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Numerical simulations of isotropic, homogeneous, forced and dissipative two-dimen&ayal
turbulence in the energy transfer subrange are complicated by the inverse cascade that continuously
propagates energy to the large scale modes. To avoid energy condensation in the lowest modes, an
energy sink, or a large scale drag is usually introduced. With a few exceptions, simulations with
different formulations of the large scale drag reveal the development of strong coherent vortices and
steepening of energy and enstrophy spectra that lead to erosion and eventual destruction of
Kolmogorov—Batchelor—KraichnalKBK) statistical laws. Being attributed to the intrinsic
anomalous fluctuations independent of the large scale drag formulation, these coherent vortices have
prompted conjectures that KBK 2D turbulence in the energy subrange is irreproducible in long term
simulations. Here, we advance a different point of view, according to which the emergence of
coherent vortices is triggered by the inverse energy cascade distortion directly attributable to the
choice of a large scale drag formulation. We subdivide the computational modes into explicit and
implicit, or supergrid scaléSPGS, which are the few lowest wave numbers modes that adhere to
KBK statistics. Then, we introduce a new concept of the large scale drag—rather than being an
energy sink, it accounts for the energy and enstrophy exchange between the explicit and SPGS
modes. The new SPGS parameterization was used in both direct numerical simyhB)sand

large eddy simulation€LES) in a doubly periodic box setting. It was found that the new technique
enables both DNS and LES to reach a steady state preserved for many large scale eddy turnover
times. For the entire time of integration, the flow field remained structureless and in good agreement
with the KBK statistical laws. We conclude that homogeneous, isotropic, forced, dissipative 2D
turbulence in the energy subrange is statistically stable, does not produce coherent structures, and
obeys the KBK statistical laws for as long as its inverse energy cascade remains undisturbed. The
proposed new technique of computing the intermediate modes while the statistics of the largest
scales is known may find a wide range of applications. 1899 American Institute of Physics.
[S1070-663(199)00110-5

I. INTRODUCTION domain, the inverse energy cascade precludes the existence
of a steady state, since the energy injected into the system

One of the most distinctive features of 2D turbulence iSWith the ratee at some finite wave number moﬂe propa-

simultaneous conservation of energy and enstrophy in thgates to ever smaller wave numb&rsk; with the same rate

inviscid limit which gives rise to the coexistence of two &. However, it is possible to attain a quasi-steady state in the

spectral transfer processes, up-scale for energy and dowpgnge of the wave numbers that are embedded inside the

scale for enstrophysee Batcheldrand Kraichnaf). Gama “energy front,” in which case the rate of the energy flux

and Frisch refer to the up-scale, or inverse energy cascadenhrough any Fourier modeis constant and equal @ Such

as “one of the most remarkable phenomenon of two-a quasi-steady state system has been described by the classi-

dimensional turbulence.” Even though 2D turbulence admitscal  Kolmogorov—Batchelor—Kraichnan (KBK)  theory

a countable set of integrals of motigthe so-called Ca- (Batchelort Kraichnan? Mirabel and Monirf Lesieur®

simirs), the integrals of energy and enstrophy provide theyvallis,* FriscH) that predicts the energy spectrum
dominant conservation laws governing the triad wave num-

ber interactiongVallis*) giving rise to such elegant analyti- E(k)=Ce?*k 55, (1)

cal results as, for instance, the Fartoft theorémasieur).

