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A new one-parameter family of risk measures called Conditional Drawdown (CDD) has
been proposed. These measures of risk are functionals of the portfolio drawdown (under-
water) curve considered in active portfolio management. For some value of the tolerance
parameter α, in the case of a single sample path, drawdown functional is defined as
the mean of the worst (1 − α) ∗ 100% drawdowns. The CDD measure generalizes the
notion of the drawdown functional to a multi-scenario case and can be considered as a

generalization of deviation measure to a dynamic case. The CDD measure includes the
Maximal Drawdown and Average Drawdown as its limiting cases. Mathematical prop-
erties of the CDD measure have been studied and efficient optimization techniques for
CDD computation and solving asset-allocation problems with a CDD measure have been
developed. The CDD family of risk functionals is similar to Conditional Value-at-Risk
(CVaR), which is also called Mean Shortfall, Mean Excess Loss, or Tail Value-at-Risk.
Some recommendations on how to select the optimal risk functionals for getting practi-
cally stable portfolios have been provided. A real-life asset-allocation problem has been
solved using the proposed measures. For this particular example, the optimal portfolios
for cases of Maximal Drawdown, Average Drawdown, and several intermediate cases
between these two have been found.

Keywords: Equity drawdown; drawdown measure; conditional value-at-risk; portfolio
optimization; stochastic optimization.

1. Introduction

Optimal portfolio allocation is a longstanding issue in both practical portfolio man-
agement and academic research on portfolio theory. Various methods have been
proposed and studied by Grinold [11]. All of them, as a starting point, assume
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some measure of portfolio performance, which consists of at least two components:
evaluating expected portfolio reward; and assessing expected portfolio risk. From
theoretical perspective, there are two well-known approaches to manage portfo-
lio performance: Expected Utility Theory and Risk Management, which are usually
considered within a framework of a one-period or multi-period model.

If we are interested in Risk Management approach to portfolio optimization
within a long term, what are the functionals for assessing portfolio risk that
account for different sequences of portfolio losses? Let portfolio be optimized within
time interval [0, T ], and let W (t) be portfolio value at time moment t ∈ [0, T ].
One of the functionals that we are looking for is portfolio drawdown defined by
(maxτ∈[0,t] W (τ) − W (t))/W (t), which, indeed, accounts for a sequence of portfo-
lio losses. What are the advantages to formulate a portfolio optimization problem
with a constraint on portfolio drawdown? To answer to this question, drawdown
regulations in real trading strategies and drawdown theoretical aspects should be
addressed first.

1.1. Drawdown regulations in real trading strategies

From a standpoint of a fund manager, who trades clients’ or bank’s proprietary
capital, and for whom the clients’ accounts are the only source of income coming in
the form of management and incentive fees, losing these accounts is equivalent to
the death of his/her business. This is true with no regard to whether the employed
strategy is long-term valid and has very attractive expected return characteristics.
Such fund manager’s primary concern is to keep the existing accounts and to attract
the new ones in order to increase his/her revenues. Commodity Trading Advisor
(CTA) determines the following rules regarding magnitude and duration of their
clients’ accounts drawdowns:

• Highly unlikely to tolerate a 50% drawdown in an account with an average- or
small-risk CTA.

• An account may be shut down if a 20% drawdown is breached.
• A warning is issued if an account in a 15% drawdown.
• An account will be closed if it is in a drawdown, even of small magnitude, for

longer than two years.
• Time to get out of a drawdown should not be longer than a year.

1.2. Drawdown notion in theoretical framework

Several studies discussed portfolio optimization with drawdown constraints. Gross-
man and Zhou [12] obtained an exact analytical solution to portfolio optimization
with constraint on maximal drawdown based on the following model:

• Continuous setup
• One-dimensional case — allocating current capital between one risky and one

risk-free assets
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• An assumption of log-normality of the risky asset
• Use of dynamic programming approach — finding a time-dependent fraction of

the current capital invested into the risky asset

Cvitanic and Karatzas [7] generalized this model [12] to multi-dimension case
(several risky assets). In contrast to Grossman and Zhou [12] and Cvitanic and
Karatzas [7], Chekhlov et al. [6] defined portfolio drawdown to be the drop of
the current portfolio value comparing to its maximum achieved in the past up
to current moment t, i.e., maxτ∈[0,t] W (τ) − W (t), and introduced one-parameter
family of drawdown functionals, entitled Conditional Drawdown (CDD). Moreover,
Chekhlov et al. [6] considered portfolio optimization with a constraint on drawdown
functionals in a setup similar to the index tracking problem [8], where an index
historical performance is replicated by a portfolio with constant weights. Chekhlov
et al. [6] proposed the following setup:

• Discrete formulation
• Multi-dimensional case — several risky assets (markets and futures)
• A static set of portfolio weights satisfying a certain risk condition over the whole

interval [0, T ]
• No assumption about the underlying probability distribution, which allows con-

sidering variety of practical applications — use of the historical sample paths of
assets’ rates of return over [0, T ]

• Use of linear programming approach — reduction of portfolio optimization to
linear programming (LP) problem

The CDD is related to Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) measures studied by Rockafellar and Uryasev [20,21]. By definition, with
respect to a specified probability level α, the α-VaR of a portfolio is the lowest
amount ζα such that, with probability α, the loss will not exceed ζα in a specified
time τ , whereas the α-CVaR is the conditional expectation of losses above that
amount ζα. Various issues about VaR methodology were discussed by Jorion [10].
The CDD is similar to CVaR and can be viewed as a modification of the CVaR
to the case when the loss-function is defined as a drawdown. CDD and CVaR are
conceptually related percentile-based risk performance functionals. Optimization
approaches developed for CVaR are directly extended to CDD. The CDD includes
the average drawdown and maximal drawdown as its limiting cases. It takes into
account both the magnitude and duration of the drawdowns, whereas the maxi-
mal drawdown concentrates on a single event — maximal account’s loss from its
previous peak.

However, Chekhlov et al. [6] only tested the suggested approach to portfolio
optimization subject to constraints on drawdown functionals. The CDD [6] was not
defined as a true risk measure and the real-life portfolio optimization example was
considered based only on the historical sample paths of assets’ rates of return.
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This paper is focused on:

• Concept of drawdown measure — possession of all properties of a deviation mea-
sure, generalization of deviation measures to a dynamic case

• Concept of risk profiling — Mixed Conditional Drawdown (generalization of
CDD)

• Optimization techniques for CDD computation — reduction to linear program-
ming (LP) problem

• Portfolio optimization with constraint on Mixed CDD

Our study develops concept of drawdown measure by generalizing the notion
of the CDD to the case of several sample paths for portfolio uncompounded rate
of return. Definition of drawdown measure is essentially based on the notion of
CVaR [1,20,21] and mixed CVaR [22] extended to a multi-scenario case. Drawdown
measure uses the concept of risk profiling introduced by Rockafellar et al. [22],
namely, drawdown measure is a “multi-scenario” mixed CVaR applied to drawdown
loss-function.

