Universal phenomena in random systems

lvan Corwin (Clay Mathematics Institute, Columbia University, Institute Henri Poincare)



Integrable probavilistic systems

e Admit exact and concise formulas for expectations of a variety of
observables of interest.
« Asymptotics of systems, observables and formulas lead to detailed

descriptions of wide universality classes and limiting phenomena.

These special systems come from algebraic structures:

Representation theory Quantum integrable systems

(stochastic vertex models)

o

(Macdonald processes)

™~

Integrable
probabilistic systems

Universality of asymptotics requires different tools - mostly open!
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Coin flipping

e The number of heads in N fair coin flips is
given exactly by the Binomial distribution:

Probability (heads = h) = 27" (ﬁ)

e Law of large numbers [Bernoulli 1713]: as N grows, heads/N -> 1/2
o Central limit theorem [de Moivre 1733], [Laplace 1812]: as N grows

N X Y/
Probability (heads < &5 * —WX -> Ny d
4 H( 2L ) \ 7 )’ -
e Proved using asgmptotlcs for N! [de Moivre 1721], [Stirling 1724]:
=) = [t = 0 [ W w8

N N/\l+l ,N‘/——ﬂm



The Gaussian central limit theorem

The universality of the Gaussian distribution

was not demonstrated until [Lyapunov 1901].
Polya called this the 'central [imit theorem!'

due to its importance in probability theory.

Theorem: Let X. X, ... be independent identically distributed (iid) random
variables of finite mean m and variance V. Then for all s, as A/ grows

Probability (X,+-+XN<mN+VIN S) -> J S—dy
S AT

¢ Extensions exist for this result, and much of
probability deals with Gaussian processes.
* The 'bell curve' is ubiquitous and. is the basis

Plﬂ 1.0 The Extended Bell Cicrve.

for much of classical statistics.
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Random deposition model

\_ V Blocks fall independent and
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DD E E distributed waiting times.

in parallel above each site
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Exponential distribution of rate N (mean 1/1): ‘ s
Probability (X>s) = e™ sl Sovaiaa)
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Memoryless (Markov), so growth depends only the present state.

Gaussian behavior since each column (s a sum of (id random variables
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Ballistic deposition model (sticky blocks)

Same process of

U falling blocks

]
]

mes
LI T TT] >

Sticky blocks introduce partial correlation [Vold 1959]
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Random vs. ballistic deposition

Gaussian universal class KPZ universality class
e Linear growth (known speed) e Linear growth (unknown speed)
o t*'% fluctuations with e Conjectural t*'7 fluctuations with
Gaussian [imit (CLT) GOE Tracy-Widom [imit.

* No spatial correlation e Conjectural t/7 spatial correlation
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‘nature'
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Ballistic depos
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Disordered liquid
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Corner growth model - an integrable example

Continuous time = 411

Each \ turns into <> after an

exponential rate 1 waiting time.

h(t.x) = height above x at time t. Wedge initial data is I/\(O,x)‘-‘-lxl.
Theorem [Rost 1981]: For wedge initial data ast grows,

=Xt
"\<‘tJ\tX> I { 3 |X'<\
< x|, 17|




Corner growth model - an integrable example

Each " turns into <> after an

exponential rate 1 waiting time.

Define the rescaled height function hL(f, X) = L ‘/3(:[/) ( Lt LZ/ 3)() _ %]

Theorem [Johansson 1999]: For wedge Initial data as L grows

Probability (hL(tO) >-S) - E@UE (5)




GUE Tracy-Widom distribution (Fgyg or F,)

* First arose in the study of random

Probability

matrices [Tracy-Widom 1993]
density

. Negatlve mean, lower tail llke Function p(x)

- <> and upper tail like € <y

e Defined via a Fredhold determinant:




1+1 dimensional Kardar-Parisi-Zhang universality class

« Entire growth processes has a limit - the KPZ fixed point.
¢ 3 : 2 : 1 scaling of time : space : fluctuation is called 'KPZ scaling'.
« Believed to arise in 1+1 dimensional growth processes which enjoy
= Local dynamics
= Smoothing
» Slope dependent (or lateral) growth rate

" Space-time random driving forces

e There are a number of other types of systems which can (at least
in special cases or approximations) be maps into growth processes.

