Calculus 1 Practice Problems

Alex Cowan
cowan@math.columbia.edu

1.* The number of prime numbers less than \(x \) is well approximated by

\[
\int_2^x \frac{dt}{\log t}.
\]

How many prime numbers would you expect to find between \(10^9\) and \(10^9 + 10^7\)?

2. Define

\[
f(x) := \int_{-100}^x e^{-\cos t} (t^2 - 4) \, dt.
\]

For what \(x \) does \(f \) attain a local minimum?

3. Write down a Riemann sum which estimates the value of

\[
\int_{-10}^2 e^{-x^2} \, dx
\]
reasonably well.

4.*

a) A certain random number generator generates

- the number \(\frac{1}{3} \) with probability \(\frac{(\frac{1}{3})^2}{(\frac{1}{3})^2 + (\frac{2}{3})^2 + 1^2} \)
- the number \(\frac{2}{3} \) with probability \(\frac{(\frac{2}{3})^2}{(\frac{1}{3})^2 + (\frac{2}{3})^2 + 1^2} \)
- the number 1 with probability \(\frac{1^2}{(\frac{1}{3})^2 + (\frac{2}{3})^2 + 1^2} \)

If you generate 1000 numbers from this random number generator and add them up, what number do you expect to get?

b) A certain random number generator generates

- the number 0.25 with probability \(\frac{0.25^2}{0.25^2 + 0.3^2 + 0.75^2 + 1^2} \)
- the number 0.5 with probability \(\frac{0.5^2}{0.25^2 + 0.3^2 + 0.75^2 + 1^2} \)
- the number 0.75 with probability \(\frac{0.75^2}{0.25^2 + 0.3^2 + 0.75^2 + 1^2} \)
- the number 1 with probability \(\frac{1^2}{0.25^2 + 0.3^2 + 0.75^2 + 1^2} \)
If you generate 1000 numbers from this random number generator and add them up, what number do you expect to get?

c) For large n, A certain random number generator generates

- the number $\frac{1}{n}$ with probability $\frac{(\frac{1}{n})^2}{(\frac{1}{n})^2+(\frac{2}{n})^2+...+1^2}$
- the number $\frac{2}{n}$ with probability $\frac{(\frac{2}{n})^2}{(\frac{1}{n})^2+(\frac{2}{n})^2+...+1^2}$
- ...
- the number 1 with probability $\frac{1^2}{(\frac{1}{n})^2+(\frac{2}{n})^2+...+1^2}$

If you generate 1000 numbers from this random number generator and add them up, what number do you expect to get, approximately?

d) For large n, a certain random number generator generates

- the number $\frac{1}{n}$ with probability $\frac{f(\frac{1}{n})}{f(\frac{1}{n})+f(\frac{2}{n})+...+f(1)}$
- the number $\frac{2}{n}$ with probability $\frac{f(\frac{2}{n})}{f(\frac{1}{n})+f(\frac{2}{n})+...+f(1)}$
- ...
- the number 1 with probability $\frac{f(1)}{f(\frac{1}{n})+f(\frac{2}{n})+...+f(1)}$

What is the average value of the output of this random number generator, approximately?

5.* What is the average value of the function $\sin x$ on the interval $[0, \pi]$?

6. Define $f_n(x) := (1 + x)^{\frac{1}{n}}$.
Estimate $f_n(-0.3)$. (Your answer will depend on n.)

7.* In this problem we will find a good estimate for $\sqrt{12345}$.

a) Estimate $\sqrt{12345}$ using linear approximation with $f(x) = \sqrt{x}$ and take $a_0 = 10000$ to be your base point. Write down your answer as a single decimal number which you think is correct to at least the 10s place.

b) Let y_0 be the answer you found in part a), truncated at the 10s place (meaning replace all digits after the 10s place with zeros). Define a_1 to be y_0^2. Compute a_1 and then approximate $\sqrt{12345}$ using linear approximation with $f(x) = \sqrt{x}$ and a_1 as your base point. Write your answer as a single decimal number which you think is correct to at least the 1s place.

c) Let y_1 be the answer you found in part b), truncated at the 1s place. Define a_2 to be y_1^2. Compute a_2 and then approximate $\sqrt{12345}$ using linear approximation with $f(x) = \sqrt{x}$ and a_2 as your base point.

8.* Estimate $\sqrt{2019}$.

