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Numerical simulations of isotropic, homogeneous, forced and dissipative two-dimensional~2D!
turbulence in the energy transfer subrange are complicated by the inverse cascade that continuously
propagates energy to the large scale modes. To avoid energy condensation in the lowest modes, an
energy sink, or a large scale drag is usually introduced. With a few exceptions, simulations with
different formulations of the large scale drag reveal the development of strong coherent vortices and
steepening of energy and enstrophy spectra that lead to erosion and eventual destruction of
Kolmogorov–Batchelor–Kraichnan~KBK ! statistical laws. Being attributed to the intrinsic
anomalous fluctuations independent of the large scale drag formulation, these coherent vortices have
prompted conjectures that KBK 2D turbulence in the energy subrange is irreproducible in long term
simulations. Here, we advance a different point of view, according to which the emergence of
coherent vortices is triggered by the inverse energy cascade distortion directly attributable to the
choice of a large scale drag formulation. We subdivide the computational modes into explicit and
implicit, or supergrid scale~SPGS!, which are the few lowest wave numbers modes that adhere to
KBK statistics. Then, we introduce a new concept of the large scale drag—rather than being an
energy sink, it accounts for the energy and enstrophy exchange between the explicit and SPGS
modes. The new SPGS parameterization was used in both direct numerical simulations~DNS! and
large eddy simulations~LES! in a doubly periodic box setting. It was found that the new technique
enables both DNS and LES to reach a steady state preserved for many large scale eddy turnover
times. For the entire time of integration, the flow field remained structureless and in good agreement
with the KBK statistical laws. We conclude that homogeneous, isotropic, forced, dissipative 2D
turbulence in the energy subrange is statistically stable, does not produce coherent structures, and
obeys the KBK statistical laws for as long as its inverse energy cascade remains undisturbed. The
proposed new technique of computing the intermediate modes while the statistics of the largest
scales is known may find a wide range of applications. ©1999 American Institute of Physics.
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I. INTRODUCTION

One of the most distinctive features of 2D turbulence
simultaneous conservation of energy and enstrophy in
inviscid limit which gives rise to the coexistence of tw
spectral transfer processes, up-scale for energy and do
scale for enstrophy~see Batchelor1 and Kraichnan2!. Gama
and Frisch3 refer to the up-scale, or inverse energy casc
as ‘‘one of the most remarkable phenomenon of tw
dimensional turbulence.’’ Even though 2D turbulence adm
a countable set of integrals of motion~the so-called Ca-
simirs!, the integrals of energy and enstrophy provide
dominant conservation laws governing the triad wave nu
ber interactions~Vallis4! giving rise to such elegant analyt
cal results as, for instance, the Førtoft theorem~Lesieur5!.
These conservation laws are valid in both continuous
discrete Fourier space representations~Vallis4!. In an infinite
3041070-6631/99/11(10)/3043/11/$15.00
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domain, the inverse energy cascade precludes the exist
of a steady state, since the energy injected into the sys
with the rateē at some finite wave number modekf propa-
gates to ever smaller wave numbersk,kf with the same rate
ē. However, it is possible to attain a quasi-steady state in
range of the wave numbers that are embedded inside
‘‘energy front,’’ in which case the rate of the energy flu
through any Fourier modek is constant and equal toē. Such
a quasi-steady state system has been described by the c
cal Kolmogorov–Batchelor–Kraichnan ~KBK ! theory
~Batchelor,1 Kraichnan,2 Mirabel and Monin,6 Lesieur,5

Vallis,4 Frisch7! that predicts the energy spectrum

E~k!5Ckē
2/3k25/3, ~1!

where Ck>6.0 is the Kolmogorov constant for 2D turbu
lence. All the basic features of small scale forced 2D turb
3 © 1999 American Institute of Physics
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lence, including the inverse cascade and spectrum in Eq~1!
with Ck56.561 have been confirmed in recent experime
by Paret and Tabeling.8

The inverse cascade and large scale energy saturatio
finite systems have prompted the exploration of the analo
between 2D turbulence and Bose gas. Indeed, some o
early statistical theories of 2D turbulence have advanced
conceptual models of a set of large number of the interac
point vortices that form a Hamiltonian system in an invisc
limit. Such vortices were found to be engaged in the ene
transfer from small to large scales. More specifically, an a
log to the Schro¨dinger equation was derived for the chara
teristic functional of the vorticity field that describes a qua
tum Bose field in a process of coagulation of two bosons i
one. Further exploration of this approach allows one to
tablish the correspondence between quasi-equilibrium
turbulence and the ideal Bose gas, and then to draw ana
between turbulence energy saturation at some minim
wave numberk0 and Bose condensation~Mirabel and
Monin,6 Kraichnan2!. In line with these observations, Borue9

has advanced the view of the inverse energy cascade
succession of vortex mergers. However, more detailed an
sis indicates that the real picture may be far more com
cated; for instance, Dritschel10 has noted that vortex merge
in 2D turbulence produce not one, but two vortices, one
which is bigger and the other one is smaller than the ini
vortices. An excellent modern review of the physics of 2
turbulence and of the application of the methods of statist
mechanics to understand it is given by Frisch.7