Hence these become included into the universality class too.



Filling in the KPZ universality class

@Mlow\ interface grow@ @clf\astic PDEs
o <

Traffic flow)— " kpz

Big data and

random matrices

@dcm ti(@/ I

Optimal paths / random walks
in random environment

KPZ fixed point should be the universal limit under 3:2:1 scaling.

This is mainly conjectural and only proved for integrable models.



Random interface growth

e Partially asymmetric corner growth model:

< Each ™\ turns into <> after an

exponential rate p waiting time.

<> Eaclxx<> turns into N\ after an

exponential rate q waiting time.

2

Theorem [Tracy-Widom '09]: Same law of large numbers
and fluctuation limit theorems hold with t -> t/(p-q).

When p=q the law of large numbers and fluctuations change nature.
This corresponds with the Edwards-Wilkinson universality class
which has 4:2:1 scaling and Gaussian limiting behavior.
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Stochastic partial differential equations: KPZ equation

space-time white noise

( \ 2 £ i
Y b = S9N » SO ) o e

V’\\

e Continuum growth model studied by [Kardar-Parisi-Zhang '8 6]
using work of [Forster-Nelson-Stephen '77] to predict 3:2:1 scaling.
o [Bertini-Cancrini 'a5], [Bertini-Giacomin ‘a7] make sense of this.
* KPZ equation is in the KPZ universality class proved recently:
» 3:2:1 scaling [Balazs-Quastel-Seppalainen '09]
" Foue limit [Amir-C-Quastel '10]

Short time long time
EW (4:2:1) KPZ equation KPZ (3:2:1)
fixed point fixed point
Corner growth
p-9=0 p-q -> O critically p-9>0 fixed
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Rescaling the KPZ equation

b - -
The rescaled solution A S t)h= & A@f Zf, £7'X) satisfies

dihe = & €7 b RET QRS s
KPZ scaling: b=1/2, z=3/2 [Forster-Nelson-Stephen '77], [KPZ '86]
All growth processes with key features (locality, smoothing, lateral
growth, noise) should renormalize to KPZ fixed point [C-Quastel '11]
(e.g. GUE Tracy-Widom law). Unclear exactly what this limit is!

Weak nonlinearity scaling: b=1/2, z=2, scale nonlinearity by &= .

Weak noise scaling: b=0, z=2, scale noise by £=.

Weak [imits are proxies for rescaling discrete models to KPZ equation.



Another big picture

ASEP \/\/e{ak nonlinearity Weak m(oise 1+1 dimensional
scaling scaling
semi-discrete and
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Traffic fl
raffic flow \\

e Asymmetric simple exclusion process (ASEP):

Introduced in biology literature to model RNA
transcription [MacDonald -Gibbs-Pipkin '62]. W
e 9-TASEP [Borodin-C '11]: Simple traffic model

—yrate 1-g%°f

o+ —+———@
gap=4

e 9-PushASEP [C-Petrov '12]: Includes breaking

probability ¢’  rate 1 rate 1-g9%
LN N Y
‘o ‘o + o
(VW \/_\/\_/
gap=2 gap=4

KPZ class behavior: For step initial data, the number of particles to
. : v : oy
cross origin behaves like Ct + c't? X where X is Foue distributed.




Optimal paths in random environment

Last passage percolation [Rost '81]
e W;;: time for box (i})) to grow,

once it can (exponential rate 1).

e L(x,y): time when box x,y is grown.

Recursion: L(x,y)

max(L(x-1,y),L(x,y-1)) + Wy,

lterating: L(x,y) = max > w;
TT: (1,0 »(%Y) (L.'J‘)‘ﬁn.