These conservation laws are valid in both continuous anevhere C,=6.0 is the Kolmogorov constant for 2D turbu-
discrete Fourier space representatioviallis®). In an infinite  lence. All the basic features of small scale forced 2D turbu-
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lence, including the inverse cascade and spectrum ifEq. the pioneering works by Fornbet§Basdevanet al,'® and
with C,= 6.5+ 1 have been confirmed in recent experimentsMcWilliams?® for the case of freely decaying turbulence.
by Paret and Tabeling. Such vortices were also observed in numerous simulations
The inverse cascade and large scale energy saturation @onducted since then with both unforced, freely decaying 2D
finite systems have prompted the exploration of the analogiesirbulence, and forced turbulence in both regimes of enstro-
between 2D turbulence and Bose gas. Indeed, some of thghy (for instance, Legrast al?!) and energy(for instance,
early statistical theories of 2D turbulence have advanced thBorué€) transfer. Thus it is accepted today that 2D turbulent
conceptual models of a set of large number of the interactinflows in both energy and enstrophy subranges are prone to
point vortices that form a Hamiltonian system in an inviscid spontaneous emergence of coherent vortices caused by in-
limit. Such vortices were found to be engaged in the energyrinsic instabilities.
transfer from small to large scales. More specifically, an ana- The coherent vortices have been known to affect the
log to the Schrdinger equation was derived for the charac- statistical properties of the flow field and to hamper the ap-
teristic functional of the vorticity field that describes a quan-plicability of the statistical mechanics methods to 2D turbu-
tum Bose field in a process of coagulation of two bosons intdence (Herring and Kerf?). Thus in some analysé8orue?
one. Further exploration of this approach allows one to esBenzi et al?*?%, the contribution of coherent vortices to
tablish the correspondence between quasi-equilibrium 2Bpectral characteristics of the flow was filtered out, rendering
turbulence and the ideal Bose gas, and then to draw analodiie statistics of the remaining structureless background in
between turbulence energy saturation at some minimurgood agreement with the KBK theory. On the other hand, the
wave numberk, and Bose condensatio(Mirabel and detailed analysis of the vorticity structure gave rise to doubts
Monin? Kraichnar). In line with these observations, Bofue about the applicability of the spectral representation for tur-
has advanced the view of the inverse energy cascade asbalence description altogether as it does not differentiate be-
succession of vortex mergers. However, more detailed analyween sharply focused coherent vortices and the rest of the
sis indicates that the real picture may be far more complichaotic vorticity field(Dritschet©).
cated; for instance, Dritsch8lhas noted that vortex mergers The mechanism of coherent structures generation and
in 2D turbulence produce not one, but two vortices, one ofvolution is not well understood and continues to be a sub-
which is bigger and the other one is smaller than the initiaject of the ongoing researctbritschet®?>%9. In addition,
vortices. An excellent modern review of the physics of 2Dsuch structures are not always present: in simulations by
turbulence and of the application of the methods of statisticaMaltrud and Valli€’ that employed a piecewise-linear large
mechanics to understand it is given by Fridch. scale drag, coherent structures were not detected, the energy
The validation of the KBK theory in numerical experi- spectrum preserved the Kolmogorev5/3 distribution for
ments presents a challenge to computational fluid dynamicthe entire length of integration, and only small, near forcing
as invariably only a limited computational domain can bescale vortices were observed. In a laboratory setting by Paret
utilized. Then, due to the condensation, energy tends to a@nd Tabelin§ with strong bottom friction, a linear large
cumulate in the lowest available wave number modisa- scale drag was assumed to be at work, and coherent struc-
bel and Monir® Hossainet al,! Kukharkin!? Kukharkin ~ tures were not observed for the length of the experiment
et al,*® Smith and Yakhdf"!9 leading to unrealistically high which was about 45 large scale eddy turnover times. How-
velocities and subsequently, numerical instabilities. To preever, with increased Reynolds numbers and decreased fric-
vent such energy condensation, various researchers hatien they observed large scale energy saturation and changes
used a large scale energy sink parameterized via infrareid the flow regime. Boruesuggested that coherent vortices
hyperviscosities of different orders whose action was to supin the energy subrange of 2D turbulence emerge as the result
press the energy of the lowest modes and to ensure reachiln§ anomalous fluctuations and that nearly Gaussian,
the steady state. The energy injected into the system at rel&olmogorov-like background 2 field is unstable to the
tively high wave number modes with the raées damped formation of such vortices. Insufficient length of integration
aroundk,,, the minimum explicit wave number of the sys- time and small magnitudes of the ultraviolet and/or infrared
tem, with the same rafe, and the modes with<k,,, be-  Reynolds numbers were singled-out by Bdras the factors
come essentially irrelevant since they carry very little en-that prevented strong deviation frdm ®° scaling in some of
ergy. With few exceptions, simulations with large scale draghe previous simulations. These suggestions were quite gen-
reveal the emergence of strong coherent vortices, i.e., vortieral and believed to be independent of particular choice of
ces that persist for times far exceeding, the large scale the infrared hyperviscosity.
eddy turnover time. On the other hand, Smith and Yakkbguestioned the
The emergence of coherent vortices in a randomlyole of the boundaries of the computational domain in the
forced flow field in either energy or enstrophy transfer sub-process of coherent vortices formation. They conducted high
range has been demonstrated both in experimental and comesolution simulations (20482048) with no large scale en-
puter simulated flows. The laboratory analogs of such vortiergy withdrawal at all. The main focus of their paper was the
ces were observed, for instance, in experiments with 2evolution of 2D turbulence before energy saturates at the
turbulence in a rotating cylindrical tank by Hopfingetral®  largest computational scale. It was found that during that
and in freely decaying 2D turbulence by Tabelietgal 17 In short time, the flow field remains structureless and nearly
numerical simulations, the emergence and development dbaussian while the energy spectrum follows the Kolmogorov
coherent vortices were observed and extensively discussed staling Eq.(1) quite closely. Only after the inverse cascade
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expanded to the smallest available wave number modds FORMULATION OF THE TWO-PARAMETRIC
where it was blocked from farther unfolding, the condensalARGE SCALE DRAG FOR 2D TURBULENCE
tion had commenced. Then, a system of two large and strong
coherent vortices was quickly established; from that pointDuI
on, the Kolmogorov spectrum was observed no longer.
Smith and Yakhdf"*°thus concluded that, in the energy sub-  d¢ d(V~2¢,0)
range of 2D turbulence, the generation of coherent vortices, st ' g(x,y)
or crystallization, is solely due to the disturbance of the in-

verse energy cascade brought about by the boundaries of twgreg |tshthe flwd vlofrtlcr_ty, VOS'.S theﬂ:nolecglafr V'SCOS]!?/F‘.
computational domain. and ¢ is the external forcing. Since the main focus of this