The validation of the KBK theory in numerical exper
ments presents a challenge to computational fluid dynam
as invariably only a limited computational domain can
utilized. Then, due to the condensation, energy tends to
cumulate in the lowest available wave number modes~Mira-
bel and Monin,6 Hossainet al.,11 Kukharkin,12 Kukharkin
et al.,13 Smith and Yakhot14,15! leading to unrealistically high
velocities and subsequently, numerical instabilities. To p
vent such energy condensation, various researchers
used a large scale energy sink parameterized via infra
hyperviscosities of different orders whose action was to s
press the energy of the lowest modes and to ensure reac
the steady state. The energy injected into the system at
tively high wave number modes with the rateē is damped
aroundkmin , the minimum explicit wave number of the sy
tem, with the same rateē, and the modes withk,kmin be-
come essentially irrelevant since they carry very little e
ergy. With few exceptions, simulations with large scale d
reveal the emergence of strong coherent vortices, i.e., v
ces that persist for times far exceedingt tu , the large scale
eddy turnover time.

The emergence of coherent vortices in a random
forced flow field in either energy or enstrophy transfer su
range has been demonstrated both in experimental and
puter simulated flows. The laboratory analogs of such vo
ces were observed, for instance, in experiments with
turbulence in a rotating cylindrical tank by Hopfingeret al.16

and in freely decaying 2D turbulence by Tabelinget al.17 In
numerical simulations, the emergence and developmen
coherent vortices were observed and extensively discuss
Downloaded 09 Jun 2006 to 192.58.150.41. Redistribution subject to AIP
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the pioneering works by Fornberg,18 Basdevantet al.,19 and
McWilliams20 for the case of freely decaying turbulenc
Such vortices were also observed in numerous simulat
conducted since then with both unforced, freely decaying
turbulence, and forced turbulence in both regimes of ens
phy ~for instance, Legraset al.21! and energy~for instance,
Borue9! transfer. Thus it is accepted today that 2D turbule
flows in both energy and enstrophy subranges are pron
spontaneous emergence of coherent vortices caused b
trinsic instabilities.

The coherent vortices have been known to affect
statistical properties of the flow field and to hamper the
plicability of the statistical mechanics methods to 2D turb
lence~Herring and Kerr22!. Thus in some analyses~Borue,9

Benzi et al.23,24!, the contribution of coherent vortices t
spectral characteristics of the flow was filtered out, render
the statistics of the remaining structureless background
good agreement with the KBK theory. On the other hand,
detailed analysis of the vorticity structure gave rise to dou
about the applicability of the spectral representation for t
bulence description altogether as it does not differentiate
tween sharply focused coherent vortices and the rest of
chaotic vorticity field~Dritschel10!.

The mechanism of coherent structures generation
evolution is not well understood and continues to be a s
ject of the ongoing research~Dritschel10,25,26!. In addition,
such structures are not always present: in simulations
Maltrud and Vallis27 that employed a piecewise-linear larg
scale drag, coherent structures were not detected, the en
spectrum preserved the Kolmogorov25/3 distribution for
the entire length of integration, and only small, near forci
scale vortices were observed. In a laboratory setting by P
and Tabeling8 with strong bottom friction, a linear large
scale drag was assumed to be at work, and coherent s
tures were not observed for the length of the experim
which was about 45 large scale eddy turnover times. Ho
ever, with increased Reynolds numbers and decreased
tion they observed large scale energy saturation and cha
in the flow regime. Borue9 suggested that coherent vortice
in the energy subrange of 2D turbulence emerge as the re
of anomalous fluctuations and that nearly Gaussi
Kolmogorov-like backgroundk25/3 field is unstable to the
formation of such vortices. Insufficient length of integratio
time and small magnitudes of the ultraviolet and/or infrar
Reynolds numbers were singled-out by Borue9 as the factors
that prevented strong deviation fromk25/3 scaling in some of
the previous simulations. These suggestions were quite
eral and believed to be independent of particular choice
the infrared hyperviscosity.

On the other hand, Smith and Yakhot14 questioned the
role of the boundaries of the computational domain in
process of coherent vortices formation. They conducted h
resolution simulations (204832048) with no large scale en
ergy withdrawal at all. The main focus of their paper was t
evolution of 2D turbulence before energy saturates at
largest computational scale. It was found that during t
short time, the flow field remains structureless and nea
Gaussian while the energy spectrum follows the Kolmogo
scaling Eq.~1! quite closely. Only after the inverse casca
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



d
sa
o
in
e
b-
e
in
f

n
rg
g-
b
is

ib
v
h
in
he
ly
rti
lly
rs
u
n
d

ne
ta

ea
b
o

ta
it

e
a
ns
e,
e

ro
io
b

s
i

by
II
ra
th
m
th

ac
-

ur-

is
t the

me,

nd

r

xt

e
ever

the

uld
ta-
am-

via
l
the

he

e

re-

via

y
ec-

tric

3045Phys. Fluids, Vol. 11, No. 10, October 1999 Large scale drag representation in simulations of . . .
expanded to the smallest available wave number mo
where it was blocked from farther unfolding, the conden
tion had commenced. Then, a system of two large and str
coherent vortices was quickly established; from that po
on, the Kolmogorov spectrum was observed no long
Smith and Yakhot14,15thus concluded that, in the energy su
range of 2D turbulence, the generation of coherent vortic
or crystallization, is solely due to the disturbance of the
verse energy cascade brought about by the boundaries o
computational domain.