KPZ class behavior: L(xt,yt) behaves like ct+ C’f%ﬁ’X where X s
Foue distributed and the constants depend on x.y.
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Optimal paths in random environment
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[Barraquand-C '157]: Assign edge weights to each so with probability
1/2, horizontal weight is © and vertical is exp(1); otherwise reversed.

Minimal passage time P(x,y) = min > w,.
TT :(0,0) (% Y) eetr

KPZ class behavior: For x # y, P(xtyt) behaves like Ct + c 1
where "X is Foug distributed and the constants depend on x.y.
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Random walk in random environment

space

For each (space,time)-vertex

time

choose u

4 uniform on [0,1].

Take independent random walks X&),
X*) .. where at time s and position y,
move left with probability u, right with
1-uy. Let M(tN) = max ( X&), ..., X,

. . , 1%
KPZ class behavior: For O<r<l, M(t,e™) behaves like ct +ct?X

where X s Foue and the constants depend on r [Barraquand-C '15].

If all u,=1/2 (i.e. simple symmetric random walk), large deviations and

extreme value theory implies order one Gumbel fluctuations.
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Big data and random matrices

Gaussian Um’targ Ensemble (GUE) on N x N complex matrices:

) ~
W e — (Mo ~) .
- y ) J
= 4 e Hy =Ty - Wl 7)o ONRA)

Introduced by [Wigner '55] to model the energy levels/gaps of atoms

P(A)

too complicated to solve analytically.  ooe
) Ny o oo

Let 9\ g2 2 9\ denote the 0.003
(N) 0.00Z

(random) real eigenvalues of H 0.001

—-50 0 50 llilllljl

KPZ class behavior: Q\(N) behaves like 2/\/+N/3)C where "X is Fgyg.

Relationship to growth processes is much less apparent here.



Big data and random matrices

Complex Wishart Ensemble (or sample covariance) on N x M matrices:

(NM)

=[HI  where Hi = Allo, V) Vi N (0, a)

(<M
J
Introduced by [Wishart '28] within statistics. Provides a base-line for

noisy data against which to compare Principal Component Analysis

(NM, (NM " :
Let ¢ 2 207, denotethe (random) real positive singular values

of H(Nm (i.e., the square-roots of eigenvalues of H(NM(H(NM)*).

Surprise [Johansson '00]: The distribution of 0\(N|Mequals that of L(N M).

‘L'L

E.G. N=M=1, Probability( [« 3) —-rrf e 7olxdy fe rdr = Se dt



Vicious walkers and random tilings

. AN
'/\’ é e ; N
o T "Ne o I\ Ne
X > K>
NG NN . 1
NN ]
.\/\/' S \?/ \% //

Consider N random walks with fixed starting and ending points,
conditioned not to touch. This gives rise to a uniform measure on

fillings of a box, or tilings of a hexagon by three types of rhombi.
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(kers and random til
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~-Propp '48]

Arctic circle theorem [Cohn-Larsen
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KPZ class behavior
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Open problems

e Higher dimension (e.g. random surface growth)
e KPZ universality (scale, distribution, entire space-time [imit)
» Growth processes (e.g. ballistic deposition, Eden model)
" Interacting particle systems (e.g. non-nearest neighbor exclusion)
" Last/first passage percolation, RWRE with general weights
o Full description of KPZ fixed point
" Complete space-time multpoint distribution
» Unique characterization of fixed point
e Weak universality of the KPZ equation
» Under critical weak tuning of the strength of model parameters

 Discover new integrable examples and tools in their analyses
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Summary

o Integrable probabilistic systems reveal details of large universality
classes. They are intimately connected to certain algebraic structure

e Coin flipping and Gaussian universality class is simplest example

e Random interface growth leads to new phenomena such as spatial
corvelation, smaller fluctuations and new distributions

e KPZ class arises in various growing interfaces, and the analysis of
the corner growth model reveals its properties

e KPZ class encompasses many other types of systems, including
stochastic PDEs, traffic flow, optimal paths in random
environments, random walks in random environments, big data

and random matrices, vicious walkers and tilings...
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