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Two-parametric eddy viscosity (TPEV) and other spectral characteristics of two-dimensional (2-D) 
turbulence in the energy transfer subrange are calculated from direct numerical simulation (DNS) 
with 512’ resolution. The DNS-based TPEV is compared with those calculated from the test field 
model (TFM) and from the renormalization group (RG) theory. Very good agreement between all 
three results is observed. 

mo-dimensional (2-D) incompressible turbulent flows 
are described by the vorticity equation: 

Jl JP-21, 6-1 
26 + d(x, y) 

= vJ2& !l> 

where p is fluid vorticity and v0 is molecular viscosity. It is 
well known that the existence of inviscid invariants 
J&x~‘~ of (1) results in the flux of energy towards the larg- 
est spatial scales. The presence of this inverse cascade com- 
plicates the large-scale description of 2-D flows and requires 
refinement of the classical hydrodynamic notion of “eddy 
viscosity.” The concept of eddy viscosity is well defined for 
three-dimensional (3-D) turbulent flows, where energy cas- 
cades towards the smallest flow scales where it is dissipated. 
To achieve an adequate coarse-grained description’ of 3-D 
flow, one can introduce increased “effective” viscosity 
which accounts for the unresolved dissipation. 

In 2-D flows, the inverse flux of energy at large scales 
and enstrophy dissipation at small scales make the eddy vis- 
cosity concept more subtle. It was argued by JSraichnanl that 
a 2-D eddy viscosity should include two parameters: a cutoff 
wave number k, (which essentially determines the size of the 
coarse grain), and the wave number of a given mode, k. The 
two-parameter eddy viscosity (TPEV), denoted by v(klk,), 
describes the energy exchange between a given resolved vor- 
ticity mode with the wave number k and all subgrid, or 
unresolved, modes with k> k, ; it provides correct account 
for the energy and enstrophy fluxes between resolved and 
unresolved scales. The TPEV is derived from the evolution 
equation for the spectral enstrophy density Cl(k,t) 
es rrk( l( k, t) l( - k, t) ) , where ( . . . ) denotes averaging over 
thin circular shells: 

(d,+2vk2)fl(k,t)=Tn(k,t). (2) 
Here, the enstrophy transfer function Tn(k,t) is given by 

Tsz(k,t) =2wk 
I 

P=l 
2 

p+q=k P 

x(P(p,t)P(s,t)S(-~t))[dp &/(2d21 . (31 

Assuming that the system is in statistical steady state and 
extending integration in (3) only over all such triangles 
(k, p, q) that p and/or q are greater than k, ? one defines the 
two-parametric transfer Tn(k]k,) and TPEV:’ 

v(klk,)= -T,(klk,)/2k%(k) . (4) 

In a wide class of quasinormal approximations’ the 
transfer T,(klk,) in two dimensions is given by 

Ta(klkcj=~l~ 
A 

0-k,p,4($-$%in (Y 

x ;3-;32 i-h(p)O(q) -$$ bl(q)i-l(k) 

2 2 
+s Wp)Wk) dp dq, 

I 

where 0 -k, p, 4 is the triad relaxation time. Here, the angle a 
is formed by the vectors p and q, and JJA denotes integra- 
tion over the area defined above (4). 

The main difference between various spectral closure 
models is in specification of O-k,p,q. In Ref. 1, Tn(klk,) 
was evaluated using TFM. It was found that TPEV is a sign- 
changing function of the form v(klk,) = I v(O]k,)lN(k/k,), 
with v(Olk,)<O, IV(O)=-1, and N(1)=2.1. The deriva- 
tion of 0 -k,p,q using the RG theory was given in Ref. 3 and 
adapted for 2-D isotropic and anisotropic turbulence in Refs. 
4 and 5, respectively. In the present work, we compare 
v(klk,) for the inverse energy cascade regime calculated 
from DNS data with those predicted by TFM and the RG 
theory. Let us mention that for the enstrophy transfer sub- 
range of 2-D turbulence, eddy viscosity was calculated by 
Maltrud and Vallis.6 

We solve Eq. (1) numerically in a periodic box 2rrX 27~ 
using 5122 Fourier modes, utilizing a Fourier-Galerkin 
pseudospectral spatial approximation with implicit Adams- 
type second-order stiffly stable time-stepping scheme.7 To 
increase the effective inertial range, mode-selective 
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FIG. 1. Evolution of the total energy E(k) (dotted line) and enstrophy Cl(k) 
(solid line) towards the steady state. Dashed line denotes the total energy 
with the first 6 modes excluded. 

hyperviscosity* v(k)=vL(k)+uL~(k)=ALk-10+Ask*4 has 
been introduced in the vorticity equation (1) instead of the 
molecular viscosity. 

The white noise, high wave number forcing was intro- 
duced in three consecutive wave numbers, k,- 1, kf, and 
kf+ 1, where kf=98. 