The inverse cascade can be distorted not only due
finiteness of the computational domain, as in Smith a
Yakhot,14,15but also due to a choice of the large scale ene
withdrawal formulation that is inconsistent with the Kolmo
orov dynamics. As will become clear later, indeed, this pro
lem is typical of most of the existing large scale energy d
sipation representations.

Based upon the preceding discussion, two poss
mechanisms of emergence and development of coherent
tices in the energy subrange can be delineated. First, co
ent structures in 2D turbulence result from the intrinsic
stability of the nearly Gaussian flow field and are t
fundamental feature of the flow dynamics. Alternative
they are the product of the inverse energy cascade disto
by external factors. The implications of these two mutua
exclusive possibilities are rather far reaching since, if the fi
conjecture were correct, then the KBK steady state wo
have been irreproducible. As was shown by Smith a
Yakhot,14,15 the second mechanism is at work for nonstea
state turbulence where the inverse cascade causes e
saturation of the lowest resolved modes. For steady s
simulations with large scale drag, the situation is not as cl
studies in which the large scale energy withdrawal would
accomplished in such a way as to minimize the distortion
the inverse energy cascade have not been performed.

Here, we present the results of long term, steady s
simulations in which the large scale drag emulates the s
ation where all modes, including the lowest ones, adher
KBK dynamics, and thus the inverse energy cascade rem
undisturbed at all times. Since in finite box simulatio
kmin51 and there are no smaller wave numbers availabl
virtual minimum wave number is introduced, which will b
denoted askls , kls.1, and the modes withk,kls are made
inactive. Referring to these modes assupergrid scale~SPGS!
modes and assuming that they all adhere to Kolmogo
spectrum Eq.~1!, one can develop an SPGS parameterizat
which accounts for the energy and enstrophy exchange
tween those SPGS~or implicit! modes and explicit mode
with k>kls . The derivation of such SPGS representation
analogous to that of the two-parametric viscosity
Kraichnan28 and is given in the next section. Then, Secs.
and IV describe the application of this new large scale d
parameterization to DNS and LES of 2D turbulence in
energy subrange. One of the central findings of these si
lations is the absence of the coherent vortices formation;
flow field remains structureless and Kolmogorovian for pr
tically unlimited integration time. The results and their im
plications are discussed in the last section.
Downloaded 09 Jun 2006 to 192.58.150.41. Redistribution subject to AIP
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II. FORMULATION OF THE TWO-PARAMETRIC
LARGE SCALE DRAG FOR 2D TURBULENCE

Homogeneous, isotropic, forced, and dissipative 2D t
bulence is governed by the vorticity equation

]z

]t
1

]~¹22z,z!

]~x,y!
5n0¹2z1j, ~2!

wherez is the fluid vorticity,n0 is the molecular viscosity,
and j is the external forcing. Since the main focus of th
paper is the energy cascade subrange, it is assumed tha
forcing is localized around some high wave numberkf and is
random, zero-mean, Gaussian, and white-noise in ti
which is similar to that used by Chekhlovet al.29 To achieve
a steady state in numerical simulations based upon Eq.~2!,
one needs to introduce an additional term in its right ha
side, the large scale dragDls , which provides for the large
scale energy dissipation. Usually,Dls is represented by eithe
a Rayleigh~linear or piecewise-linear! drag related to the
Ekman boundary layer friction in a geophysical conte
~McWilliams,20 Maltrud and Vallis,27 Pedlosky30!, or higher
order, more scale selective, infrared hyperviscosity~Vallis,4

Kukharkin,12 Chekhlovet al.31!.
However, in the inertial range of 2D turbulence, th

large scale energy does not dissipate, but cascades to
lower wave number modes. Therefore, the function of
large scale drag should rather be anemulationof the up-scale
energy transfer from explicit (k.kls) to supergrid (k,kls)
modes while preserving the dynamical processes that wo
prevail in the case of the infinite domain. The implemen
tion of such large scale drag consists of suppressing the
plitudes of all the modes withk,kls ~SPGS modes! while
accounting for their effect on the resolved modes
k-dependentDls in Eq. ~2!. In this respect, the physica
meaning of the large scale drag is quite similar to that of
two-parametric eddy viscosity~Kraichnan,28 Chekhlov
et al.31!; the difference is in that the latter accounts for t
energy exchange between a resolved modek and all subgrid
scale~SGS! modesk.kc ~kc being the wave number of th
dissipation cutoff corresponding to the grid resolution!,
while the former accounts for the interaction between a
solved modek and all SPGS modesk,kls . Therefore, simi-
larly to SGS, proper SPGS representation can be derived
introduction of a two-parametric large scale drag,D(klsuk)
5Dls , in analogy with the two-parametric viscosity b
Kraichnan28 based upon the evolution equation for the sp
tral enstrophy densityV(k,t)[(4p)21k^z(k,t)z(2k,t)&,
where^...& denotes ensemble averaging:

~] t12n0k2!V~k,t !5TV~k,t !. ~3!

