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Algebraic Tails of Probability Density Functions
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The dynamics of velocity fluctuations governed by the Burgers equation, driven by the white-in-time
random forcing function withf fsx 1 r , td 2 fsx, t0dg2 ~ rjdst 2 t0d is considered on the interval
0 , x , L. The properties of the probability density function of velocity differencesPsDu, rd are
investigated for the three casesj ­ h0; 1y2; 2j. It is shown that the tail of the probability density func-
tion in the intervalDuyrz ø 21; jDuj ø urms and r ø L is accurately described by the asymptotic
algebraic relationP sDu, rd ~ rysDudg with g ­ 1 1 1yz, wherez ­ sj 1 1dy3. A detailed numeri-
cal investigation, performed in this work, supports this result. [S0031-9007(96)01384-1]

PACS numbers: 47.27.Gs, 03.40.Kf, 05.40.+j, 47.27.Ak
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Recent interest in the problem of turbulence in
random-force-driven Burgers equation is motivated
the possibility that this system might play a role i
the development of turbulence theory similar to th
played by the two-dimensional Ising model in creatio
of the theory of critical phenomena. It was demon
strated recently [1] that the statistical properties of so
tion of the one-dimensional Burgers equation, driven
a white-in-time random force with the correlation func
tion fsk, td sk0, t0d ~ k21dst 2 t0d, have many features
surprisingly similar to the ones observed in the real-li
three-dimensional turbulence: Kolmogorov energy spe
trum, intermittency and the scaling properties of the dis
pation rate fluctuations, and bifractality of the probabilit
density function (PDF) of velocity differencesP sDu, rd,
where Du ; usx 1 rd 2 usxd. It was shown that in-
termittency in this system is a consequence of the al
braic tail of the probability density function forDu , 0,
allowing scaling solutionsSp ­ sDudp ~ rpy3 only for
the moments withp , 3 while the moments withp . 3
scale asSp ~ ru

p23
rms and depend on the single-point prop

erty urms ;
p

ū2. The shape of the algebraic tail of th
PDFPsDu, rd ~ rysDud4 was evaluated from the balanc
equations with the assumption that the dissipation in t
system is dominated by the well separated shocks.

The groundbreaking theoretical work by Polyakov [2
dealt with the same problem, but driven by the forc
with the correlation function concentrated at the large
scales only:Dsrd ­ fsxdfsx 1 rd ~ ks0d 2 ar2, when
ryL ø 1, and whereL is the length scale of the forcing
function, so thatDskd ­ 0 when k ¿ 2pyL. Polyakov
produced an exact solution based on some self-consis
assumptions about the structure of the theory. T
common feature of the solutions presented in [1,2]
the existence of the algebraic tails of the probabili
density function of velocity difference with the exponen
depending on the properties of the forcing function. Th
algebraic tails ofP sDu, rd in Polyakov’s problem have
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recently been obtained in the work by Sinaiet al. [3]
using a different method. The goal of the present Lett
is to investigate the universal features of a random-forc
driven Burgers equation considering few different cases
the stirring force. It will be shown that the main physica
conclusions of the work [2] are valid disregarding th
power spectrum of the driving force. However, the
exponent of the algebraic tail of the probability densit
in the limit Duyr ø 21 with jDuj ø urms and r ø L,
dominated by the well separated shocks, is represented
a general expression similar to the one derived in [1].

Let us consider the one-dimensional problem

ut 1 uux ­ f 1 nuxx , (1)

where the white-in-time random forcing function is de
fined by its variance andfsx, tdfsx0, t0d ­ ksrddst 2 t0d,
where r ­ jx 2 x0j and when ryL ø 1 the velocity
structure function isksrd ­ ks0d 2 arj. According to
the recent theoretical and numerical works [1,2], the pro
ability density of the velocity differencesP sDu, rd con-
sists of two physically different regions. WhenjDuj .

urms the PDF

sDu, rd ­ rQ

µ
Du
urms

∂
(2)

depends on the single-point propertyurms and, therefore,
is not a universal function. At the same time, in the inte
val jDuj ø urms andr ø L the PDF can be represented
in the universal scaling form

P sDu, rd ­
1
rz

F

µ
Du
rz

∂
, (3)

where
R1`

2` Fsxd dx ­ 1. The dynamic exponentz can
be calculated using the equation similar to that derive
by Polyakov:z ­ sj 1 1dy3. For x ; Duyrz ¿ 1, the
universal scaling function in (3) is given by the expressio
Fsxd ~ expf2aszdx3g where the coefficientaszd can be
evaluated from the theory. In the regionjxj ø 1 the PDF
© 1996 The American Physical Society
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FIG. 1. Collapse of the PDFs in the universal region ofDu
for the z ­ 1y3 case.

