Commutative Algebra

Excercises 4

Let $\phi : A \to B$ be a homomorphism of rings. We say that the *going-up theorem* holds for ϕ if the following condition is satisfied:

(GU) for any $\mathfrak{p}, \mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p} \subset \mathfrak{p}'$, and for any $P \in \operatorname{Spec}(B)$ lying over \mathfrak{p} , there exists $P' \in \operatorname{Spec}(B)$ lying over \mathfrak{p}' such that $P \subset P'$.

Similarly, we say that the *going-down theorem* holds for ϕ if the following condition is satisfied:

(GD) for any $\mathfrak{p}, \mathfrak{p}' \in \operatorname{Spec}(A)$ such that $\mathfrak{p} \subset \mathfrak{p}'$, and for any $P' \in \operatorname{Spec}(B)$ lying over \mathfrak{p}' , there exists $P \in \operatorname{Spec}(B)$ lying over \mathfrak{p} such that $P \subset P'$.

1. In each of the following cases determine whether (GU), (GD) holds, and explain why. (Use any Prop/Thm/Lemma you can find, but check the hypotheses in each case.)

- (a) k is a field, A = k, B = k[x].
- (b) k is a field, A = k[x], B = k[x, y].
- (c) $A = \mathbb{Z}, B = \mathbb{Z}[1/11].$
- (d) k is an algebraically closed field, $A = k[x, y], B = k[x, y, z]/(x^2 y, z^2 x).$
- (e) $A = \mathbb{Z}, B = \mathbb{Z}[i, 1/(2+i)].$
- (f) $A = \mathbb{Z}, B = \mathbb{Z}[i, 1/(14+7i)].$

(g) k is an algebraically closed field, $A = k[x], B = k[x, y, 1/(xy-1)]/(y^2 - y).$

2. Let k be an algebraically closed field. Compute the image in Spec(k[x, y]) of the following maps:

- (a) $\operatorname{Spec}(k[x, yx^{-1}]) \to \operatorname{Spec}(k[x, y])$, where $k[x, y] \subset k[x, yx^{-1}] \subset k[x, y, x^{-1}]$. (Hint: To avoid confusion, give the element yx^{-1} another name.)
- (b) $\operatorname{Spec}(k[x, y, a, b]/(ax by 1)) \to \operatorname{Spec}(k[x, y]).$
- (c) $\operatorname{Spec}(k[t, 1/(t-1)]) \to \operatorname{Spec}(k[x, y])$, induced by $x \mapsto t^2$, and $y \mapsto t^3$.
- (d) $k = \mathbb{C}$ (complex numbers), $\operatorname{Spec}(k[s,t]/(s^3+t^3-1)) \to \operatorname{Spec}(k[x,y])$, where $x \mapsto s^2$, $y \mapsto t^2$.

Remark. Finding the image as above usually is done by using elimination theory.

3. Let k be a field. Show that the following pairs of k-algebras are not isomorphic:

- (a) $k[x_1, ..., x_n]$ and $k[x_1, ..., x_{n+1}]$ for any $n \ge 1$.
- (b) k[a, b, c, d, e, f]/(ab + cd + ef) and $k[x_1, \dots, x_n]$ for n = 5.
- (c) k[a, b, c, d, e, f]/(ab + cd + ef) and $k[x_1, \dots, x_n]$ for n = 6.

Remark. Of course the idea of this exercise is to find a simple argument in each case rather than applying a "big" theorem. Nonetheless it is good to be guided by general principles.