Here, the enstrophy transfer functionTV(k,t) is given by

TV~k,t !5
k

2p
RH E

p1q5k

p3q

p2 ^z~p,t !z~q,t !

3z~2k,t !&
dp dq

~2p!2J . ~4!

For a system in statistical steady state the two-parame
transferTV(klsuk) is calculated from Eq.~4! by extending
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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integration only over all such triangles~k, p, q! that uk2pu
,q,k1p and p and/orq are smaller thankls . Then, the
two-parametric large scale drag is defined as

D~klsuk!52
TV~klsuk!

2k2V~k!
. ~5!

In a wide class of quasi-normal approximatio
TV(klsuk) in two dimensions is given by

TV~klsuk!

5
2k

p E E
D

Q2k,p,q~p22q2!sinaFp22q2

p3q3 V~p!V~q!

2
k22q2

k3q3 V~q!V~k!1
k22p2

k3p3 V~p!V~k!Gdp dq,

~6!

whereQ2k,p,q is the triad relaxation time. Also, the anglea
is formed by the vectorsp andq, andEE

D denotes integration
over the area defined above.

Different spectral closure models provide different e
pressions forQ2k,p,q . Here, Q2k,p,q was calculated using
the renormalization group theory of turbulence~Staroselsky
and Sukoriansky,32 Sukorianskyet al.33!. Numerical integra-
tion of Eq.~6!, using the assumption that all the SPGS mod
k,kls adhere to Kolmogorov spectrum Eq.~1!, yields the
large scale drag representation

D~klsuk!50.0974ē1/3kls
24/3F~k/kls!, ~7!

where F(x) is a nondimensional function;F(1)51. The
function F(x) is presented in Fig. 1~a!, and in log–log for-
mat, in Fig. 1~b!. One can see thatF(x) is not a power law
function; for smallk ~the cusp region! its distribution is close
to x22 but for largerx it becomes steeper. The least squa
approximation givesF(x)'x22.58 for x>1.

In a large number of simulations reported in the lite
ture, the large scale drag has been represented by the inf
hyperviscosity,

F~x!;x22n, n>1, ~8!

while the coefficient was set based upon Reynolds num
similarity considerations. Comparing Eq.~8! to Fig. 1~b! one
should note important differences: first, the approximat
Eq. ~8! is inaccurate forx.1 which can be expected to dis
tort the energy exchange among the explicit modes as we
between the explicit and SPGS modes resulting in disturb
the inverse energy cascade and, second, Eq.~8! is singular
for x˜0, while in the present large scale drag parameter
tion, F(x) is undefined forx,1.

To implement the two-parametric large scale drag
rameterization in spectral DNS of 2D turbulence, one ne
to replace Eq.~2! by equation for the resolved Fourier mod
that includes Eq.~5! in its right hand side,

]z~k!

]t
1E

upu,uk2pu.kls

p3k

p2 z~p!z~k2p!
dp

~2p!2

52n0k2z~k!2D~klsuk!k2z~k!1j~k!, k>kls.1.
~9!
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The viscous term in Eq.~9! is routinely replaced by a highe
order hyperviscous term~Borue,9 McWilliams,20 Maltrud
and Vallis,27 Chekhlovet al.31!. If kls is set at too small a
value ~1 or 2!, then one needs to resort to discrete spectr
based derivation ofD(klsuk) using Eq.~6!, which will be
inconsistent with the present calculation based upon the c
tinuous spectrum. Therefore, to allow for sufficient numb
of discrete modes to be involved in derivation ofD(klsuk),
kls should be set sufficiently large. Upon specifying the va
of kls , the amplitudes of the modes with 1<k,kls are set to
zero at every time step~‘‘chopping’’ !.

The large scale drag parameterization based upon Eq~7!
can be used in LES, in which case Eq.~9! should be replaced
by equation for the explicit Fourier modes that in addition
SPGS also includes SGS representation,

]z~k!

]t
1E

kls,upu,uk2pu,kc

p3k

p2 z~p!z~k2p!
dp

~2p!2

52n~kukc!k
2z~k!2D~klsuk!k2z~k!, kP@kls ,kc#,

~10!

wheren(kukc) is the two-parametric viscosity; its implemen
tation in 2D LES will be described in Sec. IV. It is importan
to emphasize that the new large scale drag representatio
it used either in DNS or LES, combines both Eq.~7! and
chopping.

The new SPGS parameterization Eq.~7! is designed to
preserve the KBK flow regime for as long as it remai

FIG. 1. Nondimensional functionF(x) used in the new large scale dra
representation Eq.~7! in linear–linear~a! and log–log~b! scalings.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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stable. Eliminating the boundary effects from the list of p
tential instability sources, the new large scale drag formu
tion enables us to conduct long term studies of the initia
KBK flow regime and to determine its stability.

