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Integrable probabilistic systems

Admit exact and concise formulas for expectations of a variety of 

observables of interest.

•

Asymptotics of systems, observables and formulas lead to detailed 

descriptions of wide universality classes and limiting phenomena.

•

These special systems come from algebraic structures:

Universality of asymptotics requires different tools - mostly open!

Representation theory

(Macdonald processes)

Quantum integrable systems

(stochastic vertex models)

Integrable 

probabilistic systems
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Coin flipping

The number of heads in N fair coin flips is •

given exactly by the Binomial distribution:

     Probability (heads = h) = 2-N (  )
Law of large numbers [Bernoulli 1713]: as N grows, heads/N -> 1/2•

Central limit theorem [de Moivre 1733], [Laplace 1812]: as N grows•

Probability (heads <                 ) -> 

Proved using asymptotics for N! [de Moivre 1721], [Stirling 1729]:•
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The Gaussian central limit theorem

The universality of the Gaussian distribution

was not demonstrated until [Lyapunov 1901].

Polya called this the 'central limit theorem' 

due to its importance in probability theory.

Theorem: Let           … be independent identically distributed (iid) random 
variables of finite mean     and variance   . Then for all    , as     grows

          Probability (                              ) -> 

Extensions exist for this result, and much of 

probability deals with Gaussian processes.



The 'bell curve' is ubiquitous and is the basis 

for much of classical statistics.


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Random deposition model

Blocks fall independent and 

in parallel above each site 

according to exponentially 

distributed waiting times.

Probability (X>s) = e-λs.

Exponential distribution of rate λ (mean 1/λ):

Memoryless (Markov), so growth depends only the present state.

Gaussian behavior since each column is a sum of iid random variables
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Ballistic deposition model (sticky blocks)

Same process of 

falling blocks

Sticky blocks introduce partial correlation [Vold 1959]
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Random vs. ballistic deposition

Linear growth (known speed)•

t1/2 fluctuations with 

Gaussian limit (CLT)

•

No spatial correlation•

Gaussian universal class

Linear growth (unknown speed)•

Conjectural t1/3 fluctuations with  

GOE Tracy-Widom limit.

•

Conjectural t2/3 spatial correlation•

KPZ universality class
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Ballistic deposition in 'nature'

   Tuesday talk 1 Page 8    



Disordered liquid crystal growth
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Corner growth model - an integrable example

Theorem [Rost 1981]: For wedge initial data as     grows,

Each      turns into       after an 

exponential rate 1 waiting time.

h(t,x) = height above x at time t. Wedge initial data is h(0,x)=|x|.
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Corner growth model - an integrable example

Theorem [Johansson 1999]: For wedge initial data as     grows

Probability (           >     ) ->               .

Each      turns into       after an 

exponential rate 1 waiting time.

Define the rescaled height function 

L1/3

L2/3

L
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GUE Tracy-Widom distribution (FGUE or F2)

First arose in the study of random 

matrices [Tracy-Widom 1993]

•

Negative mean, lower tail like•

         and upper tail like 

Defined via a Fredhold determinant:•

Probability 

density 

function p(x)

Log[p(x)]
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1+1 dimensional Kardar-Parisi-Zhang universality class

Entire growth processes has a limit - the KPZ fixed point.•

3 : 2 : 1 scaling of time : space : fluctuation is called 'KPZ scaling'.•

Local dynamics

Smoothing

Slope dependent (or lateral) growth rate

Space-time random driving forces

Believed to arise in 1+1 dimensional growth processes which enjoy •

There are a number of other types of systems which can (at least 

in special cases or approximations) be maps into growth processes. 

Hence these become included into the universality class too.

•
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Filling in the KPZ universality class

Random interface growth                             Stochastic PDEs

  Big data and 

random matrices

Traffic flow

Random tilings

  in random environment

Optimal paths / random walks 

KPZ fixed point should be the universal limit under 3:2:1 scaling. 

This is mainly conjectural and only proved for integrable models.

KPZ 

fixed point
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Random interface growth

Partially asymmetric corner growth model:•

Each      turns into       after an 

exponential rate p waiting time.



Each      turns into       after an 

exponential rate q waiting time.



Theorem [Tracy-Widom '09]: Same law of large numbers 

and fluctuation limit theorems hold with t -> t/(p-q).

p>q

When p=q the law of large numbers and fluctuations change nature.

This corresponds with the Edwards-Wilkinson universality class 

which has 4:2:1 scaling and Gaussian limiting behavior.
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Stochastic partial differential equations: KPZ equation

Continuum growth model studied by [Kardar-Parisi-Zhang '86]

using work of [Forster-Nelson-Stephen '77] to predict 3:2:1 scaling.

•

[Bertini-Cancrini '95], [Bertini-Giacomin '97] make sense of this.•

3:2:1 scaling [Balazs-Quastel-Seppalainen '09]

FGUE limit [Amir-C-Quastel '10]

KPZ equation is in the KPZ universality class proved recently:•

KPZ (3:2:1)

fixed point

KPZ equationEW (4:2:1) 

fixed point

Short time                                                        long time

p-q=0          p-q -> 0 critically                             p-q>0 fixed

Corner growth

space-time white noise
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KPZ scaling: b=1/2, z=3/2 [Forster-Nelson-Stephen '77], [KPZ '86]    

All growth processes with key features (locality, smoothing, lateral 

growth, noise) should renormalize to KPZ fixed point [C-Quastel '11]

(e.g. GUE Tracy-Widom law). Unclear exactly what this limit is! 