From theoretical perspective, drawdown measure satisfies the system of axioms
determining deviation measures [22,23,24]. Those axioms are: nonnegativity, insen-
sitivity to constant shift, positive homogeneity and convexity. Moreover, drawdown
measure is an example generalizing properties of deviation measures to a dynamic
case. We develop optimization techniques for efficient computation of drawdown
measure in the case when instruments’ rates of return are given.

Similar to the Markowitz mean-variance approach [14], we formulate and solve
an optimization problem with the reward performance function and CDD con-
straints. The reward-CDD optimization is a piece-wise linear convex optimization
problem [19], which can be reduced to a linear programming problem (LP) using
auxiliary variables.

Linear programming allows solving large optimization problems with hundreds
of thousands of instruments. The algorithm is fast, numerically stable, and provides
a solution during one run (without adjusting parameters like in genetic algorithms
or neural networks). Linear programming approaches are routinely used in portfolio
optimization with various criteria, such as mean absolute deviation [13], maximum
deviation [25], and mean regret [8]. Ziemba and Mulvey [26] discussed other appli-
cations of optimization techniques in the finance area.

2. Model Development

Suppose a given time interval [0, T ] is partitioned into N subintervals [tk−1, tk],
k = 1, N , by the set of points {t0 = 0, t1, t2, . . . , tN = T }, and suppose there
are m risky assets with rates of return determined by random vector r(tk) =
(r1(tk), r2(tk), . . . , rm(tk)) at time moments tk for k = 1, N . We also assume that
the risk-free instrument (or cash) with the constant rate of return r0 is available.
The ith asset’s rate of return at time moment tk is defined by ri(tk) = pi(tk)

pi(tk−1)
− 1,

where pi(tk) and pi(tk−1) are the ith asset’s prices per share at moments tk and
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tk−1, respectively. Let C denote an initial capital at t0 = 0 and let values xi(tk)
for i = 1, m and x0(tk) define the proportion of the current capital invested in the
ith risky asset and risk-free instrument at tk, respectively. Consequently, a portfolio
formed of the m risky assets and the risk-free instrument is determined by the vec-
tor of weights x(tk) = (x0(tk), x1(tk), x2(tk), . . . , xm(tk)). The components of x(tk)
satisfy the budget constraint

m∑
i=0

xi(tk) = 1 . (2.1)

By definition, the rate of return of the portfolio at time moment tk is

r
(p)
k (x(tk)) = r(tk) · x(tk) =

m∑
i=0

ri(tk)xi(tk) . (2.2)

Portfolio optimization can be considered within a framework of a one-period
or multi-period model. A one-period model in portfolio optimization assumes the
ith asset’s rates of return for all tk, k = 1, N , to be independent observations of
a random variable ri. In this case, the vector of portfolio weights is constant and
portfolio rate of return is a random variable r(p) presented by a linear combination
of random assets’ rates of return ri, i = 1, m, and constant r0, i.e., r(p) =

∑m
i=0 rixi.

A traditional setup for a one-period portfolio optimization problem from Risk Man-
agement point of view is maximizing portfolio expected rate of return subject to
the budget constraint and a constraint on the risk

max
x

E(r(p))

s.t. Risk(r(p)) ≤ d ,

m∑
i=0

xi = 1 .

(2.3)

Risk of the portfolio can be measured by different performance functionals,
depending on investor’s risk preferences. Variance, VaR, CVaR and Mean Absolute
Deviation (MAD) are examples of risk functionals used in portfolio Risk Manage-
ment [22]. Certainly, solving optimization problem (2.3) with different risk measures
will lead to different optimal portfolios. However, all of them are based on a one-
period model, which does not take into account the sequence of the asset’s rates of
return within time interval [0, T ].

A multi-period model in portfolio optimization is intended for controlling and
optimizing portfolio wealth over a long term. It is essentially based on how the
asset’s rates of return evolve within the whole time interval. Moreover, in each time
moment tk, k = 0, N , there might be a capital inflow or outflow into or from the
portfolio, and portfolio weights xi(tk), i = 1, m, might be re-balanced. In this case,
the portfolio wealth at tk for k = 1, N is defined

Wk(x(tk)) = (Wk−1(x(tk−1)) + Y (tk−1))(1 + r
(p)
k (x(tk))) , (2.4)
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where Y (tk−1) = F+(tk−1) − F−(tk−1) is the resulting capital flow at tk−1 (inflow
F+(tk−1) minus outflow F−(tk−1)), which can be positive or negative.

A portfolio optimization problem can also be formulated based on the Expected
Utility Theory (EUT). According to the EUT, an investor with additively separable
concave utility function U(.) chooses a consumption stream {C0, C1, . . . , CN−1} and
portfolio to maximize

E

(
N−1∑
k=0

U(C(tk), tk) + B(W (tN , x(tN )))

)
,

where B(·) is the concave utility of bequest. Note that the EUT is focused on max-
imization of investor’s consumption. However, a risk manager who runs a hedge
fund and wishes to increase capital inflow by attracting new investors would be
more interested in maximizing portfolio wealth at the final moment tN = T and
decreasing portfolio drops over the whole time interval [0, T ]. In this case, Risk Man-
agement approach is more adequate to formulate a portfolio optimization problem

max
x

P(W )

s.t. R(W ) ≤ d ,

m∑
i=0

xi(tk) = 1 , k = 0, N ,

(2.5)

where P(W ) and R(W ) are performance and risk functionals, respectively, depend-
ing on stream W = (W1, W2, . . . , WN ). Suppose the optimization problem (2.5) is
considered under the following conditions:

• A manager cannot affect a stream of Y (tk) (if the portfolio value increases it is
likely that capital inflow will also increase and vise-versa).

• The manager can only allocate resources among different instruments (investment
strategies) in the portfolio at every moment tk, k = 0, N , i.e., he/she can only
optimize portfolio rate of return by choosing portfolio weights xi(tk).

Accounting for these conditions, how can the manager evaluate portfolio perfor-
mance over [0, T ] and efficiently solve (2.5)? Before to answer to this question, the
following legitimate issues regarding problem formulation (2.5) should be addressed

• How the risk is measured within [0, T ].
• How the assets’ rates of return are modeled within [0, T ].
• What optimization approach is chosen to solve (2.5).

This paper considers several integral characteristics of portfolio performance,
which distinguish different sequences of Wk in a stream (W1, W2, . . . , WN ). These
characteristics are based on the notion of portfolio drawdown dealing with the
drop in portfolio wealth at time moment tk with respect to the wealth’s maximum
preceding tk. Pflug and Ruszczynski [16,18] discuss alternative formulations for (2.5)
as well as some approaches for defining risk of multi-period income streams.
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3. Absolute Drawdown for a Single Sample Path

This section presents the notion of the Absolute Drawdown (AD) and considers
three functionals based on this notion. The AD is applied to a sample path of the
uncompounded cumulative portfolio rate of return. Note that the AD is applied
not to the compounded cumulative portfolio rate of return Wk(x(tk)). If the values
of r

(p)
k (x(tk)) for k = 1, N determine a sample path (time series) of the portfolio’s

rate of return, then, by definition, the uncompounded cumulative portfolio rate of
return at time moment tk is

wk(x(tk)) =




0 , k = 0 ,

k∑
l=1

r
(p)
l (x(tl)) , k = 1, N .

