ Hb(X̃,K) we have

〈α|U , β〉 = 〈α, Im(β)〉

where Im(β) indicate the image of β in the de Rham cohomology of X̃. For any integer n > dimX consider
the subcomplex K(n)∗ of K∗ with terms K(n)p = In−pE Kp = OX̃((−n + p)E) ⊗ Kp. Dually consider the
complex Ω∗

X̃/k
([nE]) with terms Ωp

X̃/k
([nE]) = O((n − dimX + p)E) ⊗ Ωp

X̃/k
. Again there is a pairing

K(n) × Ω∗
X̃/k

([nE]) → Ω∗
X̃/k

inducing a duality in cohomology compatible with maps as above. Since we

know that the first and the last term of

Ω∗
X̃/k
⊂ Ω∗

X̃/k
([nE]) ⊂ Ω∗

X̃
(∗E) = j∗(Ω

∗
U/k)

are quasi-isomorphic, we know that

Ha
dR(U) = Ha(X̃,Ω∗

X̃/k
(logE)) −→ Ha(X̃,Ω∗

X̃/k
([nE]))

is injective. Dually we deduce that

Hb(X̃,K(n)∗) −→ Hb(X̃,K∗)

is surjective. Next, since IE is relatively ample for f : X̃ → X we have for n large enough a canonical
quasi-isomorphism

f∗K(n)∗ −→ Rf∗K(n)∗

Note also that f∗K(n)∗|U = Ω∗U/k since after all K(n)|U equals Ω∗U/k. The sheaves f∗K(n)i are coherent

and torsion free, and hence by Hartog’s theorem the isomorphism f∗K(n)i|U = ΩiU/k extends to a map of
complexes

f∗K(n)∗ −→ Ω∗X/k

because the codimension c ≥ 2. (Still for some large n.) Of course the construction shows this map is
compatible with the map K(n)∗ → Ω∗

X̃/k
via f−1Ω∗X/k → Ω∗

X̃/k
(even term by term). Take any β ∈

Hb(X̃,K∗). Lift it to some β(n) ∈ Hb(X̃,K(n)∗). Write β(n) as the image of β(n)′ ∈ Hb(X, f∗K(n)∗)
(possible by the quasi-isomorphism above). Let β′ ∈ Hb

dR(X) be the image of β(n)′. Then f∗β′ equals the

image Im(β) of β in Hb
dR(X̃) by the compatibility of maps mentioned above. Using this we may compute

〈f∗(α)|U , β〉 = 〈f∗f∗(α)|U , β〉
= 〈f∗f∗(α), Im(β)〉
= 〈f∗f∗(α), f∗β′〉
= 〈f∗(α), β′〉
= 〈α, f∗β′〉
= 〈α, Im(β)〉
= 〈α|U , β〉

16



The first equality because pullback is functorial! The second equality we saw above. The third equality by
our choice of β′. The fourth equality because f∗uX = uX̃ . The fifth equality because of the definition of
f∗. The sixth equality because of our choice of β′. The seventh equality we saw above. Ok, and since this
is true for every β we get by the duality statement above that f∗(α)|U = α|U . EndProof.

Appendix on cupproduct.

In general for sheaves of abelian groups F and G on X there is a cupproduct map Hi(X,F)×Hj(X,G)→
Hi+j(X,F ⊗ZG). The easiest way I know how to define it is to compute cohomology using Cech cocyles and
write out the formula for the cup product. See below. If you are worried about the fact that cohomology
may not equal Cech cohomology, then you can use hypercoverings and still use the cocycle notation. This
also has the advantage that it works to define the cup product for hypercohomology on any site.

Let F∗ be a bounded below complex of sheaves of abelian groups on X. We can (often) compute Hn(X,F∗)
using Cech cocycles. Namely, let U = {Ui}i∈I be an open covering of X. Consider the (simple) complex
sC∗(U ,F∗) with degree n term

snC∗(U ,F∗) =
∏

p+q=n
Fq(Ui0...ip)

with a typical element denoted α = {αi0...ip} so that αi0...ip ∈ Fq(Ui0...ip), in other words the F-degree of
αi0...ip is q. We indicate this by the formula degF (αi0...ip) = q. The differential of an element α of degree n
is

d(α)i0...ip+1 = dF (αi0...ip+1) + (−1)n−p
∑p+1

j=0
(−1)jαi0...̂ij ...ip+1

= dF (αi0...ip+1) +
∑p+1

j=0
(−1)j+n−pαi0...̂ij ...ip+1

where dF denotes the differential on the complex F . An expression such as αi0...̂ij ...ip+1
means the restriction

of αi0...̂ij ...ip+1
∈ F(Ui0...̂ij ...ip+1

) to Ui0...ip+1
. To check this is a complex, let α be an element of degree n in

sC∗(U ,F∗), so that d(α) has degree n+ 1. We compute:

d2(α)i0...ip+2
= dF (d(α)i0...ip+2

) + (−1)(n+1)−(p+1)
∑p+2

j=0
(−1)jd(α)i0...̂ij ...ip+2

= dF (dF (αi0...ip+2
))