The inverse cascade can be distorted not only due fapgr i§ the energy cascade subrgnge, itis assumed .that the
finiteness of the computational domain, as in Smith an orcing is localized around some high wave numkgeand is

Yakhot*5but also due to a choice of the large scale energy 2 d0M: Zeéro-mean, Gaussian, and white-noise in time,
’ 9 9vhich is similar to that used by Chekhlet al2® To achieve

withdrawal formulation that is inconsistent with the Kolmog- a steady state in numerical simulations based upon(Zg

orov.dyna.mlcs. As wil become'cllear later, indeed, this pro.b'one needs to introduce an additional term in its right hand
lem is typical of most of the existing large scale energy dis

S . 'side, the large scale drd,, which provides for the large
sipation representations.

scale energy dissipation. Usually,. is represented by either
Based upon the preceding discussion, 9y P Dis P y

_ two possiblg pavieigh(linear or piecewise-lineardrag related to the
mechanisms of emergence and development of coherent v man boundary layer friction in a geophysical context

tices in the energy subrange can be delineated. First, COhe(rMcWilliams 20 Maltrud and Vallis” Pedlosky®), or higher

ent §'Fructures in 2D turbulence_ result fro_m the intrinsic in'order, more scale selective, infrared hyperviscoéﬁyllis,“
stability of the nearly Gaussian flow field and are they ,kharkinl? Chekhlovet al ).

fundamental feature of the flow dynamics. Alternatively, However, in the inertial range of 2D turbulence, the

they are the product of the inverse energy cascade distortiqarge scale energy does not dissipate, but cascades to ever
by external factors. The implications of these two mutually|o\wer wave number modes. Therefore, the function of the
exclusive possibilities are rather far reaching since, if the firs;arge scale drag should rather beeanulationof the up-scale
conjecture were correct, then the KBK steady state WOU'Q;nergy transfer from explicitkck;s) to supergrid k<Ks)
have been irreproducible. As was shown by Smith andnodes while preserving the dynamical processes that would
Yakhot,“*°the second mechanism is at work for nonsteadyprevail in the case of the infinite domain. The implementa-
state turbulence where the inverse cascade causes enewPh of such |arge scale drag consists of Suppressing the am-
saturation of the lowest resolved modes. For steady stafglitudes of all the modes with<k,s (SPGS modeswhile
simulations with large scale drag, the situation is not as cleaiccounting for their effect on the resolved modes via
studies in which the large scale energy withdrawal would be&-dependentD,s in Eq. (2). In this respect, the physical
accomplished in such a way as to minimize the distortion oimeaning of the large scale drag is quite similar to that of the
the inverse energy cascade have not been performed.  two-parametric eddy viscosity(Kraichnan?® Chekhlov
Here, we present the results of long term, steady statet al3'); the difference is in that the latter accounts for the
simulations in which the large scale drag emulates the situenergy exchange between a resolved miodad all subgrid
ation where all modes, including the lowest ones, adhere tecale(SGS modesk>k, (k. being the wave number of the
KBK dynamics, and thus the inverse energy cascade remairtissipation cutoff corresponding to the grid resolugjon
undisturbed at all times. Since in finite box simulationswhile the former accounts for the interaction between a re-
kmin=1 and there are no smaller wave numbers available, aolved modé and all SPGS modds<ks. Therefore, simi-
virtual minimum wave number is introduced, which will be larly to SGS, proper SPGS representation can be derived via
denoted a%s, ki>1, and the modes witk<k,s are made introduction of a two-parametric large scale dr&yks k)
inactive. Referring to these modessapergrid scaldSPGS =D, in analogy with the two-parametric viscosity by
modes and assuming that they all adhere to KolmogoroKraichnarf® based upon the evolution equation for the spec-
spectrum Eq(1), one can develop an SPGS parameterizatioriral enstrophy density)(k,t)=(4m) ~k({(k,t){(—k,t)),
which accounts for the energy and enstrophy exchange bavhere(...) denotes ensemble averaging:
tween those SPG®Hr implicit) modes and explicit modes 2 _
with k=k;s. The derivation of such SPGS representation is (et 2vokD) (k) =Ta(ki1). @
analogous to that of the two-parametric viscosity byHere, the enstrophy transfer functi@y(k,t) is given by
Kraichnarf® and is given in the next section. Then, Secs. Il

Homogeneous, isotropic, forced, and dissipative 2D tur-
ence is governed by the vorticity equation