(3.1)

To simplify notations, we use wk instead of wk(x(tk)), assuming that wk is
always a function of vector x(tk). Further in this section, we consider only a single
sample path of wk, k = 1, N , which we denote by vector w, i.e. w = (w1, . . . , wN ).

Definition 3.1. The AD is a vector-variable functional depending on the sample
path w

AD(w) = ξ = (ξ1, . . . , ξN ) , ξk = max
0≤j≤k

{wj} − wk . (3.2)

Note that components (w1, . . . , wN ) and (ξ1, . . . , ξN ) of vectors w and ξ, are, in
fact, time series w1, . . . , wN and ξ1, . . . , ξN , respectively, where the kth components
of w and ξ correspond to time moment tk. Since ξ0 is always zero, we do not include
it into drawdown time series ξ. Moreover, although AD(w) and ξ are the same
drawdown time series, we refer to notation AD(w) to emphasize its dependence
on w and to notation ξ whenever we use drawdown time series just as vector of
numbers.

Figure 1 illustrates an example of the absolute drawdown ξ and a corresponding
sample path of uncompounded cumulative rate of return w. Starting from t0 = 0,

0 T
t

1t 2t .   .   .

).,..,( 1 Nwww =

).,..,( 1 Nξξξ =

Fig. 1. Time series of uncompounded cumulative rate of return w and corresponding absolute

drawdown ξ.
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uncompounded cumulative rate of return w goes up and the first component of ξ

equals zero. When w decreases, ξ goes up. When time series w achieves its local
minimum, absolute drawdown achieves its local maximum. This process continues
until tN = T .

Proposition 3.1. Defining vectorial operations: w+const = (w1+const, . . . , wN +
const) and λw = (λw1, . . . , λwN ), the AD(w) satisfies the following properties

(1) Nonnegativity: AD(w) ≥ 0.

(2) Insensitivity to constant shift: AD(w + const) = AD(w).
(3) Positive homogeneity: AD(λw) = λAD(w), ∀λ ≥ 0.

(4) Convexity: if wλ = λwa + (1 − λ)wb is a linear combination of any two sample
paths of uncompounded cumulative rates of return, wa and wb, with λ ∈ [0, 1],
then AD(wλ) ≤ λAD(wa) + (1 − λ)AD(wb).

Proof. Properties 1–3 are direct consequences of (3.2). Property 4 is proved based
on max0≤τ≤t{λwa+(1−λ)wb} ≤ λmax0≤τ≤t{wa}+(1−λ)max0≤τ≤t{wb}, λ ∈ [0, 1].

Note that DD does not satisfies the properties which AD does (advantage of
AD). The difference between the AD and DD is similar to the difference between
absolute and relative errors in a measurement. The AD and DD functionals can
be used in Risk Management and Statistics to control absolute and relative drops
in a realization of a stochastic process. However, in this paper we are focused on
applications of drawdown functionals in portfolio optimization. Since further in
this paper, we deal only with the absolute drawdown functional, AD, the word
“absolute” can be omitted without confusion.

3.1. Maximum, average and conditional drawdowns

We consider three functionals based on the notion of drawdown: (i) Maximum
Drawdown (MaxDD), (ii) Average Drawdown (AvDD), and (iii) CDD. The last risk
functional is actually a family of performance functions depending upon parameter
α. It is defined similar to CVaR [21] and, as special cases, includes the MaxDD and
AvDD.

Definition 3.2. For given time interval [0, T ], partitioned into N subintervals
[tk−1, tk], k = 1, N , with t0 = 0 and tN = T , AvDD and MaxDD functionals
are defined, respectively

MaxDD(w) = max
1≤k≤N

{ξk} , (3.3)

AvDD(w) =
1
N

N∑
k=1

ξk . (3.4)
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To define Conditional Value-@-Risk (CV@R) and CDD, we introduce a function
πξ(s) such that

πξ(s) =
1
N

N∑
k=1

I{ξk≤s} , (3.5)

where I{ξk≤s} is an indicator equal to 1, if the condition in curly brackets is true,
and equal to zero, if the condition is false, i.e.,

I{c≤s} =

{
1 , c ≤ s ,

0 , c > s ,
c ∈ R .

Figure 2 explains definition of function πξ(s). For the threshold s shown on
the figure, function πξ(s) equals 5

8 , since ξk ≤ s for five values of k, namely, k =
2, 3, 4, 7, 8.

The inverse function to (3.5) is defined

π−1
ξ (α) =

{
inf{s|πξ(s) ≥ α} , α ∈ (0, 1] ,

0 , α = 0 .
(3.6)

Remark 3.1. Since all ξk, k = 1, N , are nonnegative, we define π−1
ξ (0) to be zero.

0 Tt =82t 3t

s

t
1t 4t 5t 6t 7t

5ξ

2ξ

Drawdown time series

Fig. 2. Drawdown time series ξ and indicator function I{c≤s}.
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Remark 3.2. In fact, ∀α ∈ (0, 1], s = π−1
ξ (α) is the unique solution to two

inequalities

πξ(s − 0) < α ≤ πξ(s + 0) . (3.7)

Figures 3 and 4 illustrate left and right continuous step functions πξ(s) and
π−1

ξ (α), respectively, which correspond to drawdown time series ξ shown on Fig. 2.

2ξ 5ξ4ξ 7ξ 3ξ
8ξ 6ξ 1ξ

81

41

83

21

85

43

87

1

0 s

)(sπ

Fig. 3. Function πξ(s).

)(
1 απ −

0 81 41 83 21 85

2ξ
4ξ
7ξ

3ξ

8ξ

6ξ

1ξ

5ξ

43 87 1

α

Fig. 4. Inverse function π−1
ξ (α).
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Let ζ(α) be a threshold such that (1 − α) ∗ 100% of drawdowns exceed this
threshold. By definition,

ζ(α) = π−1
ξ (α) . (3.8)

If we are able to precisely count (1 − α) ∗ 100% of the worst drawdowns, then
πξ(ζ(α)) = πξ(π−1

ξ (α)) = α. For such a value of the parameter α, the CV@R of
ξk, k = 1, N , is defined as the mean of the worst (1 − α) ∗ 100% drawdowns. For
instance, if α = 0, then CV@R is the average drawdown, and if α = 0.95, then
CV@R is the average of the worst 5% drawdowns. However, in a general case,
πξ(ζ(α)) = πξ(π−1

ξ (α)) ≥ α, followed from (3.6). It means that, in general, we are
not able to precisely count (1 − α) ∗ 100% of the worst drawdowns. In this case,
the CV@R becomes a weighted average of the threshold ζ(α) and the mean of the
worst drawdowns strictly exceeding ζ(α).

