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The dynamics of velocity fluctuations governed by the Burgers equation, driven by the white-in-time
random forcing function with[ f(x + r,7) — f(x,#)]2 = r¢8(t — ¢) is considered on the interval
0 < x < L. The properties of the probability density function of velocity differen®ddu, r) are
investigated for the three casés= {0;1/2;2}. Itis shown that the tail of the probability density func-
tion in the intervalAu/r* < —1; |Au| < uns andr < L is accurately described by the asymptotic
algebraic relatioP(Au, r) « r/(Au)” with y = 1 + 1/z, wherez = (£ + 1)/3. A detailed numeri-
cal investigation, performed in this work, supports this result. [S0031-9007(96)01384-1]

PACS numbers: 47.27.Gs, 03.40.Kf, 05.40.+j, 47.27.Ak

Recent interest in the problem of turbulence in arecently been obtained in the work by Sinat al. [3]
random-force-driven Burgers equation is motivated byusing a different method. The goal of the present Letter
the possibility that this system might play a role inis to investigate the universal features of a random-force-
the development of turbulence theory similar to thatdriven Burgers equation considering few different cases of
played by the two-dimensional Ising model in creationthe stirring force. It will be shown that the main physical
of the theory of critical phenomena. It was demon-conclusions of the work [2] are valid disregarding the
strated recently [1] that the statistical properties of solupower spectrum of the driving force. However, the
tion of the one-dimensional Burgers equation, driven byexponent of the algebraic tail of the probability density
a white-in-time random force with the correlation func- in the limit Au/r < —1 with |Au| < ums andr < L,
tion f(k,t)(k’,t') « k= '8(t — '), have many features dominated by the well separated shocks, is represented by
surprisingly similar to the ones observed in the real-lifea general expression similar to the one derived in [1].
three-dimensional turbulence: Kolmogorov energy spec- Let us consider the one-dimensional problem
trum, intermittency and the scaling properties of the dissi-
pation rate fluctuations, and bifractality of the probability up Tty = f 4 vt (1)
density function (PDF) of velocity differenceB(Au, r),
where Au = u(x + r) — u(x). It was shown that in-
termittency in this system is a consequence of the alg
braic tail of the probability density function faku < 0,

where the white-in-time random forcing function is de-
fined by its variance and(x, 7)f(x', ') = k(r)d(t — t'),
&here r = |x — x'| and whenr/L < 1 the velocity
) , X _ /3 structure function is«(r) = «(0) — art. According to
allowing scaling solutionss, = (Aw)? = r?’> only for  ne recent theoretical and numerical works [1,2], the prob-
the moments W;}*J; < 3 while the moments witfp >3 apijity density of the velocity difference®(Au, r) con-
scale as§, o« rums and depend on the single-point prop- sists of two physically different regions. Whéau| >
erty ums = V2. The shape of the algebraic tail of the u;ms the PDF
PDF P(Au,r) = r/(Au)* was evaluated from the balance Au
equations with the assumption that the dissipation in the (Au,r) = r®< > 2)
system is dominated by the well separated shocks. Hrms

The groundbreaking theoretical work by Polyakov [2] depends on the single-point property,, and, therefore,
dealt with the same problem, but driven by the forceis not a universal function. At the same time, in the inter-
with the correlation function concentrated at the largesval |Au| < ums andr < L the PDF can be represented
scales only:D(r) = f(x)f(x + r) < k(0) — ar?, when inthe universal scaling form
r/L <« 1, and wherel is the length scale of the forcing 1 /Au
function, so thatD(k) = 0 whenk > 2x/L. Polyakov P(Au,r) = ;F<_>
produced an exact solution based on some self-consistent
assumptions about the structure of the theory. Thevhere ffz F(x)dx = 1. The dynamic exponeng can
common feature of the solutions presented in [1,2] isbe calculated using the equation similar to that derived
the existence of the algebraic tails of the probabilityby Polyakov:z = (¢ + 1)/3. Forx = Au/r* > 1, the
density function of velocity difference with the exponentsuniversal scaling function in (3) is given by the expression
depending on the properties of the forcing function. TheF(x) « exd—a(z)x*] where the coefficientr(z) can be
algebraic tails ofP(Au, r) in Polyakov’'s problem have evaluated from the theory. In the regipri < 1the PDF
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FIG. 1. Collapse of the PDFs in the universal regionlof
for thez = 1/3 case.

is a solution of the Fokker-Plank-like equation [2].
the most interesting intervdlAu| < ums, Au < 0 and
|x| > 1 the probability density is dominated by the well
separated shocks and that is why it can be represented
a general form [1]:P(Au, r) = (r/L)P(U), wherer/L

is a probability to find a shock in the interval of the
lengthr, and P(U) is the probability of a shock having
the amplitudeU. Since in this range the shocks are well
separatedAu = U. If the PDF has algebraic tails, i.e.,