+ dF

(
(−1)n−(p+1)

∑p+2

j=0
(−1)j αi0...̂ij ...ip+2

)
+ (−1)(n+1)−(p+1)

∑p+2

j=0
(−1)jdF (αi0...̂ij ...ip+2

)

+ (−1)(n+1)−(p+1)
∑p+2

j=0
(−1)j+n−p

∑
j′=0...j−1

(−1)j
′
αi0...̂ij′ ...̂ij ...ip+1

+ (−1)(n+1)−(p+1)
∑p+2

j=0
(−1)j+n−p

∑
j′=j+1...p+2

(−1)j
′−1αi0...̂ij ...̂ij′ ...ip+1

which equals zero by the nullity of d2
F , a trivial sign change between the second and third terms, and the

usual argument for the last two double Cech terms.

The construction of sC∗(U ,F∗) is functorial in F∗. As well there is a functorial transformation

Γ(X,F∗) −→ sC∗(U ,F∗)

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to the element α = {αi0...ip}
with αi0 = s|Ii0 and αi0...ip = 0 for p > 0.

Refinements. Let V = {Vj}j∈J be a refinement of U . This means there is a map t : J → I such that
Vj ⊂ Ut(j) for all j ∈ J . This gives rise to a functorial transformation

Tt : sC∗(U ,F∗) −→ sC∗(V,F∗).
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This is defined by the rule
Tt(α)j0...jp = αt(j0)...t(jp)|Vj0...jp

Given two maps t, t′ : J → I as above the maps Tt and Tt′ constructed above are homotopic. The homotopy
is given by

h(α)j0...jp = (−1)n+p
∑p

a=0
(−1)aαt(j0)...t(ja)t′(ja)...t′(jp)

for an element α of degree n. This works because of the following computation, again with α an elemement
of degree n (so d(α) has degree n+ 1 and h(α) has degree n− 1):

(d(h(α)) + h(d(α)))j0...jp

= dF (h(α)j0...jp) + (−1)(n−1)−(p−1)
∑p

k=0
(−1)kh(α)j0...ĵk...jp

+ (−1)n+1+p
∑p

a=0
(−1)ad(α)t(j0)...t(ja)t′(ja)...t′(jp)

= (−1)n+p
∑p

a=0
(−1)adF (αt(j0)...t(ja)t′(ja)...t′(jp))

+ (−1)(n−1)−(p−1)
∑p

k=0
(−1)k+n+p−1

∑k−1

a=0
(−1)aα

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)

+ (−1)(n−1)−(p−1)
∑p

k=0
(−1)k+n+p−1

∑p

a=k+1
(−1)a−1α

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)

+ (−1)n+1+p
∑p

a=0
(−1)adF (αt(j0)...t(ja)t′(ja)...t′(jp))

+ (−1)n+1+p
∑p

a=0
(−1)a+n−p

∑a

k=0
(−1)kα

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)

+ (−1)n+1+p
∑p

a=0
(−1)a+n−p

∑p

k=a
(−1)k+1α

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)

= αt(j0)...t(jp) − αt′(j0)...t′(jp) = Tt(α)j0...jp − Tt′(α)j0...jp

We leave it to the reader to verify the cancellations. It follows that the induced map

H∗(Tt) : H∗(sC∗(U ,F∗))→ H∗(sC∗(V,F∗))

is independend of the choice of t. We define Cech hypercohomology as the limit of the Cech cohomology
groups over all refinements via the maps H∗(Tt).

Let I∗ be a bounded below complex of injectives. Consider the map Γ(X, I∗)→ sC∗(U , I∗) defined in degree
n by i 7→ α = {αi0...ip} with αi0 = i|Ui0

and αi0...ip = 0 for p > 0. This is a quasi-isomorphism of complexes
of abelian groups (prove by a spectral sequence argument on the double complex C∗(U , I∗)). Suppose
F∗ → I∗ is a quasi-isomorphism of F∗ into a bounded below complex of injectives. The hypercohomology
H∗(X,F∗) is defined to be H∗(Γ(X, I∗)). Thus the corresponding map sC∗(U ,F∗) → sC∗(U , I∗) induces
maps H∗(sC∗(U ,F∗)) → H∗(X,F∗). In the limit this induces a map of Cech hypercohomology into the
cohomology, which is usually an isomorphism and is always an isomorphism if we use hypercoverings.