Definition 3.3. For a given sequence of ξk, k = 1, N , CV@R is formally defined
by

CV@Rα(ξ) =
(

πξ(ζ(α)) − α

1 − α

)
ζ(α) +

1
(1 − α)N

∑
ξk∈Ξα

ξk , (3.9)

where Ξα = {ξk|ξk > ζ(α), k = 1, N}.

Note that the first term in the right-hand side of (3.9) appears because of inequal-
ity πξ(π−1

ξ (α)) ≥ α. If (1 − α) ∗ 100% of the worst drawdowns can be counted
precisely, then πξ(π−1

ξ (α)) = α and the first term in the right-hand side of (3.9)
disappears. Equation (3.9) follows from the framework of the CVaR methodology
[20,21]. Close relation between the CVaR and CV@R is discussed in the following
remark.

Remark 3.3. CV@Rα, given by (3.9), and functional CVaRα [22, p. 7, example 4],
are linearly dependent, i.e., if X is an arbitrary random variable then

CV@Rα(X) =
1

1 − α
(E(X) + α CVaRα(X)) . (3.10)

Thus, use of the CV@R or CVaR is only the matter of convenience.

Definition 3.4. In a single scenario case, the CDD with tolerance level α ∈ [0, 1]
is the CV@R applied to the drawdown functional, AD(w),

∆α(w) = CV@Rα(AD(w)) . (3.11)

Equivalently, interpreting ξk, k = 1, N , to be observations of a “random variable”
ξ, α-CDD is the CV@Rα of a loss function AD(w).
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3.2. Conditional Value-at-Risk and Conditional Drawdown

properties

CDD is an example of a functional generalizing properties of deviation measures to
a dynamic case. However, since CDD is closely related to CVaR, which properties
were studied in detail by Rockafellar and Uryasev [20,21], it is useful to discuss
CDD properties based on properties of CVaR. Because of linear relation (3.10), we
can replace CVaR by CV@R.

Proposition 3.2. CV@Rα(ξ) satisfies the following properties

(1) Constant translation: CV@Rα(ξ + const) = CV@Rα(ξ) + const, ∀α ∈ [0, 1].
(2) Positive homogeneity: CV@Rα(λξ) = λ CV@Rα(ξ), ∀λ ≥ 0 and ∀α ∈ [0, 1].
(3) Monotonicity: if ξk ≤ ηk, 1 ≤ k ≤ N, then CV@Rα(ξ) ≤ CV@Rα(η), ∀α ∈

[0, 1].
(4) Convexity: if ξλ = λξa +(1−λ)ξb is a linear combination of any two drawdown

sample paths ξa and ξb with λ ∈ [0, 1], then CV@Rα(ξλ) ≤ λ CV@Rα(ξa) +
(1 − λ)CV@Rα(ξb).

Proof. Based on linear relation between CV@Rα and CVaRα, given by (3.10),
properties 1–4 are direct consequence of CVaRα properties [22].

Proposition 3.3. The CDD = ∆α(w) satisfies the properties of deviation mea-
sures, i.e.,

(1) Nonnegativity: ∆α(w) ≥ 0, ∀α ∈ [0, 1].
(2) Insensitivity to constant shift: ∆α(w + const) = ∆α(w), ∀α ∈ [0, 1].
(3) Positive homogeneity: ∆α(λw) = λ∆α(w), ∀λ ≥ 0 and ∀α ∈ [0, 1].
(4) Convexity: if wλ = λwa + (1 − λ)wb is a linear combination of any two sample

paths of uncompounded cumulative rate of returns wa and wb with λ ∈ [0, 1],
then ∆α(wλ) ≤ λ∆α(wa) + (1 − λ)∆α(wb).

Proof. Properties 1–4 follow from Propositions 3.1 and 3.2. Indeed, based on the
relation between the CDD and CV@R, i.e., ∆α(w) = CV@Rα(AD(w)), the first
property is a direct consequence of AD(w) nonnegativity. Properties 2–4 are proved,
respectively,

∆α(w + c) = CV@Rα(AD(w + c)) = CV@Rα(AD(w)) = ∆α(w) ,

∆α(λw) = CV@Rα(AD(λw)) = CV@Rα(λAD(w))

= λ CV@Rα(AD(w)) = λ∆α(w) ,

∆α(wλ) = CV@Rα(AD(λwa + (1 − λ)wb))

≤ CV@Rα(λAD(wa) + (1 − λ)AD(wb))



FA 1
January 27, 2005 16:3 WSPC-104-IJTAF SPI-J071 00276

Drawdown Measure in Portfolio Optimization 25

≤ λ CV@Rα(AD(wa)) + (1 − λ)CV@Rα(AD(wb))

= λ∆α(wa) + (1 − λ)∆α(wb) .

Note that the monotonicity property of CV@R is used in the first line of the proof
of CDD convexity.

Proposition 3.4. MaxDD (3.3) and AvDD (3.4) are the special cases of the α-CDD
functional (this notation is used to emphasize CDD dependence on α), namely,

MaxDD(w) = ∆1(w) , AvDD(w) = ∆0(w) . (3.12)

Proof. To prove the first formula of (3.12), we assume that ζ(1) < ∞. Based on this
assumption, in the case of α = 1, we have ζ(1−) = π−1

ξ (1−) = π−1
ξ (1) = ζ(1), i.e.,

function ζ(α) is constant in the left vicinity of 1. Hence, πξ(ζ(1−)) = πξ(ζ(1)) = 1,
Ξ1 = ∅ and

∆1(w) = ζ(1) lim
α→1−

(
πξ(ζ(α)) − α

1 − α

)
= ζ(1) lim

α→1−

(
1 − α

1 − α

)
= ζ(1) = MaxDD(w) .

When α = 0, according to (3.6), ζ(0) = 0, Ξ0 = {ξk|k = 1, N} and, consequently,

∆0(w) =
1
N

∑
tk∈Ξ0

ξk =
1
N

N∑
k=1

ξk = AvDD(w) .

Theorem 3.1. CV@Rα(ξ) can be presented in the alternative form

CV@Rα(ξ) =
1

1 − α

∫ 1

α

π−1
ξ (q)dq , (3.13)

which is mathematically equivalent to (3.9).