= VOV2§+§1 (2)

and IV describe the application of this new large scale drag  7g(k,t)= ZLER[ f piq(g(p,t)g(q,t)
parameterization to DNS and LES of 2D turbulence in the . pra=k P

energy subrange. One of the central findings of these simu- dpdq

lations is the absence of the coherent vortices formation; the X {(—k,1)) (2—77)2} (4)

flow field remains structureless and Kolmogorovian for prac-

tically unlimited integration time. The results and their im- For a system in statistical steady state the two-parametric
plications are discussed in the last section. transfer 7, (kis|k) is calculated from Eq(4) by extending
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integration only over all such trianglég, p, q) that |k— p| L L RS L I LR
<g<k+p andp and/orqg are smaller thark,;. Then, the r ]
two-parametric large scale drag is defined as 08 [ @ 7]
Ta(kislk) - - ]
—_ sl 206 [~ 7
4 L i
In a wide class of quasi-normal approximations = 04 C 7
To(kis|k) in two dimensions is given by r ]
To(KiglK) %2 i
Zk 2_ 2 0 C PR DU TR S Y SR RN ST SR NN S SRR 1 ]
=—f f®fk,p,q(p2—q2)sina D A PQ(q) 1 2 3 4 5

™ pTq k/k

A 18

k2_qZQ Q k k2_pZQ Q k 1 T T T T T T L
T () )+k3—p3 (P)Q(k) |dp dg, "

Different spectral closure models provide different ex-
pressions for® _ , 4. Here,® _, , 4 was calculated using
the renormalization group theory of turbulen@taroselsky 0.0001
and Sukoriansky? Sukorianskyet al®%. Numerical integra-
tion of Eq.(6), using the assumption that all the SPGS modes
k<ks adhere to Kolmogorov spectrum Effl), yields the k/k,

Iarge scale drag representation FIG. 1. Nondimensional functiofr(x) used in the new large scale drag
D(k|s|k) _ 0.09751/3k|;4/3|:(k/k|5), (7) representation Eq7) in linear—linear(a) and log—log(b) scalings.

(6) 0.1
where0® _ , 4 is the triad relaxation time. Also, the angie 2 L
is formed by the vectorp andq, and//, denotes integration > 0.0
over the area defined above. B 0.001 [

povond 0ol e o 4ol

RLLLL

—_
—_
o

where F(x) is a nondimensional functionF(1)=1. The
function F(x) is presented in Fig. (&), and in log—log for-
mat, in Fig. 1b). One can see th&t(x) is not a power law _ 9 P 20
function; for smallk (the cusp regionits distribution is close  °"der hyperviscous terniBorue,” McWilliams,™ Maltrud

to x~2 but for largerx it becomes steeper. The least square?d Vallis?’ Chekhlovet al). If ks is set at too small a
approximation gives (x)~x 258 for x=1. value (1 or 2), then one needs to resort to discrete spectrum

In a large number of simulations reported in the litera-Pased derivation oD (kis[k) using Eq.(6), which will be

ture, the large scale drag has been represented by the infrarwonsistent with the present calculation based upon the con-
hyperviscosity,

tinuous spectrum. Therefore, to allow for sufficient number
5 of discrete modes to be involved in derivation @fks|K),
F(x)~x"“", n=1, (8) ks should be set sufficiently large. Upon specifying the value

while the coefficient was set based upon Reynolds numbé?f Kis, the amplitudes of the modes withk <k are set to
similarity considerations. Comparing E@) to Fig. 1b) one ~ 2€ro at every time stef‘chopping”).

should note important differences: first, the approximation 1€ large scale drag parameterization based upoi7q.
Eq. (8) is inaccurate fox>1 which can be expected to dis- €an be used in LES, in which case Ef) should be replaced
tort the energy exchange among the explicit modes as well 4 equation .for the explicit Fourier mogjes that in addition to
between the explicit and SPGS modes resulting in disturbingPGS also includes SGS representation,

the inverse energy cascade and, second,(&qis singular  57(k) pxk dp

for x—0, while in the present large scale drag parameteriza=—— + J —{(P){(K=p) 52

- - : at kis<Ipllk—pl<k; P (2m)

tion, F(x) is undefined fox<<1.

To implement the two-parametric large scale drag pa- = — p(k|ko)k?Z(k)—D(kis|K)k?¢(k), ke[ks, ke,
rameterization in spectral DNS of 2D turbulence, one needs (10
to replace Eq(2) by equation for the resolved Fourier modes
that includes Eq(5) in its right hand side,

The viscous term in Eq9) is routinely replaced by a higher

wherev(k|k.) is the two-parametric viscosity; its implemen-
tation in 2D LES will be described in Sec. IV. It is important

aL(k) pxk dp to emphasize that the new large scale drag representation, be
at +f 57 {Pek=p) 57 it used either in DNS or LES, combines both E@) and
Il lk=pl>ks P (27) ;
chopping.
= — vok2Z(k) —D(Kkis| K)K?Z(K) + £(k), k=k>1. The new SPGS parameterization K@) is designed to

9 preserve the KBK flow regime for as long as it remains
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stable. Eliminating the boundary effects from the list of po- SRR L T
tential instability sources, the new large scale drag formula-
tion enables us to conduct long term studies of the initially
KBK flow regime and to determine its stability.