As a side remark, let us note that Eq.~10! admits yet
another interpretation. The fact that the range of the reso
modes is confined from both sides, i.e., bykls andkc , means
that onlyintermediatescales are explicitly resolved. Thus th
computational model given by Eq.~10! should be, strictly
speaking, referred to as ‘‘mid eddy simulation.’’ This to
may be quite useful in simulations of turbulent flows, a
Eq. ~10! provides a framework representing the effects of
implicit modes upon the explicit ones in such simulation
Throughout this paper, however, a more traditional te
‘‘LES’’ will be used.

In the following two sections featuring DNS and LES
2D turbulence in the energy subrange, it will be shown t
the new SPGS representation allows for establishing a ste
state, stable, structureless flow regime that adheres to K
statistical laws for the entire length of integration.

III. DNS OF 2D TURBULENCE WITH
TWO-PARAMETRIC LARGE SCALE DRAG

To study the effect of the large scale drag formulation
evolution of 2D turbulence in the energy transfer subran
three different DNS were arranged for. The first DN
~DNS1! was conducted with no large scale drag at all, wh
in the second DNS~DNS2!, an algebraic formulation Eq.~8!
with n56 was used. Finally, in the third DNS~DNS3!, the
new two-parametric formulation Eq.~7! was employed. The
chopping fork,kls58 was introduced in both DNS1 an
DNS3, while in DNS2, the algebraic large scale drag w
essentially suppressing the modes in the same range.
the only difference between the various DNS was their la
scale drag formulation.

The setting of all present numerical experiments w
very similar to our previous simulations described in Che
hlov et al.31,29 The most significant difference was the i
crease in resolution from 5122 to 10242 Fourier modes. Very
briefly, the present DNS were based on a fully dealia
pseudospectral Fourier method to solve Eq.~9! in a periodic
box x, yP@0,2p#3@0,2p# with doubly periodic boundary
and zero initial conditions. The dealiasing was based u
the 2/3 rule. The time discretization was the same as
Chekhlov et al.31 The forcing j was given by j(k,t)
5Ajsk(t)/Adt for kP@215,222# and zero otherwise; here
dt51 is the time step, andsk(t) is a discrete and uncorre
lated in time, Gaussian random number with unit varian
To extend the inertial subrange, a high order, small sc
hyperviscous termAsk

14 was added to the right hand side
Eq. ~9! replacing the viscous term. The coefficientAs(52.9
310241) was set in the range where it almost does not aff
the forcing scale but ensures effective dissipation of
modes withk.kf .

Figures 2~a!–~c! show the time history of the total en
ergy for all three DNS performed. The energy here is n
malized byEK , the total energy obtained by integrating th
Kolmogorov spectrum Eq.~1! betweenkls58 andkf5215.
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One can see that in both DNS1 and DNS2, the energy
steadily growing in time exceedingEK already after about
5t tu . Not only the steady state was unreachable in th
DNS, but growing velocities eventually lead to violation
the Courant criterion and development of numerical insta
ity. The onset of instability can be delayed somewhat
gradual decrease of the time step; the procedure used
Smith and Yakhot15 in simulations similar to DNS1 here. In
this case, however, the instability can be expected to be
ceded by crystallization or formation of the regular lattice
vortices, as observed in Ref. 15. On the contrary, in DN
the total energy equilibrated at the level ofEK after about
10t tu and remained constant and approximately equal toEK

for the rest of the integration. Here, due to the limited co
puter resources, the integration was extended to about 80t tu .
However, the robustness of the steady state achieved
cates that the integration could be continued for a consid
ably longer time.

Figures 3~a!–~c! show the evolution of the total enstro
phy for all three DNS. This enstrophy is normalized byVK ,
the total enstrophy obtained by integrating the Kolmogor
spectrum Eq.~1! in the same range as for the total energ
One can see that unlike the total energy, the total enstro
after the initial overshoot, equilibrates reasonably quickly
all three DNS and stays at the level of about 1.5VK . The
factor of 1.5 can be understood recalling that a major con
bution into the total enstrophy integral comes from the h

FIG. 2. Evolution of the total energy normalized by the corresponding K
mogorov value for DNS1~a!, DNS2 ~b!, and DNS3~c!.
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wave number modes, which are the forcing modeskf and the
modes adjacent to them. The near steady state in total en
phy can be understood if one recalls that in the present si
lations, there exists a direct enstrophy cascade but at the
wave numbers, enstrophy is effectively dissipated by
high power law hyperviscosity. The total enstrophy rema
constant in DNS3 but is growing slowly in DNS2 due to t
low mode energy condensation.

Figures 4~a!–~c! depict the averaged spectra for all DN
sampled close to the end of integration. In DNS1 and DN
one can clearly see that the spectrum begins to deviate
the Kolmogorov law Eq.~1! at the lower wave number en
which is the direct result of the energy accumulation in la
scale coherent structures. In DNS3, however, the spect
remains almost perfectly Kolmogorov-like for the enti
length of integration, which is achieved here solely due
the proper choice of SPGS parameterization Eq.~7!.

