Commutative Algebra

Excercises 8

Let R be a graded ring. A homogeneous ideal is simply an ideal $I \subset R$ which is also a graded submodule of R. Equivalently, it is an ideal generated by homogeneous elements. Equivalently, if $f \in I$ and

$$f = f_0 + f_1 + \ldots + f_n$$

is the decomposition of f into homogenous pieces in R then $f_i \in I$ for each i. We define $\operatorname{Proj}(R)$ to be the set of homogenous, prime ideals \mathfrak{p} of R such that $R_+ \not\subset \mathfrak{p}$. Note that $\operatorname{Proj}(R)$ is a subset of $\operatorname{Spec}(R)$ and hence has a natural induced topology.

Let $R = \bigoplus_{d \ge 0} R_d$ be a graded ring, let $f \in R_d$ and assume that $d \ge 1$. We define $R_{(f)}$ to be the subring of R_f consisting of elements of the form r/f^n with r homogenous and $\deg(r) = nd$. Furthermore, we define

$$D_+(f) = \{ \mathfrak{p} \in \operatorname{Proj}(R) | f \notin \mathfrak{p} \}.$$

Finally, for a homogenous ideal $I \subset R$ we define $V_+(I) = V(I) \cap \operatorname{Proj}(R)$.

1. Topology on $\operatorname{Proj}(R)$. With notations as above:

- (a) Show that $D_+(f)$ is open in $\operatorname{Proj}(R)$, show that $D_+(ff') = D_+(f) \cap D_+(f')$.
- (b) Let $g = g_0 + \ldots + g_m$ be an element of R with $g_i \in R_i$. Express $D(g) \cap \operatorname{Proj}(R)$ in terms of $D_+(g_i), i \ge 1$ and $D(g_0) \cap \operatorname{Proj}(R)$. No proof necessary.
- (c) Let $g \in R_0$ be a homogenous element of degree 0. Express $D(g) \cap \operatorname{Proj}(R)$ in terms of $D_+(f_\alpha)$ for a suitable family $f_\alpha \in R$ of homogenous elements of positive degree.
- (d) Show that the collection $\{D_+(f)\}$ of opens forms a basis for the topology of $\operatorname{Proj}(R)$.
- (e) Show that there is a canonical bijection $D_+(f) \to \operatorname{Spec}(R_{(f)})$.
- (f) Show that the map from (e) is a homeomorphism.
- (g) Give an example of an R such that $\operatorname{Proj}(R)$ is not quasi-compact. No proof necessary.
- (i) Show that any closed subset $T \subset \operatorname{Proj}(R)$ is of the form $V_+(I)$ for some homogenous ideal $I \subset R$.

Remark. There is a continuous map $\operatorname{Proj}(R) \longrightarrow \operatorname{Spec}(R_0)$.

2. If R = A[X] with deg(X) = 1, show that the natural map $Proj(R) \to Spec(A)$ is a bijection and in fact a homeomorphism.

3. Blowing up: part I. In this exercise $R = Bl_I(A) = A \oplus I \oplus I^2 \oplus \ldots$ Consider the natural map $b : \operatorname{Proj}(R) \to \operatorname{Spec}(A)$. Set $U = \operatorname{Spec}(A) - V(I)$. Show that

$$b: b^{-1}(U) \longrightarrow U$$

is a homeomorphism.

Thus we may think of U as an open subset of $\operatorname{Proj}(R)$. Let $Z \subset \operatorname{Spec}(A)$ be an irreducible closed subscheme with generic point $\xi \in Z$. Assume that $\xi \notin V(I)$, in other words $Z \notin V(I)$, in other words $\xi \in U$, in other words $Z \cap U \neq \emptyset$. We define the *strict transform* Z' of Z to be the closure of the unique point ξ' lying above ξ . Another way to say this is that Z' is the closure in $\operatorname{Proj}(R)$ of the locally closed subset $Z \cap U \subset U \subset \operatorname{Proj}(R)$.

4. Blowing up: Part II. Let A = k[x, y] where k is a field, and let I = (x, y). Let R be the blow up algebra for A and I.

- (a) Show that the strict transforms of $Z_1 = V(\{x\})$ and $Z_2 = V(\{y\})$ are disjoint.
- (b) Show that the strict transforms of $Z_1 = V(\{x\})$ and $Z_2 = V(\{x-y^2\})$ are not disjoint.
- (c) Find an ideal $J \subset A$ such that V(J) = V(I) and such that the strict transforms of $Z_1 = V(\{x\})$ and $Z_2 = V(\{x y^2\})$ are disjoint.
- **5.** Let R be a graded ring.
- (a) Show that $\operatorname{Proj}(R)$ is empty if $R_n = (0)$ for all n >> 0.
- (b) Show that $\operatorname{Proj}(R)$ is an irreducible topological space if R is a domain and R_+ is not zero. (Recall that the empty topological space is not irreducible.)

6. Blowing up: Part III. Consider A, I and U, Z as in the definition of strict transform. Let $Z = V(\mathfrak{p})$ for some prime ideal \mathfrak{p} . Let $\overline{A} = A/\mathfrak{p}$ and let \overline{I} be the image of I in \overline{A} .

- (a) Show that there exists a surjective ring map $R := Bl_I(A) \to \overline{R} := Bl_{\overline{I}}(\overline{A})$.
- (b) Show that the ring map above induces a bijective map from $\operatorname{Proj}(\overline{R})$ onto the strict transform Z' of Z. (This is not so easy. Hint: Use 5(b) above.)
- (c) Conclude that the strict transform $Z' = V_+(P)$ where $P \subset R$ is the homogenous ideal defined by $P_d = I^d \cap \mathfrak{p}$.
- (d) Suppose that $Z_1 = V(\mathfrak{p})$ and $Z_2 = V(\mathfrak{q})$ are irreducible closed subsets defined by prime ideals such that $Z_1 \not\subset Z_2$, and $Z_2 \not\subset Z_1$. Show that blowing up the ideal $I = \mathfrak{p} + \mathfrak{q}$ separates the strict transforms of Z_1 and Z_2 , i.e., $Z'_1 \cap Z'_2 = \emptyset$. (Hint: Consider the homogenous ideal P and Q from part (c) and consider V(P+Q).)