Commutative Algebra

Exercises 11
Let A be a ring. Recall that a finite locally free A-module M is a module such that for every $\mathfrak{p} \in \operatorname{Spec} A$ there exists an $f \in A, f \notin \mathfrak{p}$ such that M_{f} is a finite free A_{f}-module.

1. Let A be a ring.
(a) Suppose that M is a finite locally free A-module, and suppose that $\varphi: M \rightarrow M$ is an endomorphism. Define/construct the trace and determinant of φ and prove that your construction is "functorial in the triple (A, M, φ) ".
(b) Show that if M, N are finite locally free A-modules, and if $\varphi: M \rightarrow N$ and $\psi: N \rightarrow M$ then $\operatorname{Trace}(\varphi \circ \psi)=\operatorname{Trace}(\psi \circ \varphi)$ and $\operatorname{Det}(\varphi \circ \psi)=\operatorname{Det}(\psi \circ \varphi)$.
(c) In case M is finite locally free show that Det defines a multiplicative map $E n d_{A}(M) \rightarrow A$.
2. Now suppose that B is an A-algebra which is finite locally free as an A-module, in other words B is a finite locally free A-algebra.
(a) Define Trace $_{B / A}$ and $\operatorname{Norm}_{B / A}$ using Trace and Det as defined above.
(b) Let $b \in B$ and let $\pi: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ be the induced morphism. Show that $\pi(V(b))=V\left(N o r m_{B / A}(b)\right)$. (Recall that $V(f)=\{\mathfrak{p} \mid f \in \mathfrak{p}\}$.)
(c) (Base change.) Suppose that $i: A \rightarrow A^{\prime}$ is a ring map. Set $B^{\prime}=B \otimes_{A} A^{\prime}$. Indicate why $i\left(N o r m_{B / A}(b)\right)$ equals $\operatorname{Norm}_{B^{\prime} / A^{\prime}}(b \otimes 1)$.
(d) Compute $\operatorname{Norm}_{B / A}(b)$ when $B=A \times A \times A \times \ldots \times A$ and $b=\left(a_{1}, \ldots, a_{n}\right)$.
(e) Compute the norm of $y-y^{3}$ under the finite flat map $\mathbb{Q}[x] \rightarrow \mathbb{Q}[y], x \rightarrow y^{n}$. (Hint: use the "base change" $\left.A=\mathbb{Q}[x] \subset A^{\prime}=\mathbb{Q}\left(\zeta_{n}\right)\left(x^{1 / n}\right).\right)$
Remark. Let $h \in \mathbb{Z}[y]$ be a monic polynomial of degree d. Then:
(a) The map $A=\mathbb{Z}[x] \rightarrow B=\mathbb{Z}[y], x \mapsto h$ is finite locally free of rank d.
(b) For all primes p the map $A_{p}=\mathbb{F}_{p}[x] \rightarrow B_{p}=\mathbb{F}_{p}[y], y \mapsto h(y) \bmod p$ is finite locally free of rank d.
3. Let h, A, B, A_{p}, B_{p} be as in the remark. For $f \in \mathbb{Z}[x, u]$ we define $f_{p}(x)=f\left(x, x^{p}\right) \bmod p \in \mathbb{F}_{p}[x]$. For $g \in \mathbb{Z}[y, v]$ we define $g_{p}(y)=g\left(y, y^{p}\right) \bmod p \in \mathbb{F}_{p}[y]$.
(a) Give an example of a h and g such that there does not exist a f with the property

$$
f_{p}=\operatorname{Norm}_{B_{p} / A_{p}}\left(g_{p}\right) .
$$

(b) Show that for any choice of h and g as above there exists a nonzero f such that for all p we have

$$
\operatorname{Norm}_{B_{p} / A_{p}}\left(g_{p}\right) \text { divides } f_{p}
$$

If you want you can restrict to the case $h=y^{n}$, even with $n=2$, but it is true in general.
(c) Discuss the relevance of this to Exercises $6 \& 7$ of the previous set.
4. Unsolved problems. They may be really hard or they may be easy. I don't know.
(a) Is there any $f \in \mathbb{Z}[x, u]$ such that f_{p} is irreducible for an inifinite number of p ?
(b) Let $f \in \mathbb{Z}[x, u]$ nonzero, and suppose $\operatorname{deg}_{x}\left(f_{p}\right)=d p+d^{\prime}$ for all large p. (In other words $\operatorname{deg}_{u}(f)=d$ and the coefficient c of u^{d} in f has $\operatorname{deg}_{x}(c)=d^{\prime}$.) Suppose we can write $d=d_{1}+d_{2}$ and $d^{\prime}=d_{1}^{\prime}+d_{2}^{\prime}$ with $d_{1}, d_{2}>0$ and $d_{1}^{\prime}, d_{2}^{\prime} \geq 0$ such that for all sufficiently large p there exists a factorization

$$
f_{p}=f_{1, p} f_{2, p}
$$

with $\operatorname{deg}_{x}\left(f_{1, p}\right)=d_{1} p+d_{1}^{\prime}$. Is it true that f comes about via a norm construction as in Exercise 4? (More precisely, are there a h and g such that $\operatorname{Norm}_{B_{p} / A_{p}}\left(g_{p}\right)$ divides f_{p} for all $p \gg 0$.)
(c) Analogous question to the one in (b) but now with $f \in \mathbb{Z}\left[x_{1}, x_{2}, u_{1}, u_{2}\right]$ irreducible and just assuming that $f_{p}\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}, x_{1}^{p}, x_{2}^{p}\right) \bmod p$ factors for all $p \gg 0$.