Weak nonlinearity scaling: b=1/2, z=2, scale nonlinearity by      .

Weak noise scaling: b=0, z=2, scale noise by      .

Weak limits are proxies for rescaling discrete models to KPZ equation.

The rescaled solution                                       satisfies

Rescaling the KPZ equation
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1+1 dimensional 

semi-discrete and 

discrete SHE
Rate q     Rate p

ASEP

q-TASEP

Rate

TASEP

Directed polymers

KPZ equation

KPZ fixed point

Weak nonlinearity 

scaling

Weak noise     

     scaling

KPZ scaling

Another big picture
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Traffic flow

Asymmetric simple exclusion process (ASEP):•

Introduced in biology literature to model RNA

q-TASEP [Borodin-C '11]: Simple traffic model•

transcription [MacDonald-Gibbs-Pipkin '68].

q-PushASEP [C-Petrov '12]: Includes breaking•

KPZ class behavior: For step initial data, the number of particles to 

cross origin behaves like                    where     is FGUE distributed.

rate 1-qgap

rate 1-qgaprate 1

gap=4

gap=4

probability qgap

gap=2
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Optimal paths in random environment

p=1, q=0

     : time for box (i,j) to grow, 

once it can (exponential rate 1). 

•

L(x,y): time when box x,y is grown.•

Recursion: L(x,y)  =  max(L(x-1,y),L(x,y-1)) + wxy

Iterating: L(x,y)  =  max        wij

KPZ class behavior: L(xt,yt) behaves like                   where      is 

FGUE distributed and the constants depend on x,y.

Last passage percolation [Rost '81]
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Optimal paths in random environment

[Barraquand-C '15]: Assign edge weights to each      so with probability 

1/2, horizontal weight is 0 and vertical is exp(1); otherwise reversed.

Minimal passage time P(x,y)  =  min         we .

KPZ class behavior: For x = y,  P(xt,yt) behaves like                   

where      is FGUE distributed and the constants depend on x,y.
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Random walk in random environment

time

space

For each (space,time)-vertex 

choose uys uniform on [0,1].

Take independent random walks X(1), 

X(2) ,… where at time s and position y, 

move left with probability uys, right with 

1-uys. Let M(t,N) = max ( X(1), … , X(N) ).

KPZ class behavior: For 0<r<1,  M(t,ert) behaves like                   

where      is FGUE and the constants depend on r [Barraquand-C '15].

If all uys=1/2 (i.e. simple symmetric random walk), large deviations and 

extreme value theory implies order one Gumbel fluctuations.
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Big data and random matrices

Gaussian Unitary Ensemble (GUE) on N x N complex matrices:

                          where

Introduced by [Wigner '55] to model the energy levels/gaps of atoms 

too complicated to solve analytically.

Let                      denote the 

(random) real eigenvalues of      .  

KPZ class behavior:      behaves like               where      is FGUE.

Relationship to growth processes is much less apparent here.

   Tuesday talk 1 Page 23    



Big data and random matrices

Complex Wishart Ensemble (or sample covariance) on N x M matrices:

                           where

Introduced by [Wishart '28] within statistics. Provides a base-line for 

noisy data against which to compare Principal Component Analysis

Let                      denote the (random) real positive singular values 

of         (i.e., the square-roots of eigenvalues of                 ). 

Surprise [Johansson '00]: The distribution of      equals that of L(N,M).

E.G. N=M=1, Probability(         )
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Vicious walkers and random tilings

Consider N random walks with fixed starting and ending points, 

conditioned not to touch. This gives rise to a uniform measure on 

fillings of a box, or tilings of a hexagon by three types of rhombi.
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Vicious walkers and random tilings

KPZ class behavior: The top 

walker (or edge of the arctic 

circle) has fluctuations of order 

N1/3 and limiting FGUE distribution.

[Baik-Kriecherbauer-McLaughlin-

Miller '07], [Petrov '12]

Arctic circle theorem [Cohn-Larsen-Propp '98]

Pretty pictures (and math) when 

tiling various types of domains
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Open problems

Higher dimension (e.g. random surface growth)•

Growth processes (e.g. ballistic deposition, Eden model)

Interacting particle systems (e.g. non-nearest neighbor exclusion)

Last/first passage percolation, RWRE with general weights 

KPZ universality (scale, distribution, entire space-time limit)•

Complete space-time multpoint distribution

Unique characterization of fixed point

Full description of KPZ fixed point•

Under critical weak tuning of the strength of model parameters

Weak universality of the KPZ equation•

Discover new integrable examples and tools in their analyses•
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Summary

Integrable probabilistic systems reveal details of large universality 

classes. They are intimately connected to certain algebraic structure

•

Coin flipping and Gaussian universality class is simplest example•

Random interface growth leads to new phenomena such as spatial 

correlation, smaller fluctuations and new distributions

•

KPZ class arises in various growing interfaces, and the analysis of 

the corner growth model reveals its properties

•

KPZ class encompasses many other types of systems, including 

stochastic PDEs, traffic flow, optimal paths in random 

environments, random walks in random environments, big data 

and random matrices, vicious walkers and tilings…

•
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