Figures 5~a!–~c! show the compensated energy spe
trum, E(k) ē22/3k5/3, for all three DNS. One can see that
DNS1 and DNS2, due to strong deviations from the Kolmo
orov regime, the compensated energy spectrum
k-dependent. Since the spectrum was evolving in time,
available averaging time was short. On the other hand
DNS3, the compensated spectrum is in a robust steady s
is nearlyk-independent and is very close to the Kolmogor
constant which is known to be about 6. Thus Fig. 5~c! pro-
vides one more evidence that, with the new large scale d

FIG. 3. Evolution of the total enstrophy normalized by the correspond
Kolmogorov value for DNS1~a!, DNS2 ~b!, and DNS3~c!.
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parameterization, a 2D turbulent flow field attains a rob
steady state with nearly Kolmogorov dynamics.

Figure 6 presents the evolution of the compensated
ergy spectrum for DNS2. One can clearly see that this sp
trum is not onlyk-dependent at all times but also is tim
dependent gradually attaining ever increasing values as a
sult of the progressive large scale energy condensation.

An insightful characteristic of the energy transfer pr
cesses through a wave numberk in 2D turbulence is the tota
energy flux P(k) from all the modesP(k,`) to all the
modesP(0,k). Since in our simulations the modes withk
,kls are not allowed, their effect is emulated by the lar
scale drag Eq.~7!. Theoretically, one expects thatP(k)/ ē
51 for all k. Figures 7~a!–~c! show the ratioP(k)/ ē ob-
tained in all three DNS. Figures 7~a!~b! indicate that due to
the absence of the large scale drag, as in DNS1, or in
equate large scale drag representation by the infrared hy
viscosity, as in DNS2, this ratio deviates from 1, particula
for k,10. Only the proposed SPGS parameterization Eq.~7!
producesP(k)/ ē51 for all k, which is yet another indica-
tion that the new large scale drag formulation does not d
tort the intermodal energy exchange.

Finally, Figs. 8~a! and~b! show the color coded maps o
the velocity magnitudes for DNS2 and DNS3. One c
clearly see that in DNS2, coherent vortices are in the proc
of organization and growth; in fact, velocity variations ma
reach an order of magnitude over small distances. On

gFIG. 4. Averaged energy spectrum sampled close to the end of integra
~a! DNS1, ~b! DNS2, ~c! DNS3.
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contrary, in DNS3 the flow field appears structureless w
total velocity changes not exceeding the factor of 2 or
Note that if the infrared hyperviscosity is used, the devel
ment of strong coherent vortices requires a very long in
gration time—Borue,9 for instance, continued his simulation
for about 300t tu . The reason for such a long time obvious
is the suppression of the energy of the lowest modes. W
the resolution of 10242 Fourier modes, such a long integr
tion was computationally prohibitive in the present study a
was not attempted. Bearing in mind that generation of coh
ent vortices in simulations similar to DNS1 and DNS2 h
been well observed and established~for instance, Borue,9

Smith and Yakhot15!, we show Figs. 8~a!, ~b! to merely il-
lustrate that the difference in the flow structure in physi
space is consistent with the spectral characteristics show
Figs. 2~a!–~c! and 4~a!–~c!. More specifically, growing in

FIG. 5. Same as in Fig. 4 but for compensated energy spectrum.

FIG. 6. Evolution of the compensated energy spectrum for DNS2; the
interval between the contours is 10t tu .
Downloaded 09 Jun 2006 to 192.58.150.41. Redistribution subject to AIP
h
.
-
-

th

d
r-
s

l
in

time total energy@Figs. 2~a!, ~b!# and steepening of the low
wave number end of the spectra@Figs. 4~a!, ~b!# are associ-
ated with the gradual energy accumulation in coherent v
tices clearly visible in Fig. 8~a!. On the other hand, with the
new large scale drag formulation used in DNS3, the to
energy spectrum remains nearly Kolmogorovian for the
tire length of integration, while in the physical space, t
flow field preserves its structureless configuration.

Summarizing the information presented in Figs. 2–
one concludes that the new large scale drag represent
allows one to attain a steady state solution in direct num
cal simulations of forced, isotropic, homogeneous 2D tur
lence in the energy subrange. The flow field in this stea
state is structureless and its statistics are in very good ag
ment with the KBK theory.

IV. LES OF 2D TURBULENCE WITH
TWO-PARAMETRIC LARGE SCALE DRAG

The simultaneous conservation of energy and enstro
in 2D turbulence makes large eddy simulation in the ene
subrange with unresolved small scale energy source dis
tively different from LES of three-dimensional flows. Th
major difference occurs in SGS representation of 2D flow
As explained in Sukorianskyet al.,33 it turns out that the
presence of the two integrals of motion commands a tw
term SGS representation derived from the two-parame
viscosityn(kukc),

e

FIG. 7. Total energy transfer functionP(k) normalized by the constan
energy injection rateē for DNS1~a!, DNS2~b!, and DNS3~c!, respectively.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



3050 Phys. Fluids, Vol. 11, No. 10, October 1999 Sukoriansky, Galperin, and Chekhlov
FIG. 8. Color maps of the velocity
magnitude in the physical space;~a!
DNS2, ~b! DNS3.
a

in

the
, it
is

te
n~kukc!52
ē

0.8V̄~ t !
1

ē

0.8V̄~ t !
f~k/kc!, ~11!