As a side remark, let us note that EG0) admits yet
another interpretation. The fact that the range of the resolved
modes is confined from both sides, i.e.,lgyandk,, means
that onlyintermediatescales are explicitly resolved. Thus the
computational model given by E@10) should be, strictly ol t v b e 1 e
speaking, referred to as “mid eddy simulation.” This tool 0 20 40 60 80
may be quite useful in simulations of turbulent flows, and /T
Eq. (10) provides a framework representing the effects of the 2
implicit modes upon the explicit ones in such simulations.
Throughout this paper, however, a more traditional term
“LES” will be used.

In the following two sections featuring DNS and LES of
2D turbulence in the energy subrange, it will be shown that
the new SPGS representation allows for establishing a steady 0 20 40 60
state, stable, structureless flow regime that adheres to KBK t/ T
statistical laws for the entire length of integration.

Eeu(t)/Ex

LRI DAL DL B |

]

(b)

Etot(t)/EK

L B
va o by gl

o

[0 ]
o

Ill. DNS OF 2D TURBULENCE WITH ©

TWO-PARAMETRIC LARGE SCALE DRAG

LI L e |

<

Etot( t) /EK

coaa by

To study the effect of the large scale drag formulation on L
evolution of 2D turbulence in the energy transfer subrange, 0 20 40 60
three different DNS were arranged for. The first DNS /T
(DNS1) was conducted with no large scale drag at all, while
in the second DN$DNS2), an algebraic formulation E(ﬁ8) FIG. 2. Evolution of the total energy normalized by the corresponding Kol-
with n=6 was used. Finally, in the third DN@NS3), the ~ M°gerov value for DNS1a), DNS2(b), and DNS3(c).
new two-parametric formulation E§7) was employed. The
chopping fork<k,=8 was introduced in both DNS1 and
DNS3, while in DNS2, the algebraic large scale drag waOne can see that in both DNS1 and DNS2, the energy was
essentially suppressing the modes in the same range. Theteadily growing in time exceedingk already after about
the only difference between the various DNS was their largé&7,,. Not only the steady state was unreachable in these
scale drag formulation. DNS, but growing velocities eventually lead to violation of

The setting of all present numerical experiments washe Courant criterion and development of numerical instabil-
very similar to our previous simulations described in Chek-ity. The onset of instability can be delayed somewhat by
hlov et al3-?° The most significant difference was the in- gradual decrease of the time step; the procedure used by
crease in resolution from 5320 1024 Fourier modes. Very  Smith and Yakhdf in simulations similar to DNS1 here. In
briefly, the present DNS were based on a fully dealiasedhis case, however, the instability can be expected to be pre-
pseudospectral Fourier method to solve B).in a periodic  ceded by crystallization or formation of the regular lattice of
box x, ye[0,27]X[0,27] with doubly periodic boundary vortices, as observed in Ref. 15. On the contrary, in DNS3,
and zero initial conditions. The dealiasing was based upothe total energy equilibrated at the level Bf after about
the 2/3 rule. The time discretization was the same as irlOr, and remained constant and approximately equ&l o
Chekhlov et al®! The forcing ¢ was given by &(k,t) for the rest of the integration. Here, due to the limited com-
=A§ok(t)/ﬁ for ke[215,223 and zero otherwise; here, puter resources, the integration was extended to abatit 80
o6t=1 is the time step, and(t) is a discrete and uncorre- However, the robustness of the steady state achieved indi-
lated in time, Gaussian random number with unit variancecates that the integration could be continued for a consider-
To extend the inertial subrange, a high order, small scalegbly longer time.
hyperviscous termik!* was added to the right hand side of Figures 3a)—(c) show the evolution of the total enstro-
Eq. (9) replacing the viscous term. The coefficighf{=2.9  phy for all three DNS. This enstrophy is normalized ®y ,

X 10~ *Y) was set in the range where it almost does not affecthe total enstrophy obtained by integrating the Kolmogorov
the forcing scale but ensures effective dissipation of thespectrum Eq(1) in the same range as for the total energy.
modes withk>Kk; . One can see that unlike the total energy, the total enstrophy,

Figures Za)—(c) show the time history of the total en- after the initial overshoot, equilibrates reasonably quickly in
ergy for all three DNS performed. The energy here is nor-all three DNS and stays at the level of about(1,5 The
malized byEy , the total energy obtained by integrating the factor of 1.5 can be understood recalling that a major contri-
Kolmogorov spectrum EqgJl) betweenk,;=8 andk;=215.  bution into the total enstrophy integral comes from the high

o
[0]
o
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FIG. 4. Averaged energy spectrum sampled close to the end of integration;

