Calculus 1 Assignment 3
Alex Cowan
cowan@math.columbia.edu
Due Wednesday February 13th at 3 pm

1 Rock Throwing

Problem 1.1: Alice drops a rock from a height of 5 meters in an alternate universe. In this alternate universe, the height of the rock above the ground is given by \(h(t) = 5 - 5t^3 \). How fast is the rock falling when it hits the ground? Only use arguments similar to those discussed in class and in the first two chapters of Stewart.

2 Limits

Problem 2.1: What are the following limits?
 a) \(\lim_{x \to 0} \frac{\sin(\pi x)}{x} \)
 b) \(\lim_{x \to 0} \frac{\log(ax+1)}{x} \), where \(a \) is an arbitrary real number. (Hint: experiment with some fixed values of \(a \).)
 c) \(\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \)
 d) \(\lim_{x \to 0} \frac{x^{\frac{1}{x+1}}}{} \)
 e) \(\lim_{x \to 1} f(x) \), where \(f(x) = 0 \) if \(x \notin \mathbb{Q} \), and \(f(x) = 1 \) if \(x \in \mathbb{Q} \).
 f\(^*\) \(\lim_{x \to 0.5} f(x) \), where \(f(x) = 0 \) if \(x \notin \mathbb{Q} \), and \(f(x) = \frac{1}{q} \) if \(x = \frac{p}{q} \) is a fraction in lowest terms and \(q > 0 \).

2.2: Give an example of a function \(f \) and a point \(a \) such that \(f(a), \lim_{x \to a^+} f(x) \), and \(\lim_{x \to a^-} f(x) \) all exist and are all unequal.

2.3: Suppose \(f \) and \(g \) are “nice” functions. Show that
\[
\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = f(x) \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} + g(x) \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]
What assumptions did you have to make about \(f \) and \(g \) (i.e. what does “nice” mean here?)
(Hint: Add and subtract \(\lim_{h \to 0} \frac{f(x+h)g(x)}{h} \) to the left hand side.)