WEIL q-NUMBERS OF DEGREE 4 OVER Q

Let $\pi \in \mathbf{C}$ be a Weil q-number of degree 4 over \mathbf{Q} . We argue that:

- (1) For no embedding $\sigma : \mathbf{Q}(\pi) \to \mathbf{C}$ is the image $\sigma(\pi)$ real. This is true because we saw in the talk that in this case π has degree 1 or 2 over \mathbf{Q} .
- (2) Let $P(X) = X^4 + aX^3 + bX^2 + cX + d$ be the minimal polynomial over **Q**. Note that we can write

$$P(X) = X^{4} + aX^{3} + bX^{2} + cX + d = (X - \alpha_{1})(X - \alpha_{2})(X - \alpha_{3})(X - \alpha_{4})$$

where α_1 , α_2 , α_3 and α_4 are all 4 conjugates of π in **C**.

- (3) In particular, for each *i* we have $\overline{\alpha_i} \in \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ (where $z \mapsto \overline{z}$ is complex conjugation). Since none of the α_i are real we may choose the numbering such that $\overline{\alpha_1} = \alpha_2$ and $\overline{\alpha_3} = \alpha_4$.
- (4) Note that $a, b, c, d \in \mathbf{Z}$ because π is an algebraic integer.
- (5) Because $|\alpha_i| = \sqrt{q}$ we see that $\overline{\alpha_i} = q/\alpha_i$. In particular we see that the roots of the polynomial $X^4 P(q/X)$ are the same as the roots of P(X). By looking at the leading coefficient we deduce that

$$X^4 P(q/X) = q^2 P(X).$$

Writing this out we obtain

$$q^{4} + aq^{3}X + bq^{2}X^{2} + cqX^{3} + dX^{4} = q^{2}X^{4} + aq^{2}X^{3} + bq^{2}X^{2} + cq^{2}X + dq^{2}.$$

We conclude that $d = q^2$ and that c = aq. Thus we conclude that

$$P(X) = X^4 + aX^3 + bX^2 + aqX + q^2.$$

(6) Note that $a = -\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4$. In particular we have

$$|a| \leq 4\sqrt{q}$$

(7) Note that $b = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_1 \alpha_4 + \alpha_2 \alpha_3 + \alpha_2 \alpha_4 + \alpha_3 \alpha_4$. In particular we have

$$|b| \le 6q$$

(8) Let $\beta = \pi + \overline{\pi} = \pi + q/\pi$. What is the minimal polynomial of β over **Q**? To see this note that π is a root of $P(X)/X^2$. We write this as

$$P(X)/X^{2} = X^{2} + aX + b + aq/X + q^{2}/X^{2}$$

= $(X + q/X)^{2} - 2q + a(X + q/X) + b$
= $(X + q/X)^{2} + a(X + q/X) + b - 2q$
= $Y^{2} + aY + (b - 2q).$

where Y = X + q/X. In other words, β satisfies the equation $Y^2 + aY + (b - 2q) = 0$.

(9) In order for π to be a Weil *q*-number we know by general theory that β has to be totally real. In other words the discriminant Δ of the quadratic polynomial $Y^2 + aY + (b - 2q)$ has to be positive. We compute $\Delta = a^2 - 4(b - 2q) = a^2 + 8q - 4b$. The resulting inequality is $a^2 + 8q > 4b$, or

$$b < a^2/4 + 2q$$

Note that, in case b > 0, this is a stronger inequality than our previous inequality for the magnitude of b.

(10) Note that π is a solution to the equation $X^2 - \beta X + q = 0$. Thus, in order for $\mathbf{Q}(\pi)$ to be a CM field of degree 4 over \mathbf{Q} , we need $\beta^2 - 4q$ under any embedding of $\mathbf{Q}(\beta)$ into \mathbf{R} to be negative. In other words we need

$$\left(\frac{-a\pm\sqrt{\Delta}}{2}\right)^2 - 4q < 0$$

(11) We work out what this means:

$$\begin{array}{rcl} ((-a\pm\sqrt{\Delta})/2)^2-4q<0 &\Leftrightarrow & ((-a\pm\sqrt{\Delta})/2)^2<4q\\ &\Leftrightarrow & (-a\pm\sqrt{\Delta})/2<2\sqrt{q} \mbox{ and } (-a\pm\sqrt{\Delta})/2>-2\sqrt{q}\\ &\Leftrightarrow & (-a\pm\sqrt{\Delta})<4\sqrt{q} \mbox{ and } (-a\pm\sqrt{\Delta})>-4\sqrt{q}\\ &\Leftrightarrow & \pm\sqrt{\Delta}a-4\sqrt{q}\\ &\Leftrightarrow & \sqrt{\Delta}a-4\sqrt{q}\\ &\Leftrightarrow & \Delta2|a|\sqrt{q}-2q \end{array}$$

Note that one of the conclusions of this sequence of inequalities is also that $|a| \leq 4\sqrt{q}$ which we saw before.

(12) So a comlete set of inequalities is the following

$$egin{array}{rcl} |a| &\leq & 4\sqrt{q} \ b &< & a^2/4 + 2q \ b &> & 2|a|\sqrt{q} - 2q \end{array}$$