FIG. 3. Evolution of the total enstrophy normalized by the corresponding(a) DNSL, (b) DNSZ, () DNS3

Kolmogorov value for DNSXa), DNS2 (b), and DNS3(c).

wave number modes, which are the forcing mokieand the  parameterization, a 2D turbulent flow field attains a robust
modes adjacent to them. The near steady state in total enstrsteady state with nearly Kolmogorov dynamics.
phy can be understood if one recalls that in the present simu- Figure 6 presents the evolution of the compensated en-
lations, there exists a direct enstrophy cascade but at the higdrgy spectrum for DNS2. One can clearly see that this spec-
wave numbers, enstrophy is effectively dissipated by theérum is not onlyk-dependent at all times but also is time
high power law hyperviscosity. The total enstrophy remaingdependent gradually attaining ever increasing values as a re-
constant in DNS3 but is growing slowly in DNS2 due to the sult of the progressive large scale energy condensation.
low mode energy condensation. An insightful characteristic of the energy transfer pro-
Figures 4a)—(c) depict the averaged spectra for all DNS cesses through a wave numlan 2D turbulence is the total
sampled close to the end of integration. In DNS1 and DNS2energy fluxII(k) from all the modese (k,») to all the
one can clearly see that the spectrum begins to deviate fromodes e (0,k). Since in our simulations the modes with
the Kolmogorov law Eq(1) at the lower wave number end <k are not allowed, their effect is emulated by the large
which is the direct result of the energy accumulation in largescale drag Eq(7). Theoretically, one expects thak(k)/e
scale coherent structures. In DNS3, however, the spectrurs 1 for all k. Figures Ta)—(c) show the ratioll(k)/e ob-
remains almost perfectly Kolmogorov-like for the entire tained in all three DNS. Figuregdj(b) indicate that due to
length of integration, which is achieved here solely due tathe absence of the large scale drag, as in DNS1, or inad-
the proper choice of SPGS parameterization &g. equate large scale drag representation by the infrared hyper-
Figures %a)—(c) show the compensated energy spec-viscosity, as in DNS2, this ratio deviates from 1, particularly
trum, E(k)e 233, for all three DNS. One can see that in for k<10. Only the proposed SPGS parameterization(#q.
DNS1 and DNS2, due to strong deviations from the Kolmog-produceslI(k)/e=1 for all k, which is yet another indica-
orov regime, the compensated energy spectrum ision that the new large scale drag formulation does not dis-
k-dependent. Since the spectrum was evolving in time, théort the intermodal energy exchange.
available averaging time was short. On the other hand, in  Finally, Figs. §a) and(b) show the color coded maps of
DNS3, the compensated spectrum is in a robust steady statie velocity magnitudes for DNS2 and DNS3. One can
is nearlyk-independent and is very close to the Kolmogorovclearly see that in DNS2, coherent vortices are in the process
constant which is known to be about 6. Thus Fi¢c)%ro-  of organization and growth; in fact, velocity variations may
vides one more evidence that, with the new large scale drageach an order of magnitude over small distances. On the
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FIG. 5. Same as in Fig. 4 but for compensated energy spectrum.  FIG. 7. Total energy transfer functiof (k) normalized by the constant
energy injection rate for DNS1(a), DNS2(b), and DNS3(c), respectively.

contrary, in DNS3 the flow field appears structureless with

total velocity changes not exceeding the factor of 2 or 3time total energyFigs. 2a), (b)] and steepening of the low
Note that if the infrared hyperviscosity is used, the developwave number end of the specfféigs. 4a), (b)] are associ-
ment of strong coherent vortices requires a very long inteated with the gradual energy accumulation in coherent vor-
gration time—Borué,for instance, continued his simulations tices clearly visible in Fig. &). On the other hand, with the

for about 30@,,. The reason for such a long time obviously new large scale drag formulation used in DNS3, the total
is the suppression of the energy of the lowest modes. Witlnergy spectrum remains nearly Kolmogorovian for the en-
the resolution of 10Z4Fourier modes, such a long integra- tire length of integration, while in the physical space, the
tion was computationally prohibitive in the present study andlow field preserves its structureless configuration.

was not attempted. Bearing in mind that generation of coher- Summarizing the information presented in Figs. 2-8,
ent vortices in simulations similar to DNS1 and DNS2 hasone concludes that the new large scale drag representation
been well observed and establish@dr instance, Borud, allows one to attain a steady state solution in direct numeri-
Smith and Yakhdf), we show Figs. &), (b) to merely il-  cal simulations of forced, isotropic, homogeneous 2D turbu-
lustrate that the difference in the flow structure in physicallence in the energy subrange. The flow field in this steady
space is consistent with the spectral characteristics shown fate is structureless and its statistics are in very good agree-
Figs. 2a)—(c) and 4a)—(c). More specifically, growing in ment with the KBK theory.