Consider the map τ : sC∗(U ,F∗)→ sC∗(U ,F∗) defined by

τ(α)i0...ip = (−1)p(p+1)/2αip...i0 .

Then we have for an element α of degree n that

d(τ(α))i0...ip+1
= dF (τ(α)i0...ip+1

) + (−1)n−p
∑p+1

j=0
(−1)jτ(α)i0...̂ij ...ip+1

= (−1)(p+1)(p+2)/2dF (αip+1...i0)) + (−1)n−p
∑p+1

j=0
(−1)j+p(p+1)/2αip+1...̂ij ...i0

On the other hand we have

τ(d(α))i0...ip+1 = (−1)(p+1)(p+2)/2d(α)ip+1...i0

= (−1)(p+1)(p+2)/2dF (αip+1...i0) + (−1)(p+1)(p+2)/2+n−p
∑p+1

j=0
(−1)jαip+1...̂ip+1−j ...i0

= (−1)(p+1)(p+2)/2dF (αip+1...i0) + (−1)(p+1)(p+2)/2+n−p
∑p+1

j=0
(−1)j−p−1αip+1...̂ij ...i0
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Thus we conclude that d(τ(α)) = τ(d(α)) because p(p + 1)/2 ≡ (p + 1)(p + 2)/2 + p + 1 mod 2. In other
words τ is an endomorphism of the complex sC∗(U ,F∗). Note that the diagram

Γ(X,F∗) −→ sC∗(U ,F∗)
↓ id ↓ τ

Γ(X,F∗) −→ sC∗(U ,F∗)

commutes. In addition τ is clearly compatible with refinements. This proves that τ acts as the identity on
Cech hypercohomology (i.e., in the limit – provided Cech hypercohomology agrees with hypercohomology,
which is always the case if we use hypercoverings). To see this use a quasi-isomorphism F∗ → I∗ of F∗ into
a bounded below complex of injectives as before. We claim that τ actually is homotopic to the identity on
the simple Cech complex sC∗(U ,F∗). To prove this, we use as homotopy

h(α)i0...ip = (−1)n+p
∑p

a=0
(−1)aαi0...iaip−a...i0

for α of degree n. As usual we omit writing |Ui0...ip
. This works because of the following computation, again

with α an elemement of degree n (so d(α) has degree n+ 1 and h(α) has degree n− 1):

(d(h(α)) + h(d(α)))i0...ip

= dF (h(α)i0...ip) + (−1)(n−1)−(p−1)
∑p

k=0
(−1)kh(α)i0...̂ik...ip

+ (−1)n+1+p
∑p

a=0
(−1)ad(α)i0...iaip−a...i0

= (−1)n+p
∑p

a=0
(−1)adF (αi0...iaip−a...i0)

+ (−1)(n−1)−(p−1)
∑p

k=0
(−1)k+n+p−1

∑k−1

a=0
(−1)aαi0...iaip−a... ˆip−k...i0

+ (−1)(n−1)−(p−1)
∑p

k=0
(−1)k+n+p−1

∑p

a=k+1
(−1)a−1αi0...îk...iaip−a...i0

+ (−1)n+1+p
∑p

a=0
(−1)adF (αi0...iaip−a...i0)

+ (−1)n+1+p
∑p

a=0
(−1)a+n−p

∑a

k=0
(−1)kαi0...îk...iaip−a...i0

+ (−1)n+1+p
∑p

a=0
(−1)a+n−p

∑p

k=a
(−1)k+1αi0...iaip−a... ˆip−k...i0

= αi0...ip − αip...i0

We leave it to the reader to verify the cancellations.

Suppose we have two bounded complexes complexes of sheaves F∗ and G∗. We define the complex Tot(F∗⊗Z

G∗) to be to complex with terms ⊗p+q=nFp ⊗ Gq and differential according to the rule d(α ⊗ β) = d(α) ⊗
β + (−1)deg(α)α⊗ d(β) when α and β are homogenous. We apply the same rule to define the total complex
associated to a tensor product of complexes of abelian groups (the case when the space is a point).

Suppose that M∗ and N∗ are two bounded below complexes of abelian groups. Then if m, resp. n is a
cocycle for M∗, resp. N∗, it is immediate that m⊗ n is a cocycle for Tot(M∗ ⊗N∗). Hence a cupproduct

Hi(M∗)×Hj(N∗)→ Hi+j(Tot(M∗ ⊗N∗)).