where V̄(t) is the total enstrophy andf(x).0 for 0<x
<1. It is essential that Eq.~11! consists of a negative and
positive terms, otherwise the simultaneous conservation
Downloaded 09 Jun 2006 to 192.58.150.41. Redistribution subject to AIP
of

energy and enstrophy cannot be achieved. The first term
Eq. ~11! represents thenegativeLaplacian viscosity which
accounts for the unresolved small scale forcing, while
second provides the stabilizing dissipation. At first sight
may look paradoxical that the negative viscosity, which
supposed to provide an energy forcing with a constant raē
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



o

o
to
h
e

er
a

tio

.
a
t

sk
s

ur

tiv
g
s

L
,
tio

-
o
s
it
ie
p
th

ar

rse
ith

th

in-
w
as

nd
he
S
GS

NV
and
n,

rth

for
og-

3051Phys. Fluids, Vol. 11, No. 10, October 1999 Large scale drag representation in simulations of . . .
in Eq. ~11!, is in fact flow dependent, due to the presence
V̄(t) in its denominator. However, Sukorianskyet al.33 have
shown that this flow dependence is crucial for stability
LES; a flow independent negative viscosity would lead
nonlinear growth in time of both total energy and enstrop
due to the positive feedback between energy input and
strophy of the resolved modes. Sukorianskyet al.33 have also
shown thatf(k/kc) can be represented by a series in pow
of (k/kc)

2 which are equivalent to the hyperviscous dissip
tion terms in the physical space. The simplest approxima
to f(k/kc) is given by 1.6(k/kc)

2, where the coefficient 1.6
ensures zero enstrophy transfer in the energy subrange
though the dissipative terms are essential to the physics
numerical stability of LES, they are much less sensitive
the details of the flow than the negative term; Sukorian
et al.33 have also shown that flow independent hypervisco
ties can ensure robust LES for many tens of large scale t
over times.

The SGS representation that consists of the nega
flow dependent~eddy! viscosity term and positive stabilizin
hyperviscous terms has been referred to by Sukorian
et al.33 as a stabilized negative viscosity~SNV! formulation.

Note that since the SNV scheme includes a negative
placian viscosity and a positive biharmonic hyperviscosity
structurally resembles the Kuramoto–Sivashinsky equa
widely known from the combustion theory~Sivashinsky34!
and flows with chemical reactions~Kuramoto and Tsuzuki,35

Kuramoto36!. Papers by Dubrulle and Frisch,37 Gama and
Frisch,3 and Gamaet al.38,39 describe derivation of a nega
tive, flow independent eddy viscosity using the concept
the parity-invariant flow and its utilization in 2D simulation
on the Connection machine for marginally negative viscos
situations. Since the equation solved possessed the Nav
Stokes type nonlinearity and Kuramoto–Sivashinsky ty
large scale instability, the resulting equation was dubbed
Navier–Stokes–Kuramoto–Sivashinsky~NSKS! equation by
Gama et al.38 Simulations revealed a period of the line

FIG. 9. Evolution of the total energy~a! and enstrophy~b! in LES1.~a! also
shows the total energy with the energy of the first, second, third, fou
fifth, sixth, and seventh modes removed.
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growth which was then replaced by a disorganized inve
cascade that evolved into a structured vortical regime w
proliferating monopolar and multipolar structures wi
strongly depleted nonlinearities~Gama and Frisch3!. On the
other hand, Kolmogorov type turbulence with the robust
verse cascade,25/3 energy spectrum and structureless flo
field, similar to DNS3 described in the previous section, w
not observed in these simulations.

The main difference between our SNV formulation a
the NSKS equation is in the derivation of SNV and in t
flow dependency of its coefficients. In addition, the NSK
equation does not include a large scale drag while an SP
representation is a very important component of the S
based LES scheme. One expects that the results of DNS
LES of similar flows should agree. For the NSKS equatio

,
FIG. 10. Same as in Fig. 9 but for LES2.

FIG. 11. Evolution of the instantaneous energy spectrum for LES1
t/t tu50.56, 1.11, 1.67, 2.78, and 3.33. The solid line represents Kolm
orov 25/3 slope.
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such comparisons have not been performed; furthermore
corresponding DNS for that case does not exist. On the o
hand, DNS described in the previous section can be used
direct comparisons with the results of SNV based LES w
the SPGS parameterization given by Eq.~7!. Here, the re-
sults of two such LES are described. In these LES, a n
SPGS parameterization Eq.~7! was implemented using th
LES framework Eq.~10! with the SNV SGS representa
tion Eq. ~11!. In the main focus of these LES were the ex
tence and statistical properties of a steady state solutio
Eq. ~10!.