IV. LES OF 2D TURBULENCE WITH

155 [__ TWO-PARAMETRIC LARGE SCALE DRAG

12 E The simultaneous conservation of energy and enstrophy
g 9r = in 2D turbulence makes large eddy simulation in the energy

6 F - subrange with unresolved small scale energy source distinc-

3 ] tively different from LES of three-dimensional flows. The

o iirsl SR R W . Y major difference occurs in SGS representation of 2D flows.

10 100 As explained in Sukorianskgt al,®® it turns out that the
k presence of the two integrals of motion commands a two-

FIG. 6. Evolution of the compensated energy spectrum for DNS2; the timée_rrn S_GS representation derived from the two-parametric
interval between the contours is 4. viscosity v(k|kc),
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(b)

< < energy and enstrophy cannot be achieved. The first term in
v(klke)=— ———+ ———o(klko), (1)  Eq. (11) represents th@egativeLaplacian viscosity which
0.802(t) 0.80(t) accounts for the unresolved small scale forcing, while the
where 5(0 is the total enstrophy ang(x)>0 for 0<x  Second provides the stabilizing dissipation. At first sight, it
<1. Itis essential that Eq11) consists of a negative and a May look paradoxical that the negative viscosity, which is
positive terms, otherwise the simultaneous conservation csupposed to provide an energy forcing with a constanteate
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FIG. 9. Evolution of the total energig) and enstrophyb) in LES1.(a) also

FIG. 10. Same as in Fig. 9 but for LES2.

shows the total energy with the energy of the first, second, third, fourth,
fifth, sixth, and seventh modes removed.

. _ tgrovvth which was then replaced by a disorganized inverse
in Eq. (11), is in fact flow dependent, due to the presence Olcascade that evolved into a structured vortical regime with

Q(t) in its denominator. However, Sukorianskyal®* have  projiferating monopolar and multipolar structures with
shown that this flow dependence is crucial for stability Ofstrongly depleted nonlineariti€g&ama and Frisch. On the
LES; a flow independent negative viscosity would lead topther hand, Kolmogorov type turbulence with the robust in-
nonlinear growth in time of both total energy and enstrophyerse cascade;5/3 energy spectrum and structureless flow
due to the positive feedback between energy input and efje|d, similar to DNS3 described in the previous section, was
strophy of the resolved modes. Sukorianskyl > have also not observed in these simulations.

shown thatg(k/k:) can be represented by a series in powers  The main difference between our SNV formulation and
of (k/kc)* which are equivalent to the hyperviscous dissipathe NSKS equation is in the derivation of SNV and in the
tion terms in the physical space. The simplest approximatiofiow dependency of its coefficients. In addition, the NSKS
to ¢(k/k) is given by 1.6k/k)?, where the coefficient 1.6 equation does not include a large scale drag while an SPGS
ensures zero enstrophy transfer in the energy subrange. Alepresentation is a very important component of the SNV
though the dissipative terms are essential to the physics arghsed LES scheme. One expects that the results of DNS and

numerical stability of LES, they are much less sensitive to ES of similar flows should agree. For the NSKS equation,
the details of the flow than the negative term; Sukoriansky

et al>* have also shown that flow independent hyperviscosi-
ties can ensure robust LES for many tens of large scale turn-
over times.

The SGS representation that consists of the negative,
flow dependenteddy) viscosity term and positive stabilizing
hyperviscous terms has been referred to by Sukoriansky
et al*3 as a stabilized negative viscosit$NV) formulation.

*-§:9..

Note that since the SNV scheme includes a negative La- — P .._.A.w----w'“ ]
placian viscosity and a positive biharmonic hyperviscosity, it 3-8 | o e \—
structurally resembles the Kuramoto—Sivashinsky equation Z T T |
widely known from the combustion theorBivashinsky’) @ - _
and flows with chemical reactiorf&uramoto and Tsuzuk® = -

Kuramotd®). Papers by Dubrulle and Friséh,Gama and
Frisch® and Gamaet al®®3° describe derivation of a nega-
tive, flow independent eddy viscosity using the concept of  -12
the parity-invariant flow and its utilization in 2D simulations

on the Connection machine for marginally negative viscosity
situations. Since the equation solved possessed the Navier— —14
Stokes type nonlinearity and Kuramoto—Sivashinsky type log, (K]

large scale instability, the resulting equation was dubbed thEIG. 11. Evolution of the instantaneous energy spectrum for LES1 for

NaV|er_St03|§eS__Kura_mOto_S'VaSthﬂNSKS) equation _by t/m,=0.56, 1.11, 1.67, 2.78, and 3.33. The solid line represents Kolmog-
Gamaet al”>® Simulations revealed a period of the linear orov —5/3 slope.