is a solution of the Fokker-Plank-like equation [2].
the most interesting intervaljDuj ø urms, Du , 0 and
jxj ¿ 1 the probability density is dominated by the we
separated shocks and that is why it can be represente
a general form [1]:P sDu, rd ø sryLdP sUd, whereryL
is a probability to find a shock in the interval of th
length r, andP sUd is the probability of a shock having
the amplitudeU. Since in this range the shocks are w
separated,Du ø U. If the PDF has algebraic tails, i.e.,

P sDu, rd ~
r

sDudg
, (4)

then the exponentg can be evaluated by equating th
above expressions with the only algebraic solution with

g ­ 1 1
1
z

. (5)

This result has been tested on three different casesz ­
h1y3; 1y2; 1j. Case z ­ 1y3 corresponds to the loga
rithmic flux case considered in [1], casez ­ 1 is the
large-scale forced case considered in [4–3], andz ­
1y2 is an intermediate case between them. The num
ical part was described in [1]; therefore we will most
dwell here on the discussion of the results. For all
the casesz ­ h1y3, 1y2, 1j the estimate for the dissipa
tive cutoff wave number iskd ø 600. Measurements
of the PDFs were made for the following values
r [ h100, 200, 300, . . . , 1000jdx, wheredx ­ 2py12 288
is the distance between spatial grid points. We can
that the viscous effects can be safely neglected for
values of displacementr . 20dx. At the same time it is
dangerous to taker too large as well, because the asym
ll
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FIG. 2. Collapse of the PDFs in the nonuniversal region o
Du for the z ­ 1y3 case.

totic relations (4) and (5) are valid only forryL ø 1.
First, we direct our attention to the general propertie
of the PDF, predicted by (2) and (3), for each of the
considered values ofz. We measureP sDu, rd corre-
sponding to various separationsr in the universal range
(kd ø r ø L, wherekd is an ultraviolet dissipative cut-

FIG. 3. Collapse of the PDFs in the universal region ofDu
for the z ­ 1y2 case.
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FIG. 4. Collapse of the PDFs in the nonuniversal region
Du for the z ­ 1y2 case.

off), and produce scaling functionsQsxd andFsxd. If (2)
and (3) do hold true, then the curves for various values
r should approximately collapse in the appropriate regio
of Du andr discussed above. This is indeed observed
Figs. 1–6 where we have plotted collapsed PDFs in u
versal and nonuniversal regions defined by (3) and (
respectively. The results presented in Figs. 1–6 confi

FIG. 5. Collapse of the PDFs in the nonuniversal region
Du for the z ­ 1 case.
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FIG. 6. Collapse of the PDFs in the nonuniversal region
Du for the z ­ 1 case.

the main conclusions of the Polyakov theory [2], whic
in a general case are reformulated as following: wh
x ­ Duyrz . 0, jxj # Os1d, and Du ø urms, the PDF
is given by the scaling relations (2) and (3). Howeve
on each of the curves we can detect a small bump aro
x ­ DuysDudrms ø 21, corresponding to a crossover t
the shock-dominated regime (x ø 21 andjDuj ø urms),

FIG. 7. Log-log plot of the negativeDu tail for the z ­ 1y3
case.



VOLUME 77, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 7 OCTOBER1996

i
e
n

h
e

-
n
it
e
e

s

s
l.

e-

e-
o
u-

n-
,
-

FIG. 8. Log-log plot of the negativeDu tail for the z ­ 1y2
case.

characterized by expressions (4) and (5), consistent w
the outcome of [1]. The fact that in this range th
quality of the collapse is a little bit less good than that i
the intervaljxj , 1 reflects the fact that it is more difficult
to reduce statistical error in the process dominated by t
well pronounced single shocks. We also see that plott
in the coordinateDuyurms, all functions collapse starting
from the pointDuyurms ø 1, in accord with the Polyakov
general description.

Now we discuss the quantitative test of prediction (4
and (5). We are dealing here with the system havin
a finite number of degrees of freedom (particularly
12 288 Fourier modes in spectral representation). Thu
investigating the asymptotic relation (4), valid in the
interval x ø 21 and jDuj ø urms may be quite difficult
due to the limited range of the values of displacementr
available to us: to make this range as wide as desire
we have to be able to considerryL ! 0 which is not an
easy task due to the hardware limitations. In Figs. 7–
the comparison of the relation (4) (straight line in a log
log scale) with the calculated PDFs, is presented. As o
may observe, the relations (4) and (5) are confirmed w
a good accuracy. It is worth mentioning that even clos
agreement between theory and numerics is found wh
th
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FIG. 9. Log-log plot of the negativeDu tail for the z ­ 1
case.

the observed probability density of the shock amplitude
PsUd is compared with the theoretical predictions [1].

The algebraic tails of the PDF of velocity difference
described in this Letter may turn out to be quite genera
It is very interesting to understand how the results, pr
sented here, depend on the space dimensionalityd. Our
own numerical studies of the random-force-driven thre
dimensional Burgers equation [5] show results similar t
the ones presented here. This will be the subject of a f
ture communication.
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