(Au)V ’ (4)

then the exponeny can be evaluated by equating the
above expressions with the only algebraic solution with

1 (5)

vy=1+ —.
b4

This result has been tested on three different cases
{1/3;1/2;1}. Casez = 1/3 corresponds to the loga-
rithmic flux case considered in [1], cage= 1 is the
large-scale forced case considered in [4-3], and
1/2 is an intermediate case between them. The nume
ical part was described in [1]; therefore we will mostly
dwell here on the discussion of the results. For all of
the casex = {1/3,1/2,1} the estimate for the dissipa-
tive cutoff wave number isk; = 600. Measurements
of the PDFs were made for the following values of
r € {100, 200, 300, . .., 1000}dx, wheredx = 27 /12288

is the distance between spatial grid points. We can se
that the viscous effects can be safely neglected for th
values of displacement > 20dx. At the same time it is
dangerous to take too large as well, because the asymp-

P(Au,r) <

log,,[P(¢)/r]

p=(du)/u,,

FIG. 2. Collapse of the PDFs in the nonuniversal region of
Au for thez = 1/3 case.

In totic relations (4) and (5) are valid only for/L < 1.

First, we direct our attention to the general properties
of the PDF, predicted by (2) and (3), for each of the
donsidered values of. We measureP(Au,r) corre-
sponding to various separationsin the universal range
(kg < r < L, wherek, is an ultraviolet dissipative cut-
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FIG. 3. Collapse of the PDFs in the universal regionof
for thez = 1/2 case.
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FIG. 4. Collapse of the PDFs in the nonuniversal region ofFIG. 6. Collapse of the PDFs in the nonuniversal region of
Au for thez = 1/2 case. Au for thez = 1 case.

off), and produce scaling functio(x) andF(x). If (2)  the main conclusions of the Polyakov theory [2], which
and (3) do hold true, then the curves for various values oin a general case are reformulated as following: when
r should approximately collapse in the appropriate regions = Au/r* > 0, |x| = O0(1), and Au < uy,s, the PDF

of Au andr discussed above. This is indeed observed inis given by the scaling relations (2) and (3). However,
Figs. 1-6 where we have plotted collapsed PDFs in unien each of the curves we can detect a small bump around
versal and nonuniversal regions defined by (3) and (2)y = Au/(Au)ms = —1, corresponding to a crossover to
respectively. The results presented in Figs. 1-6 confirnthe shock-dominated regime < —1 and|Au| < ums),
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FIG. 5. Collapse of the PDFs in the nonuniversal region ofFIG. 7. Log-log plot of the negativAu tail for thez = 1/3
Au for thez = 1 case. case.

3120



VOLUME 77, NUMBER 15 PHYSICAL REVIEW LETTERS 7 @TOBER 1996

T I T y I j ' I T T ] -1 T T T T T T T T T T T T

|
AV}

log,o[P()x(|Aul/?)?]

|
w

] | 1 1 Il i |
; : ; 0.4 0.6 0.8 1 1.2
0.4 0.6 0.8 1 1.2 logw[—<]5=(Au)/(|Au|‘/3>3]

log o[ ~$=(8u) /(|au[/2)?] , ,
FIG. 9. Log-log plot of the negativé\u tail for the z = 1
FIG. 8. Log-log plot of the negativAu tail for the z = 1/2 case.
case.

characterized by expressions (4) and (5), consistent itthe observed probability density of the shock amplitudes
the outcome of [1]. The fact that in this range the p(y) is compared with the theoretical predictions [1].
quality of the collapse is a little bit less good than that in  The algebraic tails of the PDF of velocity differences
the intervallx| < 1 reflects the fact that it is more difficult gescribed in this Letter may turn out to be quite general.
to reduce statistical error in the process dominated by thg g very interesting to understand how the results, pre-
well pronounced single shocks. We also see that plottedented here, depend on the space dimensionalitpdur

in the coordinateAu/ums, all functions collapse starting own numerical studies of the random-force-driven three-
from the pointAu/um = 1, in accord with the Polyakov  gimensional Burgers equation [5] show results similar to
general deSC_”PtIO”- o o the ones presented here. This will be the subject of a fu-

Now we discuss the quantitative test of prediction (4)tyre communication.

and (5). We are dealing here with the system having e acknowledge stimulating discussions with Jean-
a finite number of degrees of freedom (particularly,ppjjippe Bouchaud, Victor Gurarie, Alexander Migdal,
12288 Fourier modes in spectral representation). Thusyakoy Sinai, and Kostya Khanin. This work was sup-
investigating the asymptotic relation (4), valid in the ported by DARPAONR Grant No. N00014-92-J-1796

intervalx < —1 and|Au| < ums may be quite difficult 304 AFOSR Grant No. F49620-93-1-0296.
due to the limited range of the values of displacement

available to us: to make this range as wide as desired,
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