Proof. Let {sj|j = 1, J} be the set of the ordered values of ξk, k = 1, N , where
J is the number of different values of ξk, k = 1, N , such that s1 < s2 < · · · < sJ

and nj ≥ 1 is the multiplicity of sj , i.e., nj =
∑N

k=1 I{ξk=sj} and
∑J

j=1 nj = N .
Defining qj = 1

N

∑j
l=1 nl, step functions πξ and π−1

ξ are determined by the set of
(sj , qj), j = 1, J, i.e.,

πξ(sj) = qj , π−1
ξ (qj) = sj . (3.14)

Let s0 = 0 and q0 = 0, then since
⋂J

j=1(qj−1, qj ] = ∅ and
⋃J

j=1(qj−1, qj ] = (0, 1],
for any value of α ∈ (0, 1], there exists j∗ from 1, J such that α ∈ (qj∗−1, qj∗ ]. Using
(3.14) and condition α ∈ (qj∗−1, qj∗ ], we obtain

ζ(α) = sj∗ , πξ(ζ(α)) = qj∗ ,

and, consequently,

1
N

∑
tk∈Ξα

ξk =
1
N

J∑
j=j∗+1

sjnj =
J∑

j=j∗+1

π−1
ξ (qj)(qj − qj−1) =

∫ 1

qj∗
π−1

ξ (q)dq .
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Taking the last relations into account, for any α ∈ (0, 1), the integral in the
right-hand side of (3.13) is presented∫ 1

α

π−1
ξ (q)dq = (qj∗ − α)sj∗ +

∫ 1

qj∗
π−1

ξ (q)dq = (πξ(ζ(α)) − α)ζ(α) +
1
N

∑
tk∈Ξα

ξk ,

which coincides with the expression (3.9) with accuracy of multiplier (1 − α)−1.
Only two cases are left to consider, namely, when α = 0 and α = 1. Assuming

π−1
ξ (1) < ∞, we have, respectively,

∆0(w) =
∫ 1

0

π−1
ξ (q)dq =

1
N

J∑
j=1

njsj =
1
N

N∑
k=1

ξk = AvDD(w) ,

∆1(w) = lim
α→1

(
1

1 − α

∫ 1

α

π−1
ξ (q)dq

)
= π−1

ξ (1) = MaxDD(w) .

Remark 3.4. Let X be an arbitrary random variable with the cumulative distri-
bution function FX(t) = Pr{X ≤ t}. Assuming F−1

X (α) to be the inverse function
of FX(t), functionals CV@Rα and CVaRα are expressed, respectively,

CV@Rα(X) =
1

1 − α

∫ 1

α

F−1
X (q)dq , CVaRα(X) = − 1

α

∫ α

0

F−1
X (q)dq . (3.15)

Relation (3.10) can be verified based on (3.15). CVaR methodology was thoroughly
developed by Rockafellar and Uryasev [20,21].

Example 3.1. To illustrate the concept of the CV@R, let us calculate CV@R0.7(ξ)
for drawdown time series ξ shown on Fig. 2. According to Fig. 4, ζ(0.7) = π−1

ξ (0.7) =
ξ6, and, consequently, from Fig. 3, πξ(ζ(0.7) = πξ(ξ6) = 0.75. Using formula (3.9),
we obtain CV@R0.7(ξ) = (0.75−0.7)

1−0.7 ξ6 + 1
1−0.7

(ξ1+ξ5)
8 = 1

6ξ6 + 5
12 (ξ1 + ξ5). To verify

this result, we can calculate CV@R0.7(ξ) based on (3.13). Namely, following Fig. 4,
we have CV@R0.7(ξ) = 1

1−0.7 ((0.75 − 0.7)ξ6 + (0.875 − 0.75)ξ1 + (1 − 0.875)ξ5) =
1
6ξ6 + 5

12ξ1 + 5
12ξ5.

Example 3.2. For the drawdown time series shown on Fig. 2, MaxDD(w) = ξ5

and AvDD(w) = 1
8

∑8
k=1 ξk.

3.3. Mixed conditional drawdown

The notion of CDD can be generalized by considering convex combinations of the
CDDs corresponding to different confidence levels. This idea is essentially based
on risk profiling, i.e., assignment of specific weights for CDDs with predetermined
confidence levels.

Definition 3.5. Given a risk profile χ(α) such that

1. dχ(α) ≥ 0;
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2.
∫ 1

0 dχ(α) = 1.
Mixed CDD, is defined by

∆+
χ (w) =

∫ 1

0

∆α(w)dχ(α) . (3.16)

Obviously, the mixed CDD preserves all properties of ∆α(w) stated in
Proposition 3.4. A fund manager can flexibly express his or her risk prefer-
ences by shaping χ(α).

Proposition 3.5. The mixed CDD can be presented in the alternative form

∆+
χ (w) =

∫ 1

0

π−1
ξ (α)µ(α)dα , (3.17)

with “spectrum” µ(α) to be:

(1) nonnegative on [0, 1];
(2) nondecreasing on [0, 1];
(3)

∫ 1

0 µ(α)dα = 1.

The relation between χ(α) in (3.16) and µ(α) in (3.17) is

dµ(α) =
1

1 − α
dχ(α) .

Proof. Expressing ∆α(w) in the form of (3.13), consider

∆+
χ (w) =

∫ 1

0

(
1

1 − α

∫ 1

α

π−1
ξ (q)dq

)
dχ(α)

=
∫ 1

0

(
1

1 − α

∫ 1

0

π−1
ξ (q)I{q≥α}dq

)
dχ(α)

=
∫ 1

0

π−1
ξ (q)

(∫ 1

0

1
1 − α

I{q≥α}dχ(α)
)

dq

=
∫ 1

0

π−1
ξ (q)

(∫ q

0

1
1 − α

dχ(α)
)

dq

=
∫ 1

0

π−1
ξ (q)µ(q)dq ,

where µ(α) =
∫ α

0
1

1−qdχ(q) satisfies all properties 1–3. Indeed, µ(α) is nonneg-

ative and nondecreasing, since dµ(α) = 1
1−αdχ(α) ≥ 0. Moreover,

∫ 1

0
µ(α)dα =∫ 1

0

∫ 1

0
1

1−q I{α≥q}dχ(q)dα = 1. Obviously, conditions 1–3 are necessarily satisfied by
function µ(α), since they are derived from the properties of function χ(α). However,
if function µ(α) satisfies conditions 1–3 then it is sufficient for (3.17) to be constant

translating, positively homogeneous, monotonic and convex with respect to ξ. The
last fact comes from a direct verification of those properties.
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Corollary 3.1. The non-decrease property of “spectrum, ” µ(α), is a necessary con-
dition for the mixed CDD to be convex. This property has an obvious but important
interpretation, namely, the greater drawdown quantile, π−1

ξ , is, the greater penalty
coefficient, µ, should be assigned. A similar conclusion regarding risk spectrum in
coherent risk measures was made by Acerbi and Tasche [1]. This conclusion is a
consequence of a general coherency principle, stating: the greater risk is, the more
it should be penalized [2].

Example 3.3. MaxDD and AvDD are mixed CDDs with risk profiles χ(α) =
I{α≥1} and χ(α) = I{α>0}, respectively.

Discrete risk profile. An important case is when risk profile, χ(α), is specified
by the discrete set of points χi = dχ(αi), i = 1, L. In this case, the mixed CDD is
expressed by

∆+
χ (w) =

L∑
i=1

χi∆αi(w) , (3.18)

where
∑L

i=1 χi = 1 and χi ≥ 0. Consequently, “spectrum” function is presented by

µ(α) =
L∑

i=1

χi

1 − αi
I{α≥αi} . (3.19)

Detail. Interchanging summation and integration operations in ∆+
χ (w), the result

follows

∆+
χ (w) =

L∑
i=1

χi∆αi(w) =
L∑

i=1

χi

1 − αi

∫ 1

αi

π−1
ξ (q)dq

=
∫ 1

0

(
L∑

i=1

χi

1 − αi
I{α≥αi}

)
π−1

ξ (q)dq .