So the construction of the cup product in hypercohomology of complexes rests on a construction of a map
of complexes

Tot(sC∗(U ,F∗)⊗Z sC∗(U ,G∗)) −→ sC∗(U , T ot(F∗ ⊗ G∗)), α⊗ β 7→ α ∪ β.

This is done by the rule

(α ∪ β)i0...ip =
∑p

r=0
(−1)r(m−(p−r))αi0...ir ⊗ βir...ip .
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where α has degree n and β has degree m. Note that α ∪ β has degree n + m. For an explanation of
the sign see the paper “Higher order operations in Deligne cohomology” by Denninger who refers to the
paper “cohomologie a support propres” by Deligne for a more precise explanation. To check this is a map
of complexes we have to show that

d(α ∪ β) = d(α) ∪ β + (−1)deg(α)α ∪ d(β)

because d(α ⊗ β) = d(α)⊗ β + (−1)deg(α)α ⊗ d(β) is the formula for the differential on Tot(sC∗(U ,F∗)⊗Z

sC∗(U ,G∗)). We compute first

d(α ∪ β)i0...ip+1 = dF⊗G

(
(α ∪ β)i0...ip+1

)
+ (−1)n+m−p

∑p+1

j=0
(−1)j(α ∪ β)i0...̂ij ...ip+1

=
∑p+1

r=0
(−1)r(m−(p+1−r))dF⊗G(αi0...ir ⊗ βir...ip+1

)

+ (−1)n+m−p
∑p+1

j=0
(−1)j

∑j−1

r=0
(−1)r(m−(p−r))αi0...ir ⊗ βir...̂ij ...ip+1

+ (−1)n+m−p
∑p+1

j=0
(−1)j

∑p+1

r=j+1
(−1)(r−1)(m−(p+1−r))αi0...̂ij ...ir ⊗ βir...ip+1

On the other hand

(d(α) ∪ β)i0...ip+1
=

p+1∑
r=0

(−1)r(m−(p+1−r))d(α)i0...ir ⊗ βir...ip+1

=

p+1∑
r=0

(−1)r(m−(p+1−r))dF (αi0...ir )⊗ βir...ip+1

+

p+1∑
r=0

(−1)r(m−(p+1−r))+n−(r−1)
∑r

j=0
(−1)jαi0...îj ...ir ⊗ βir...ip+1

and

(−1)n(α ∪ d(β))i0...ip+1
= (−1)n

p+1∑
r=0

(−1)r(m+1−(p+1−r))αi0...ir ⊗ d(β)ir...ip+1

= (−1)n
p+1∑
r=0

(−1)r(m+1−(p+1−r))αi0...ir ⊗ dG(βir...ip+1)

+ (−1)n
p+1∑
r=0

(−1)r(m+1−(p+1−r))+m−(p−r)
∑p+1

j=r
(−1)j−rαi0...ir ⊗ βir...îj ...ip+1

Now you can see the desired equality.

Associativity of the cupproduct. Suppose that F∗, G∗ and H∗ are bounded below complexes of abelian
groups on X. The obvious map (without the intervention of signs) is an isomorphism of complexes

Tot(Tot(F∗ ⊗Z G∗)⊗Z H∗) −→ Tot(F∗ ⊗Z Tot(G∗ ⊗Z H∗)).

Using this map it is easy to verify that

(α ∪ β) ∪ γ = α ∪ (β ∪ γ)

namely, if α has degree a, β has degree b and γ has degree c, then

((α ∪ β) ∪ γ)i0...ip =

p∑
r=0

(−1)r(c−(p−r))(α ∪ β)i0...ir ⊗ γir...ip

=

p∑
r=0

(−1)r(c−(p−r))
r∑
s=0

(−1)s(b−(r−s))αi0...is ⊗ βis...ir ⊗ γir...ip
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and

(α ∪ (β ∪ γ)i0...ip =

p∑
s=0

(−1)s(b+c−(p−s))αi0...is ⊗ (β ∪ γ)is...ip

=

p∑
s=0

(−1)s(b+c−(p−s))
p∑
r=s

(−1)(r−s)(c−(p−r))αi0...is ⊗ βis...ir ⊗ γir...ip

and a trivial mod 2 calculation shows the signs match up.

Finally, we indicate why the cup product preserves a graded commutative structure, at least on a cohomo-
logical level. For this we use the operator τ introduced above. Let F∗ be a bounded below complexes of
abelian groups, and assume we are given a graded commutative multiplication

∧∗ : Tot(F∗ ⊗F∗)→ F∗.