10 —
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hand, in LES2, Fig. @), the total enstrophy remains nearly
constant for about 224, .

Figures 11 and 12 compare the spectra obtained in both
LES. In LES1, Fig. 11, the instantaneous spectrbk)
quickly approaches the Kolmogorov distribution Efj) and
preserves it for up to about=37,,. For a longer time, the
spectrum rapidly deviates from the Kolmogorov scaling until
the flow becomes unstable. On the other hand, in LES2, Fig.
12, the spectrum preserves Kolmogorov-like shape practi-
cally indefinitely. As mentioned earlier, Kolmogorov turbu-
lence has not been observed in simulations with NSKS equa-
tion.

In the physical space, the flow pattern obtained in LES2
is quite similar to that of DNS3—it remains practically struc-
tureless and consistent with the Kolmogorov statistics after
; many turnover times.

0 05 1 15 Concluding, let us re-emphasize that the results of LES
log,[k] described in this section are consistent with the results of

DNS in the previous section. They demonstrate that the new

SPGS representation makes it possible to maintain

Kolmogorov-like, structureless, steady state flow regime in

such comparisons have not been performed; furthermore, therge eddy simulation of forced, dissipative 2D turbulence

corresponding DNS for that case does not exist. On the othdgor a very long integration time.

hand, DNS described in the previous section can be used for

direct comparisons with the results of SNV based LES with

the SPGS parameterization given by E@). Here, the re- V. DISCUSSION AND CONCLUSIONS

sults of two such LES are described. In these LES, a new  The results of DNS and LES presented here indicate that
SPGS parameterization E(f) was implemented using the the formulation of the large scale drag is critical in simula-
LES framework Eq.(10) with the SNV SGS representa- tions of 2D turbulence in a doubly periodic box, because it is
tion Eq.(11). In the main focus of these LES were the exis- yltimately responsible for the existence and physical nature
tence and statistical properties of a steady state solution {gf the steady state. The widely used in modern simulations
Eq. (10). infrared hyperviscosities prevent the explosive instability
The setting of LES was quite similar to DNS describeddue to the energy saturation of the lowest modes. However,
in the previous section. The resolution used was’Fafurier  they disturb the inverse energy cascade causing deviations
modes with the 2/3 dealiasing rule; the SGS cutoff wavefrom, and eventual break down of the KBK statistical laws.
number was set d;=50. The flow was initialized as zero On the other hand, the proposed here new large scale drag
field everywhere except for a narrow band of wave numbergarameterization preserves the steady state, the KBK flow
in the middle part of the spectrum, where it was set randonegime for very long integration times thus proving its sta-
and Gaussian. The energy injection rate was alet.19  bility and reproducibility. The presented simulations clearly
X107*, the time step was set &=0.5. In LES1, no large demonstrate that the emergence of coherent structures is the
scale drag was used, while in LES2, full SGS-SPGS formudirect result of the inverse cascade distortion rather than the
lation Egs. (10), (11) was employed with the function product of the intrinsic instability.
#(k/ke) calculated using the renormalization group theory of  This study reveals the physically correct way to simulate
turbulence, as explained by Sukorianskyal** In addition,  forced, dissipative, homogeneous and isotropic 2D turbu-
in formulation of the large scale drag in LES2 it was setjence in the periodic box setting. Realizing that the large
kis=4. scale drag has a complicated and subtle function in such
Figures 9 and 10 show the evolution of the total energysimulations, a notion of supergrid scales was introduced, and
and enstrophy in LES1 and LES2. Similarly to DNS1, in the drag, or SPGS parameterization was defined as a measure
LES1 with no large scale drag used, the energy grows linof the energy and enstrophy exchange between explicit and
early in time, Fig. @). Eventually, after inverse cascade SPGS modes. Proper SPGS representation is given by the
expands to the boundaries of the computational domaimwo-parametric large scale drag which is the SPGS analog of
LES1 develops instability, while in LES2, with the new the two-parametric viscosity by Kraichnah.
SPGS formulation implemented, the total energy equilibrates  The simulations presented here describe a highly ideal-
and remains in near steady state for over22@s shown in  jzed situation pertaining to homogeneous isotropic 2D turbu-
Fig. 10a). lence, which is a useful tool to analyze the emergence of
Figure 9b) shows that in LES1, the total enstrophy stayscoherent structures and stability of KBK regime, the subjects
equilibrated for up to about®,, until the lowest available of great theoretical importance. In particular, the results con-
wave number modes are reached by the inverse energy cagmed Smith and Yakhdt conjecture that the coherent vor-
cade, after which)(t) grows very rapidly. On the other tices in small scale forced, quasi-2D turbulent flows are

&
AN GHEMEMLGS

-12

|'||'||||:||||||||||||

-14

FIG. 12. Time averaged spectrum for LES2.
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