Commutative Algebra

Excercises 6

1. Suppose that k is a field having a primitive nth root of unity ζ. This means that $\zeta^{n}=1$, but $\zeta^{m} \neq 1$ for $0<m<n$.
(a) Show that the characteristic of k is prime to n.
(b) Suppose that $a \in k$ is an element of k which is not an d th power in k for any divisor d of n, in $\geq d>1$. Show that $k[x] /\left(x^{n}-a\right)$ is a field. (Hint: Consider a splitting field for $x^{n}-a$ and use Galois theory.)
2. Let $\nu: k[x] \backslash\{0\} \rightarrow \mathbb{Z}$ be a map with the following properties: $\nu(f g)=\nu(f)+\nu(g)$ whenever f, g not zero, and $\nu(f+g) \geq \min (\nu(f), \nu(g))$ whenever $f, g, f+g$ are not zero, and $\nu(c)=0$ for all $c \in k^{*}$.
(a) Show that if f, g, and $f+g$ are nonzero and $\nu(f) \neq \nu(g)$ then we have equality $\nu(f+g)=\min (\nu(f), \nu(g))$.
(b) Show that if $f=\sum a_{i} x^{i}, f \neq 0$, then $\nu(f) \geq \min \left(\{i \nu(x)\}_{a_{i} \neq 0}\right)$. When does equality hold?
(c) Show that if ν attains a negative value then $\nu(f)=-n \operatorname{deg}(f)$ for some $n \in \mathbb{N}$.
(d) Suppose $\nu(x) \geq 0$. Show that $\{f \mid f=0$, or $\nu(f)>0\}$ is a prime ideal of $k[x]$.
(e) Describe all possible ν.
3. Let (A, \mathfrak{m}, k) be a local ring and let $k \subset k^{\prime}$ be a finite field extension. Show there exists a flat, local map of local rings $A \rightarrow B$ such that $\mathfrak{m}_{B}=\mathfrak{m} B$ and $B / \mathfrak{m} B$ is isomorphic to k^{\prime} as k-algebra. (Hint: first do the case where $k \subset k^{\prime}$ is generated by a single element.)

Remark. The same result holds for arbitrary field extensions $k \subset K$.
4. Let R be a ring and let M be a finitely presented R module. Recall this means that there is an exact sequence

$$
R^{\oplus r} \longrightarrow R^{\oplus n} \longrightarrow M \longrightarrow 0
$$

This is called a presentation of M. Note that the map $R^{\oplus n} \rightarrow M$ is given by a sequence of elements x_{1}, \ldots, x_{n} of M. The elements x_{i} are generators of M. The map $R^{\oplus r} \rightarrow R^{\oplus n}$ is given by a $n \times r$ matrix A with coefficients in R. The columns of A are said to be the relations. Any vector $\left(r_{i}\right) \in R^{\oplus r}$ such that $\sum r_{i} x_{i}=0$ is a linear combination of the columns of A.
Of course any module has a lot of different presentations. We define $\operatorname{Pres}(M)$ to be the collection of matrices you can obtain in this way (meaning all matrices A of any size $n \times r$ that occur in some presentation of M).
(a) Show that if $A \in \operatorname{Pres}(M)$ has size $n \times r$ then the matrix \tilde{A} of size $n \times(r+1)$ obtained from A by adding a column of zeros occurs in $\operatorname{Pres}(M)$. (Hint: this corresponds to adding a trivial relation.)
(b) Show that if $A \in \operatorname{Pres}(M)$, then any $\tilde{A} \in \operatorname{Pres}(M)$, where \tilde{A} is obtained from A by replacing i th column vector A_{i} by $A_{i}+\sum_{j \neq i} r_{j} A_{j}$ for any $r_{j} \in R$. (Hint: This corresponds to replacing a relation by itself plus a linear combination of other relations.)
(c) Show that if $A \in \operatorname{Pres}(M)$ has size $n \times r$ then the matrix \tilde{A} of size $(n+1) \times(r+1)$ obtained from A by setting

$$
\begin{aligned}
\tilde{a}_{i j} & =a_{i j}, i<n+1, j<r+1, \\
\tilde{a}_{n+1 j} & =0, j<r+1, \\
\tilde{a}_{i r+1} & =0, i<n+1, \\
\tilde{a}_{n+1 r+1} & =1
\end{aligned}
$$

occurs in $\operatorname{Pres}(M)$. (Hint: This corresponds to adding $x_{n+1}=0$ and the trivial relation $x_{n+1}=0$.)
(d) Show that if $A \in \operatorname{Pres}(M)$, then $\tilde{A} \in \operatorname{Pres}(M)$ where \tilde{A} is obtained from A by replacing the j th row by a sum consisting of itself and a linear combination of other rows (with coefficients in R). (Hint: This corresponds to replacing x_{j} by $x_{j}+\sum_{i \neq j} r_{i} x_{i}$ and adjusting the relations accordingly.)
We say that matrices A and A^{\prime} with coefficients in R are obtained from each other by a sequence of elementary moves if there is a sequence of matrices $A=A_{0}, A_{1}, A_{2}, \ldots, A_{n}=$ A^{\prime} such that for each $0 \leq \ell<n$ the pair $\left(A_{\ell}, A_{\ell+1}\right)$ is the pair (A, \tilde{A}) or (\tilde{A}, A) for one of the operations on matrices described in (a)-(d) above.
(e) Show that any two matrices in $\operatorname{Pres}(M)$ are obtained from each other by a sequence of elementary moves. (Hint: First show this holds if A, A^{\prime} in $\operatorname{Pres}(M)$ are matrices of relations among the same set of generators.)
(f) Let k be an integer. Suppose that A, A^{\prime} are obtained from each other by a sequence of elementary moves. Say A has size $n \times r$ and A^{\prime} has size $n^{\prime} \times r^{\prime}$. Show that the ideal generated by the $(n-k) \times(n-k)$ minors of A agrees with the ideal generated by the $\left(n^{\prime}-k\right) \times\left(n^{\prime}-k\right)$ minors of A^{\prime}. [[Convention: If $k \geq n$ then we say the ideal generated by the $(n-k) \times(n-k)$-minors is R. In other words, the determinant of a matrix of size $0 \times 0,-1 \times-1$, etc is defined to be 1.]]
This defines the k th fitting ideal of M. Notation $\operatorname{Fit}_{k}(M)$.
(g) Show that $F i t_{0}(M) \subset F i t_{1}(M) \subset \operatorname{Fit}_{2}(M) \subset \ldots$. (Hint: Use that a determinant can be computed by expanding along a column.)
(h) Show that $M=(0)$ if $\operatorname{Fit}_{0}(M)=R$.
(i) Show that M if $\operatorname{Fit}_{0}(M)=(0)$ and $\operatorname{Fit}_{1}(M)=R$, then M is locally free of rank 1. (This is slightly tricky.)