This means the following: For s a local section of Fa, and t a local section of Fb we have s∧ t a local section
of Fa+b. Graded commutative means we have s ∧ t = (−1)abt ∧ s. Since ∧ is a map of complexes we have
d(s ∧ t) = d(s) ∧ t+ (−1)as ∧ t. The composition

Tot(sC∗(U ,F∗)⊗ sC∗(U ,F∗)) −→ sC∗(U , T ot(F∗ ⊗Z F∗)) −→ sC∗(U ,F∗)

induces a cup product on cohomology

Hn(sC∗(U ,F∗))×Hm(sC∗(U ,F∗)) −→ Hn+m(sC∗(U ,F∗)).

and so in the limit also a product on Cech hypercohomology and therefore (using hypercoverings if needed)
a product in hypercohomology of F∗. We claim this product (on cohomology) is graded commutative as
well. To prove this we first consider an element α of degree n in sC∗(U ,F∗) and an element β of degree m
in sC∗(U ,F∗) and we compute

τ(α ∪ β)i0...ip = (−1)p(p+1)/2(α ∪ β)ip...i0

= (−1)p(p+1)/2
∑p

r=0
(−1)(p−r)(m−r)αip...ir ⊗ βir...i0

= (−1)p(p+1)/2
∑p

r=0
(−1)(p−r)(m−r)+r(r+1)/2+(p−r)(p−r+1)/2τ(α)ir...ip ⊗ τ(β)i0...ir

The image of this in sn+mC∗(U ,F∗) equals

(−1)p(p+1)/2
∑p

r=0
(−1)(p−r)(m−r)+r(r+1)/2+(p−r)(p−r+1)/2+(m−r)(n−(p−r))τ(β)i0...ir ∧ τ(α)ir...ip

because ∧ is graded commutative. But this is the same as the image of

(−1)nm(τ(β) ∪ τ(α))i0...ip = (−1)nm
∑p

r=0
(−1)r(n−(p−r))τ(β)i0...ir ⊗ τ(α)ir...ip

This proves the desired result since we proved earlier that τ acts as the identity on cohomology.

Suppose that
0→ F∗1 → F∗2 → F∗3 → 0

and
0← G∗1 ← G∗2 ← G∗3 ← 0

are short exact sequences of bounded below complexes of abelian sheaves on X. We will use the following
convention and notation: we think of Fq1 as a subsheaf of Fq2 and we think of Gq3 as a subsheaf of Gq2 . Hence
if s is a local section of Fq1 we use s to denote the corresponding section of Fq2 as well. Similarly for local
sections of Gq3 . Furthermore, if s is a local section of Fq2 then we denote s̄ its image in Fq3 . Similarly for the
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map Gq2 → G
q
1 . In particular if s is a local section of Fq2 and s̄ = 0 then s is a local section of Fq1 . Let H∗ be

another complex of abelian sheaves, and suppose we have maps of comlpexes

γi : Tot(F∗i ⊗Z G∗i ) −→ H∗

which are compatible with the maps between the complexes. So for example, for local sections s of Fq2 and

t pf Gq
′

3 we have γ2(s ⊗ t) = γ3(s̄ ⊗ t) as sections of Hq+q′ . In this situation, suppose that U = {Ui}i∈I is
an open covering of X. Suppose that α, resp. β is an element of snC∗(U ,F∗2 ), resp. smC∗(U ,G∗2 ) with the
property that

d(ᾱ) = 0, and d(β̄) = 0.

This means that
α3 = ᾱ is a degree n cocycle in the simple complex sC∗(U ,F∗3 ),
α1 = d(α) is a degree n+ 1 cocycle in the simple complex sC∗(U ,F∗1 ),
β1 = β̄ is a degree n cocycle in the simple complex sC∗(U ,G∗1 ), and
β3 = d(β) is a degree m+ 1 cocycle in the simple complex sC∗(U ,G∗3 ).

I claim that
γ1(α1 ∪ β1), and γ3(α3 ∪ β3)

represent the same cohology class up to sign. The reason is simply that we may compute

d(γ2(α ∪ β)) = γ2(d(α ∪ β))

= γ2(d(α) ∪ β + (−1)nα ∪ d(β))

= γ2(α1 ∪ β) + (−1)nγ2(α ∪ β3)

= γ1(α1 ∪ β1) + (−1)nγ3(α3 ∪ β3)

So this even tells us that the sign is (−1)n+1.
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