Obviously, (3.19) is a positive nondecreasing function.

4. Optimization Techniques for Conditional Drawdown
Computation

This section develops optimization techniques for CDD efficient computation. For-
mulas (3.9) and (3.13) require to calculate the value of ζ(α) first, which doubles com-
putational time. However, there is an optimization procedure that obtains the values
of threshold ζ(α) and CDD simultaneously. This procedure is especially important
in a large scale optimization.

In the case when a time series of drawdowns is given, computation of the α-CDD
is reduced to computation of CV@Rα(ξ).
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Theorem 4.1. Given a time series of instrument’s drawdowns ξ = (ξ1, . . . , ξN ),
corresponding to time moments {t1, . . . , tN}, the CDD functional is presented by
CV@Rα(ξ), which computation is reduced to the following linear programming pro-
cedure

CV@Rα(ξ) = min
y,z

y +
1

(1 − α)N

N∑
k=1

zk

s.t. zk ≥ ξk − y , zk ≥ 0 , k = 1, N ,

(4.1)

leading to a single optimal value of y equal to ζ(α) if πξ(ζ(α)) > α, and to a closed
interval of optimal y with the left endpoint of ζ(α) if πξ(ζ(α)) = α.

Proof. We introduce a piece-wise function

h(y) = y +
1

(1 − α)N

N∑
k=1

[ξk − y]+ , (4.2)

where [ξk − y]+ = max{ξk − y, 0}, and establish the following relation

CV@Rα(ξ) = min
y

h(y) . (4.3)

The derivative of h(y) with respect to y is presented by

d

dy
h(y) = 1 − 1

(1 − α)N

N∑
k=1

I{y<ξk} = 1 − 1
(1 − α)N

N∑
k=1

(1 − I{ξk≤y})

=
πξ(y) − α

1 − α
. (4.4)

Note that d
dy h(y) is continuous for all values of y, except the set of points

y = {ξk|k = 1, N}. The necessary condition for function h(y) to attain an extremum
is

d−

dy
h(y) ≤ 0 ≤ d+

dy
h(y) , (4.5)

where d−
dy h(y) = 1

(1−α) (πξ(y − 0) − α) and d+

dy h(y) = 1
(1−α) (πξ(y + 0) − α) are left

and right derivatives, respectively, which coincide with each other for all y except
y = {ξk|k = 1, N}. According to (4.4) and (4.5), an optimal value y∗ should satisfy
inequalities

πξ(y∗ − 0) ≤ α ≤ πξ(y∗ + 0) ,

which have a unique solution y∗ = ζ(α) if πξ(ζ(α)) > α (see Remark 3.2), i.e., if
y∗ �= {ξk|k = 1, N}. However, if πξ(ζ(α)) = α, then there is a closed interval of
optimal values y∗, with the left endpoint of ζ(α), namely, y∗ ∈ [ζ(α), ζ(α + 0)],
where πξ(ζ(α + 0)) > α. Hence, two cases are considered:

(a) y∗ = ζ(α) if πξ(ζ(α)) > α;
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(b) y∗ ∈ [ζ(α), ζ(α + 0)] if πξ(ζ(α)) = α.

In both cases, equality [ξk −y∗]+ = (ξk −y∗)I{ξk≥y∗} = (ξk−y∗)I{ξk>ζ(α)} holds
with respect to all ξk, k = 1, N , for any fixed y∗. Thus, based on this fact, we obtain

min
y

h(y) = h(y∗) = y∗ +
1

(1 − α)N

N∑
k=1

[ξk − y∗]+

=
1

1 − α

(
1 − α − 1

N

N∑
k=1

I{ξk>ζ(α)}

)
y∗ +

1
(1 − α)N

N∑
k=1

ξkI{ξk>ζ(α)}

=
(πξ(ζ(α)) − α)

1 − α
y∗ +

1
(1 − α)N

∑
tk∈Ξα

ξk ,

where (πξ(ζ(α))−α)
1−α y∗ = (πξ(ζ(α))−α)

1−α ζ(α) in the case of (a), and (πξ(ζ(α))−α)
1−α y∗ = 0 in

the case of (b). Consequently, miny h(y) coincides with the definition of the CDD.
Since expression

∑N
k=1[ξk−y]+ is minimized, it can equivalently be presented by

the sum of nonnegative auxiliary variables zk ≥ 0, k = 1, N , satisfying additional
constraints zk ≥ ξk − y, k = 1, N .

Corollary 4.1. CV@Rα(ξ) is an optimal value for the objective function of the
following knapsack problem

CV@Rα(ξ) = max
q

N∑
k=1

ξkqk

s.t.

N∑
k=1

qk = 1 , 0 ≤ qk ≤ 1
(1 − α)N

, k = 1, N .

(4.6)

The value of CV@Rα(ξ) can be found in O(n log2 n) time.

Proof. It is enough to observe that knapsack problem (4.6) is dual to linear pro-
gramming problem (4.1). Based on duality theory, optimal values of the objective
functions in (4.1) and (4.6) should coincide. Problem (4.6) can be solved by the
standard greedy algorithm in O(n log2 n) time. The algorithm sorts items according
to their “costs” {ξk|k = 1, N}. Let 	a
 denote the integer part of real number a.
Obviously, q-variables, corresponding to the largest 	(1−α)N
 “costs,” have optimal
values equal to 1

(1−α)N , and the q-variable, corresponding to the (	(1−α)N
+1)th

“cost” in the sorted order, has optimal value equal to 1 − �(1−α)N�
(1−α)N . The rest of

q-variables equal 0. In this case, the complexity of the algorithm is mainly deter-
mined by a sorting procedure, which, in this case, requires at least O(n log2 n)
operations.
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Formulation (4.6) is closely related to the presentation of CV@R based on the
concept of a risk envelope, which is a closed, convex set of probabilities containing
1. Risk envelope theory was developed by Rockafellar et al. [22–24].

Suppose, a sample path of instrument’s rates of return (r1, . . . , rN ), correspond-
ing to time moments {t1, . . . , tN}, is given. In this case, uncompounded cumulative
instrument’s rate of return at tk is wk =

∑k
l=1 rl, and the CDD is presented in the

form of ∆α(w).

Proposition 4.1. Given a sample path of instrument’s rates of return (r1, . . . , rN ),
the CDD functional, ∆α(w), is computed by the following optimization procedure

∆α(w) = min
u,y,z

y +
1

(1 − α)N

N∑
k=1

zk

s.t. zk ≥ uk − y ,

uk ≥ uk−1 − rk , u0 = 0 ,

zk ≥ 0 , uk ≥ 0 , k = 1, N ,

(4.7)

which leads to a single optimal value of y equal to ζ(α) if πξ(ζ(α)) > α, and to a
closed interval of optimal y with the left endpoint of ζ(α) if πξ(ζ(α)) = α.