In Figs. l(a) and l(b) we plot the total energy 
E,,,(t) =Jof=‘k%(k,t)dk and enstrophy f4ot(t> 
= JLmxlR(k,t)dk. One can see that the energy grows with 
time and eventually tends to reach a steady state. However, 
the drift towards the energy steady state is significantly 
slower than towards that of the enstrophy. Defining the RMS 
velocity as V&= X k/ u( k) 1 2 and the characteristic turnover 
time of the largest eddies as rtu=2r/VRMS, we infer that a 
steady state for the total enstrophy was achieved after about 
1.27,,‘ > while about 5rtU were required to attain a steady 

k 

FIG. 2 Energy spectrum E(k) (solid line) and compensated energy spec- 
trum E(k)kS’3~1V3 (dotted line!. 
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FIG. 3. The energy flux II,(k) (solid line) and the enstrophy flux II,(k) 
(dotted line). 

state for the total energy. Note however that all the modes 
with k> 5 have reached the steady state after t= 2 rtU , and 
only the largest modes were still developing. The results pre- 
sented below pertain to the integration time tc 1 O”, before 
the energy saturates at low wave numbers. 

In Fig. 2 we plot the time-averaged energy spectrum 
after about 53-n,. The inertial range EmkvX extends over 
more than a decade in wave number space. Mean square 
line-fitting over the interval k E (12, 50) gives the scaling 
exponent close to the Kolmogorov value of $. Note that good 
agreement with the Kolmogorov scaling in the energy sub- 
range has been reported recently in Ref. 6 for 2562 simula- 
tions and in Ref. 9 for very high resolution simulations with 
20482 Fourier modes. In Fig. 2 we also plot a compensated 
energy spectrum, k 5’3e-2’3E(k), where E is the energy 
transfer rate. The value of the Kolmogorov constant calcu- 

t,*:.1.,.,,,,,,,.,,,,,j 
0 0.2 0.4 0.6 0.6 1 

k/k. 

FIG. 4. Normalized two-parametric eddy viscosity from DNS (dots), from 
TFM (dashed line), and from RG (solid line). 
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FIG. 5. Actual two-parametric eddy viscosity from DNS (dots) and from RG 
(solid line). In RG calculations, the energy spectrum for k<5 was corrected 
in accordance with the DNS results (Fig. 2). 

lated from this data is about Ck=6.2, in reasonable agree- 
ment with 5.8, calculated from DNS in Ref. 10 using the 
2562 resolution and 6.69, obtained analytically in Ref. 11 
on the basis of TFM. 

In Figs. 3(a) and 3(b) we plot the k-dependent energy 
and enstrophy flux functions, defined 
II,(k)=J~T~(n)n-2dn and IIn(k)=Jk,Tn(n)dn, resper 
tively. As expected, an inverse energy cascade with constant 
transfer rate E develops for k<kfz 98. The resolution em- 
ployed in this study was insufficient to detect a well defined 
enstrophy transfer range. The flux of enstrophy in the energy 
subrange, k<kf , is zero. Figures 3(a) and 3(b) indicate that 
the numerical scheme used conserves both total energy and 
enstrophy. 

We have calculated k and kc-dependent enstrophy trans- 
fer function Tn(klk,) in (4) by computing the third-order 
vorticity cumulants in (3) extending the integration only over 
those p and q that either p&k, or q&k,. We have set 
X-,=50, well inside the energy inertial subrange. 

The DNS-inferred normalized TPEV [viz., the function 
N(k/k,)= v(klk,)/] v(Olk,)l] is plotted in Fig. 4, along with 
the TFM-based’ and RG-based” analytical predictions. The 
agreement between the DNS-based results and the TFM and 
RG theories is very good over the entire energy transfer 
range, up to the wave numbers close to k,, where the DNS 
data saturates, while TFM and RG curves exhibit sharp cusp. 
The physics leading to this cusp is as follows. As closer k 
approaches k, , as more elongated triads with either p or 
q4k, become involved in the energy exchange between the 
mode k and the subgrid scale modes. The contribution from 
these triads results in the cusp behavior of the theoretical 
TPEV. However, in finite box DNS with large-scale energy 

removal, the energy of small wave number modes is reduced 
(see Fig. 2), which implies that instead of the sharp growth, 
the TPEV should saturate at k+k, . To illustrate and quan- 
tify this explanation, we recalculated the RG-based TPEV 
with the enstrophy spectrum in (5) corrected at k<5 accord- 
ing to Fig. 2. In Fig. 5, we compare the DNS- and RG-based 
TPEV in their actual values, whereas the RG calculations 
were based upon the value of E found from DNS. The agree- 
ment between the two is very good. Also, we have calculated 
TPEV for k,=35, 45, and 55 and found that the DNS- 
inferred TPEV scales with k,“‘3, in full agreement with the 
Kolmogorov and Richardson laws. At all values of k, tested 
an equally good agreement between DNS data and RG pre- 
dictions was observed. 

The good agreement demonstrated in Figs. 4 and 5 pro- 
vides an indirect validation of TFM and RG results for iso- 
tropic 2-D turbulence in the energy transfer subrange. 
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