9. Estimate $\frac{9}{10} \log \frac{9}{10}$.
10. Estimate \(\arctan(100) \).

11. Minimize the function \(x^2 + y^2 \) given the constraint \(x^2 + xy = 2 \). Maximize the function \(x^2 + y^2 \) given the constraint \(x^2 + xy = 2 \).

12. Find all the local and global extrema of the following functions:
 a) \(\log \frac{x}{x} \) on the interval \((0, 5]\).
 b) \(\arctan(2x + \frac{1}{x}) \) for \(x \in \mathbb{R}, x \neq 0 \).
 c) \(\arctan(\log|x^2 - x - 1|) \) for \(-2 < x \leq 4\).
 d) \(\begin{cases} |x|, & -2 < x < 2, x \neq 0 \\ 1, & x = 0 \end{cases} \).

13. a) State the definition of a global maximum, a global minimum, a local maximum, and a local minimum.
 b) Give an example of a function \(f : [0, 1] \to [0, 1] \) which has no global extrema, and only has local extrema at \(x = 0 \) and \(x = 1 \).
 c) Give an example of a continuous function \(f : \mathbb{R} \to \mathbb{R} \) which has at least one local max, at least one local min, and for which \(f'(x) = 0 \) has no solutions.
 d) Give an example of a function \(f : \mathbb{R} \to \mathbb{R} \) which is everywhere differentiable and has no extrema of any kind, but for which there exist distinct \(x_1 \) and \(x_2 \) such that \(f'(x_1) = f'(x_2) = 0 \).

14. Alice is running down the street. Her position is given by
 \[s(t) := \frac{1}{t}. \]
 a) What is Alice’s average velocity between \(t = 1 \) and \(t = 1.1 \)?
 b) Explain why Alice’s velocity at \(t = 1 \) is defined to be \(-1\).

15. Suppose \(f(3) = 7 \) and \(f(3.03) = 6.99 \). Guess the equation of the line tangent to the curve \(y = f(x) \) at \(x = 3 \).

16. Use the definition of the derivative to prove that \(\frac{d}{dx} x^2 = 2x \).

17. A 10-meter ladder is leaning against the wall of a building, and the base of the ladder is sliding away from the building at a rate of 3 meters per second. How fast is the top of the ladder sliding down the wall when the base of the ladder is 6 meters from the wall?
18. Suppose \(x \) and \(y \) are related via the equation \(x^2 \cos y + 3^y = \frac{2\sqrt{7}}{\pi^2} + \sqrt{3} \), and that \(\frac{dy}{dt} = 2 \). Find \(\frac{dx}{dt} \) when \((x, y) = \left(\frac{2}{\pi}, \frac{\pi}{4} \right) \).

19. Suppose \(p \) and \(q \) are related via the equation \(q \sin(p^2q^2) = p \). At the point \((p, q) = \left(\frac{\pi}{2}, \frac{3}{4} \right) \) it is known that \(\frac{dp}{dt} = 3 \). Find \(\frac{dq}{dt} \) at this point.

20. If \(x \) and \(y \) are related via the equation \(x^2y + 2^y = 80 \), find \(\frac{dx}{dy} \) at the point \((2, 3)\).

21. Let \(f \) be the function depicted below.
 a) Give all values of \(x \) for which \(f'(x) = 0 \) (approximately).
 b) Give all values of \(x \) for which \(f''(x) = 0 \) (approximately).

22. Sketch \(\arctan(x^2) \).

23. Let \(f(x(t)) \) be a differentiable function. Suppose that \(x(t) = e^t \) and that \(\frac{df}{dx} = \frac{1}{1+e^{2t}} \). What is \(\frac{df}{dt} \)?

24. True or false: \((2^3)' = 9 \cdot 2^8\).
25. True or false: \((x^x)' = x \cdot x^{x-1}\).

26. The Lambert W-function is the inverse function of the function \(z \mapsto z e^z\). Prove that
\[
\frac{dW}{dz} = \frac{1}{z + e^{W(z)}},
\]
where \(W\) is the Lambert W-function.

27. Show that
\[
\int_0^\infty \frac{dx}{x^2 + 0.0001 \log \log x} < \frac{1}{M}.
\]

28. True or false:
 a) \(\int_0^1 \sqrt{1 + x^2} \, dx = \sqrt{2} - 1\).
 b) \(\int x^2 \cos x \, dx = \frac{1}{3} x^3 \sin x + C\).

29. True or false: There exists a function \(f\) and real numbers \(a < b < c\) such that \(f\) has a vertical asymptote at \(b\) and \(\int_a^c f(x) \, dx\) exists.