Proof. By virtue of relation ∆α(w) = CV@Rα(AD(w)) = CV@Rα(ξ), opti-
mization problem (4.7) is a direct consequence of (4.1). Using recursive formula
ξk = [ξk−1 − rk]+, constraint zk ≥ ξk − y in (4.1) is reduced to zk ≥ uk − y, where
nonnegative auxiliary variables uk satisfy additional constraints uk ≥ ξk−1 − rk,
k = 1, N , with u0 = 0.

Corollary 4.2. Given a sample path of instrument’s rates of return (r1, . . . , rN ),
the CDD functional, ∆α(w), is computed by the following optimization procedure

∆α(w) = max
q,η

−
N∑

k=1

rkηk

s.t.
N∑

k=1

qk = 1 , ηk − ηk+1 ≤ qk ≤ 1
(1 − α)N

,

qk ≥ 0 , ηk ≥ 0 , ηN+1 = 0 , k = 1, N .

(4.8)

Proof. Problem (4.8) is dual to linear programming program (4.7).

Theorem 4.1 and all its corollaries can be easily generalized to the case of mixed
CDD.

Proposition 4.2. Given a sample path of instrument’s rates of return {rk|k =
1, N} and discrete risk profile χi = dχ(αi), i = 1, L, the mixed CDD, ∆+

χ (w), is
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computed by

∆+
χ (w) = min

u,y,z

L∑
i=1

χi

(
yi +

1
(1 − α)N

N∑
k=1

zik

)

s.t. zik ≥ uk − yi ,

uk ≥ uk−1 − rk , u0 = 0 ,

zik ≥ 0 , uk ≥ 0 , i = 1, L , k = 1, N .

(4.9)

Proof. Formulation (4.9) is a direct consequence of mixed CDD definition (3.18)
and optimization problem (4.7). Notice that auxiliary variables uk do not have index
i, since they determine the drawdown sequence same for all αi.

5. Multi-Scenario Conditional Value-at-Risk and Drawdown
Measure

This section presents concept of the “Multi-scenario” CV@R and drawdown mea-
sure, which, in fact, are the CV@R and CDD defined in the case of several sample
paths for uncompounded cumulative portfolio rate of return. We generalize results
obtained for the CDD under assumption of a single sample path to the case of
several sample paths.

Let Ω denote a discrete set of random events, i.e., Ω = {ωj|j = 1, K}, and
let pj be the probability of event ωj (∀ j : pj ≥ 0, and

∑K
j=1 pj = 1). Suppose

rj(tk) = (r1j(tk), r2j(tk), . . . , rmj(tk)), k = 1, N , is the jth sample path for the
random vector of risky assets’ rates of return, corresponding to random event ωj ∈
Ω and time interval [0, T ] presented by the discrete set of time moments {t0 =
0, t1, t2, . . . , tN = T }. Consequently, the jth sample path for the rate of return
and uncompounded cumulative rate of return of a portfolio with capital weights
x(tk) = (x0(tk), x1(tk), x2(tk), . . . , xm(tk)) are defined, respectively,

r
(p)
jk (x(tk)) = rj(tk) · x(tk) =

m∑
i=1

rij(tk)xi(tk) , (5.1)

wjk(x(tk)) =




0 , k = 0 ,

k∑
l=1

r
(p)
jl (x(tl)) , k = 1, N .

(5.2)

To simplify notations, we use wjk instead of wjk(x(tk)) implying that wjk is
always a function of x(tk). In a multi-scenario case, w denotes matrix {wjk}, j =
1, K, k = 0, N .
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5.1. Multi-scenario Conditional Value-at-Risk

Definition 5.1. In a multi-scenario case, the AD(w) is a matrix-variable functional
defined on Ω × [0, T ]

AD(w) = ξ = {ξjk} , ξjk = max
0≤l≤k

{wjl} − wjk , j = 1, K , k = 1, N . (5.3)

All AD properties stated in Proposition 3.1 hold in a multi-scenario case. Indeed,
based on (5.3), properties 1–4 in Proposition 3.1 can be verified directly. Matrix
AD(w) is interpreted to be drawdown surface ξjk, (ωj , tk) ∈ Ω × [0, T ].

Definition 5.2. Similar to definitions of MaxDD and AvDD in single scenario case,
MaxDD and AvDD are defined on Ω × [0, T ], respectively,

MaxDD(w) = max
1≤j≤K,1≤k≤N

{ξjk} , (5.4)

AvDD(w) =
1
N

N∑
k=1

K∑
j=1

pjξjk . (5.5)

Definition 5.3. Indicator function for drawdown surface, its inverse function and
threshold plane, ζ(α), are defined, respectively,

πξ(s) =
1
N

N∑
k=1

K∑
j=1

pjI{ξjk≤s} , (5.6)

π−1
ξ (α) =

{
inf{s|πξ(s) ≥ α} , α ∈ (0, 1] ,

0 , α = 0 ,
(5.7)

ζ(α) = π−1
ξ (α) . (5.8)

Figure 5 illustrates drawdown surface ξjk and threshold plane ζ(α).

Definition 5.4. Multi-scenario CV@R may be defined similar to a single period
CV@R, namely,

CV@R(ξ) =
(

πξ(ζ(α)) − α

1 − α

)
ζ(α) +

1
(1 − α)N

∑
ξjk∈Ξα

pjξjk , (5.9)

where Ξα = {ξjk|ξjk > ζ(α), k = 1, N}.
Proposition 5.1. Multi-scenario CV@R, given by (5.9), can be presented in the
alternative form

CV@R(ξ) =
1

1 − α

∫ 1

α

π−1
ξ (q)dq , (5.10)

where π−1
ξ (q) is the inverse function given by (5.7).

Proof. Similar to the proof of Theorem 3.1.
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Fig. 5. Drawdown surface and threshold plane.

Remark 5.1. Let X be an arbitrary random variable. Suppose we are given K

sample paths X(tk, ωj), k = 1, N , corresponding to random events ωj ∈ Ω with
probabilities pj such that

∑K
j=1 pj = 1. Defining an indicator function for X to be

πX(s) = 1
N

∑N
k=1

∑K
j=1 pjI{X(tk,ωj)≤s} (where the inverse function π−1

X is defined
similar to (5.7)), multi-scenario CV@R may be determined similar to a single period
CV@R, namely, CV@Rα(X) = 1

1−α

∫ 1

α π−1
X (q)dq.

5.2. Drawdown measure

In a multi-scenario case, CDD with tolerance level α is interpreted as

• The average of the worst (1 − α) ∗ 100% drawdowns on drawdown surface, if the
worst (1 − α) ∗ 100% drawdowns can be counted precisely.

• The linear combination of ζ(α) and the average of the drawdowns strictly exceed-
ing threshold plane ζ(α), if we are unable to precisely count of (1 − α) ∗ 100%
drawdowns.

A strict mathematical definition of the drawdown measure is given below.
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Definition 5.5. In a multi-scenario case, the CDD, with tolerance level α ∈ [0, 1],
is the multi-scenario CV@Rα applied to drawdown surface, AD(w),

∆α(w) = CV@Rα(AD(w)) , (5.11)

and drawdown measure is the mixed CDD with risk profile χ(α)

∆+
χ (w) =

∫ 1

0

∆α(w)dχ(α) , (5.12)

where ∆α(w) is given by (5.11).

