1 General Function Stuff

Problem 1.1: Let \(f(x) = \sqrt{x} \) and \(g(x) = 4\sqrt{-3x+2} - 5 \).
 a) What are the domains of \(f \) and \(g \)?
 b) Sketch \(f \) and \(g \) on the same set of axes.

Problem 1.2: Calculate the following compositions.
 a) \(f \circ g \), where \(f(x) = ax + b \) and \(g(x) = cx + d \).
 b) \(g \circ f \), where \(f(x) = ax + b \) and \(g(x) = cx + d \).
 c) \(f \circ g \), where \(f(x) = x^2 - 1 \) and \(g(x) = x^2 + 1 \)

Problem 1.3: Find the inverses of the following functions.
 a) \(\frac{4x-1}{2x+3} \)
 b) \(x^2 - x \)

Problem 1.4: If \(f(x) = x^3 + x + 1 \), find \(f^{-1}(3) \) and \(f(f^{-1}(2)) \).

Problem 1.5: Show that \(\cos(\sin^{-1}(x)) = \sqrt{1-x^2} \).

Problem 1.6*: On one set of axes draw 10 different functions which satisfy the equation \(f(f(x)) = x \) and have domain \((0,\infty)\).

2 Exponentials and Logarithms

Problem 3.1: Prove the following rules of logarithms. You can assume facts about exponentials.
 a) \(\log(x) + \log(y) = \log(xy) \)
 b) \(\log_a(x) = \frac{\log(x)}{\log(a)} \)

Problem 3.2: Solve for \(x \):
 a) \(2^x = 10^3 \)
 b) \(\log(\log(x)) = 1 \)
 c) \(e^{ax} = Ce^{bx} \), where \(a \neq b \) and \(C > 0 \)