30. a) Show that the function \(x^5 - 2x^2 + x - 1\) has a root in the interval \([0, 2]\).
 b) Explain why every 5th degree polynomial has at least one real root.

31. Prove that there’s a real number \(x\) such that \(2^x = 50x - 235\).

32. A Tibetan monk leaves the monastery at 7:00 am and takes his usual path to the top of the mountain, arriving at 7:00 pm. The following morning, he starts at 7:00 am at the top and takes the same path back, arriving at the monastery at 7:00 pm. Show that there is a point on the path that the monk will cross at exactly the same time of day on both days.

33. Let \(f: \mathbb{R} \to \mathbb{R}\) be a function whose derivative is continuous everywhere.
 a) Suppose there exist two points \(x_0\) and \(x_1\) with \(x_0 < x_1\) and \(f(x_0) > f(x_1)\). Prove that there exists an \(x^*\) such that \(f'(x^*) < 0\).
 b) Suppose that \(f'(x) > 0\) for all \(x\) in the interval \((a, b)\) Using the result from part a), prove that for all \(c_1\) and \(c_2\) in \((a, b)\), if \(c_1 < c_2\) then \(f(c_1) < f(c_2)\).
 c) Suppose that \(f'(x) > 0\) for all \(x\) in the interval \((a, b)\) Using the fundamental theorem of calculus, prove that for all \(c_1\) and \(c_2\) in \((a, b)\), if \(c_1 < c_2\) then \(f(c_1) < f(c_2)\).

34. Let \(f(x) = 2x + 1\) if \(x < 1\) and \(-x^2 + ax + b\) if \(x \geq 1\). For what choice(s) of \(a\) and \(b\) will \(f\) be:
 a) Continuous at \(x = 1\)?
 b) Differentiable at \(x = 1\)?

35. Evaluate the following limits:
a) \[\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2} \]

b) \[\lim_{x \to \infty} \frac{3x^5 + 6x}{4x^3 - 3x^2 + 2} \]

c) \[\lim_{x \to \pi} \frac{\tan(x)}{x} \]

d) \[\lim_{x \to 0} \frac{e^x - 1 - x}{\cos(x) - 1} \]

e) \[\lim_{x \to 0} \frac{\cos(5x) - 1}{2^x - 1 - x \log 2} \]

f) \[\lim_{x \to 0} \frac{x^2 e^x}{e^{3x} - 1 - 3x} \]

g) \[\lim_{x \to \infty} x^4 e^{-x} \]

h) \[\lim_{n \to \infty} \begin{cases} 1 + \frac{1}{n} & \text{if } n \text{ is even} \\ 1 - \frac{1}{n} & \text{if } n \text{ is odd} \end{cases} \]

i) \[\lim_{h \to 0} \frac{1}{h} \int_{2}^{2+h} \tan \sqrt{7} \, dt \]
36. Differentiate the following functions with respect to x:

a) $\frac{1}{x^{\frac{5}{3}}} + 17 \cdot 10^x + t$

b) $(\log(x^3 + 1))^4$

c) $x^2e^x \sin x$

d) $\frac{x}{x^2 + 1}$

e) $(\log x + x^4 + 1)^{\frac{3}{2}} + ((\arctan x)^2 - 2x + 3)^2 - x + 88$

f) $2x^2 \arcsin(3^x)$

g) $\frac{4x^2}{\sqrt{e^{2x^2} - 2}}$
37. Evaluate the following integrals:

a) \[\int_{-2}^{2} (3x^5 + 2x^3 - x + 1) \, dx \]

b) \[\int xe^{\arcsin r} \, \sqrt{1 - r^2} \, dr \]

c) \[\int_{3}^{4} 2^{2x} \, 2^y \, dy \]

d) \[\int_{\frac{\pi}{2}}^{\frac{\pi}{4}} 2 \sin(sin \, u) \cos \, u \, du \]

e) \[\int \frac{\sqrt{\log t}}{t} \, dt \]

f) \[\int_{-\infty}^{\infty} \frac{dx}{1 + 4x^2} \]

g) \[\int_{-\infty}^{\infty} \sin x \, dx \]

h) \[\int_{-\infty}^{\infty} \frac{\sin x}{e^{-x^2}} \, dx \]

i) \[\int_{0}^{1} \sqrt{s} \, ds \]

j) \[\int_{1}^{\infty} t^{-t} \, dt \]