The setting of LES was quite similar to DNS describ
in the previous section. The resolution used was 1622 Fourier
modes with the 2/3 dealiasing rule; the SGS cutoff wa
number was set atkc550. The flow was initialized as zer
field everywhere except for a narrow band of wave numb
in the middle part of the spectrum, where it was set rand
and Gaussian. The energy injection rate was aboutē55.19
310210, the time step was set atdt50.5. In LES1, no large
scale drag was used, while in LES2, full SGS-SPGS form
lation Eqs. ~10!, ~11! was employed with the function
f(k/kc) calculated using the renormalization group theory
turbulence, as explained by Sukorianskyet al.33 In addition,
in formulation of the large scale drag in LES2 it was s
kls54.

Figures 9 and 10 show the evolution of the total ene
and enstrophy in LES1 and LES2. Similarly to DNS1,
LES1 with no large scale drag used, the energy grows
early in time, Fig. 9~a!. Eventually, after inverse cascad
expands to the boundaries of the computational dom
LES1 develops instability, while in LES2, with the ne
SPGS formulation implemented, the total energy equilibra
and remains in near steady state for over 220t tu as shown in
Fig. 10~a!.

Figure 9~b! shows that in LES1, the total enstrophy sta
equilibrated for up to about 3t tu , until the lowest available
wave number modes are reached by the inverse energy
cade, after whichV̄(t) grows very rapidly. On the othe

FIG. 12. Time averaged spectrum for LES2.
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hand, in LES2, Fig. 9~b!, the total enstrophy remains near
constant for about 220t tu .

Figures 11 and 12 compare the spectra obtained in b
LES. In LES1, Fig. 11, the instantaneous spectrumE(k)
quickly approaches the Kolmogorov distribution Eq.~1! and
preserves it for up to aboutt'3t tu . For a longer time, the
spectrum rapidly deviates from the Kolmogorov scaling un
the flow becomes unstable. On the other hand, in LES2,
12, the spectrum preserves Kolmogorov-like shape pra
cally indefinitely. As mentioned earlier, Kolmogorov turbu
lence has not been observed in simulations with NSKS eq
tion.

In the physical space, the flow pattern obtained in LE
is quite similar to that of DNS3—it remains practically stru
tureless and consistent with the Kolmogorov statistics a
many turnover times.

Concluding, let us re-emphasize that the results of L
described in this section are consistent with the results
DNS in the previous section. They demonstrate that the n
SPGS representation makes it possible to main
Kolmogorov-like, structureless, steady state flow regime
large eddy simulation of forced, dissipative 2D turbulen
for a very long integration time.

V. DISCUSSION AND CONCLUSIONS

The results of DNS and LES presented here indicate
the formulation of the large scale drag is critical in simu
tions of 2D turbulence in a doubly periodic box, because i
ultimately responsible for the existence and physical nat
of the steady state. The widely used in modern simulati
infrared hyperviscosities prevent the explosive instabi
due to the energy saturation of the lowest modes. Howe
they disturb the inverse energy cascade causing deviat
from, and eventual break down of the KBK statistical law
On the other hand, the proposed here new large scale
parameterization preserves the steady state, the KBK fl
regime for very long integration times thus proving its s
bility and reproducibility. The presented simulations clea
demonstrate that the emergence of coherent structures i
direct result of the inverse cascade distortion rather than
product of the intrinsic instability.

This study reveals the physically correct way to simula
forced, dissipative, homogeneous and isotropic 2D tur
lence in the periodic box setting. Realizing that the lar
scale drag has a complicated and subtle function in s
simulations, a notion of supergrid scales was introduced,
the drag, or SPGS parameterization was defined as a mea
of the energy and enstrophy exchange between explicit
SPGS modes. Proper SPGS representation is given by
two-parametric large scale drag which is the SPGS analo
the two-parametric viscosity by Kraichnan.28

The simulations presented here describe a highly id
ized situation pertaining to homogeneous isotropic 2D tur
lence, which is a useful tool to analyze the emergence
coherent structures and stability of KBK regime, the subje
of great theoretical importance. In particular, the results c
firmed Smith and Yakhot15 conjecture that the coherent vo
tices in small scale forced, quasi-2D turbulent flows a
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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caused by the large scale energy saturation due to finite
of the domain. In addition, it was shown that the evolvi
flow regime critically depends on SPGS parameterization
the reality, flow domains are naturally truncated, and coh
ent structures are rather common. The present results
indicative of the importance of using a proper SPGS rep
sentation in simulations of realistic quasi-2D flows with i
verse energy cascade, including nonsteady flows with slo
varying large scale statistics. Even when the physical mec
nisms responsible for the large scale energy withdrawal
known, accurate numerical simulations should employ
value of the drag as ‘‘seen’’ by the resolved modes. Suc
drag would lead to the notion of the ‘‘eddy’’ large scale dra
generally expected to bek-dependent. Here, the proper de
vation of such an SPGS representation is given provided
the statistical behavior of the largest scales is known. W
calculations are concerned with the intermediate scales o
this approach results in a new computational techniq
‘‘mid-eddy simulation.’’ This new method may also be us
ful in nested grid simulations or in problems involving r
gional modeling in meteorology and physical oceanograp
Among important issues that yet need to be addressed in
future research are the derivation of the proper SPGS re
sentation in the physical space and the formulation of
appropriate open boundary conditions for physical sp
simulations in a limited domain.
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