Proposition 5.2. Defining matrix operations: w + const = {wjk + const} and
λw = {λwjk}, drawdown measure ∆+

χ (w) satisfies the following properties

(1) Nonnegativity: ∆+
χ (w) ≥ 0, ∀α ∈ [0, 1].

(2) Insensitivity to constant shift: ∆+
χ (w + const) = ∆+

χ (w), ∀α ∈ [0, 1].
(3) Positive homogeneity: ∆+

χ (λw) = λ∆+
χ (w), ∀λ ≥ 0 and ∀α ∈ [0, 1].

(4) Convexity: if wλ = λw1 + (1 − λ)w2 is a linear combination of any w1 and w2

with λ ∈ [0, 1], then ∆+
χ (wλ) ≤ λ∆+

χ (w1) + (1 − λ)∆+
χ (w2).

Proof. Properties 1–4 are direct generalization of CDD properties stated in
Proposition 3.4.

Proposition 5.3. In the case of discrete risk profile, drawdown measure is com-
puted by

∆+
χ (w) = min

u,y,z

L∑
i=1

χi


yi +

1
(1 − αi)N

N∑
k=1

K∑
j=1

pjzijk




s.t. zijk ≥ ujk − yi ,

ujk ≥ uj(k−1) − r
(p)
jk ,

ujk ≥ 0 , uj0 = 0 , zijk ≥ 0 ,

i = 1, L, j = 1, K, k = 1, N .

(5.13)

Proof. Introducing intermediate optimization problems

L∑
i=1

χi CV@Rαi(ξ) = min
yi

L∑
i=1

χi


yi +

1
(1 − αi)N

N∑
k=1

K∑
j=1

pj [ξjk − yi]+


 ,

L∑
i=1

χi CV@Rαi(ξ) = min
yi,zijk

L∑
i=1

χi


yi +

1
(1 − αi)N

N∑
k=1

K∑
j=1

pjzijk




s.t. zijk ≥ ξjk − yi, zijk ≥ 0 ,

i = 1, L, j = 1, K, k = 1, N ,

the proof is conducted similar to the proof of Theorem 4.1.
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6. Portfolio Optimization with Drawdown Measure

This section formulates a portfolio optimization problem with drawdown risk mea-
sure and suggests efficient optimization techniques for its solving. Optimal asset
allocation considers:

• Generation of sample paths for the assets’ rates of return.
• Uncompounded cumulative portfolio rate of return rather than compounded one.

In this case, optimal asset allocation maximizes the expected value of uncom-
pounded cumulative portfolio rate of return at the final time moment tN = T

subject to a constraint on drawdown measure

max
x∈X

Eω(w(T, ω, x)) =
K∑

j=1

pjwjN (x)

s.t. ∆+
χ (w(x)) ≤ γ ,

(6.1)

where X is the set of linear “technological” constraints and γ ∈ [0, 1] is a proportion
of the initial capital allowed to loose.

In contrast to Grossman and Zhou [12] and Cvitanic and Karatzas [7], who
considered vector of portfolio weights to be a function of time within [0, T ], we
assume portfolio weights x(tk) to be static for all tk, k = 0, N . This special strategy
can be achieved by portfolio rebalancing at every tk, k = 0, N . Justification of this
assumption depends on a particular case study. Based on the assumption made,
uncompounded cumulative portfolio rate of return w is rewritten

wjk(x) =
k∑

l=1

r
(p)
jl (x) =

m∑
i=1

k∑
l=1

rij(tl)xi . (6.2)

6.1. Reduction to linear programming problem

Theorem 6.1. Problem (6.1) is reduced to linear programming (LP) problem

max
u,x∈X,y,z

K∑
j=1

pjwjN (x)

s.t.

L∑
i=1

χi


yi +

1
(1 − αi)N

N∑
k=1

K∑
j=1

pjzijk


 ≤ γ ,

zijk ≥ ujk − yi ,

ujk ≥ uj(k−1) − r
(p)
jk (x) ,

ujk ≥ 0 , uj0 = 0 , zijk ≥ 0 ,

i = 1, L, j = 1, K, k = 1, N ,

(6.3)

where ujk, yi and zijk are auxiliary variables.
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Proof. Consider piece-wise function H(x, y)

H(x, y) =
L∑

i=1

χi


yi +

1
(1 − αi)N

N∑
k=1

K∑
j=1

pj [ξjk(x) − yi]+


 . (6.4)

According to Proposition 5.3, drawdown measure may be presented by

∆+
χ (w(x)) =

L∑
i=1

χi CV@Rαi(ξ(x)) = min
y

H(x, y) . (6.5)

Consequently, problem (6.1) is reduced to

max
x∈X

K∑
j=1

pjwjN (x)

s.t. min
y

H(x, y) ≤ γ ,

(6.6)

The key point of the proof is to show that minimum in the constraint of (6.6)
may be relaxed, i.e., to show that problem (6.6) is equivalent to

max
x∈X,y

K∑
j=1

pjwjN (x)

s.t. H(x, y) ≤ γ ,

(6.7)

The proof of this fact is conducted by relaxing constraint miny H(x, y) ≤ γ in
(6.6), namely, problem (6.6) is equivalently rewritten

min
λ≥0

max
x∈X


 K∑

j=1

pjwjN (x) + λ(γ − min
y

H(x, y))


 ,

min
λ≥0

max
x∈X,y


 K∑

j=1

pjwjN (x) + λ(γ − H(x, y))


 . (6.8)

However, problem (6.8) is the Lagrange relaxation of (6.7). Hence, (6.7) is equiv-
alent to (6.6). According to Theorem 6.1 and Proposition 5.3, LP (6.3) is a direct
consequence of (6.7).

Corollary 6.1. In the cases of MaxDD(w) and AvDD(w), corresponding to the
mixed CDD with risk profiles of χ(α) = I{α>0} and χ(α) = I{α≥1}, LP (6.3) is
simplified, respectively,

max
u,x∈X

K∑
j=1

pjwjN (x)

s.t. ujk ≥ uj(k−1) − r
(p)
jk (x) ,

γ ≥ ujk ≥ 0, uj0 = 0 ,

j = 1, K, k = 1, N ,

(6.9)
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max
u,x∈X

K∑
j=1

pjwjN (x)

s.t.
1
N

N∑
k=1

K∑
j=1

pjujk ≤ γ ,

ujk ≥ uj(k−1) − r
(p)
jk (x) ,

ujk ≥ 0, uj0 = 0 ,

j = 1, K, k = 1, N .

(6.10)

6.2. Efficient frontier

Efficient frontier is a central concept in Risk Management methodology. Suppose
for every value of γ and risk profile χ, x∗

χ(γ) is an optimal solution to (6.3). In this
case, efficient frontier is a curve expressing dependence of optimal portfolio expected
reward

∑K
j=1 pjwjN (x∗

χ(γ)) on portfolio risk γ.

Proposition 6.1. Efficient frontier (γ,
∑K

j=1 pjwjN (x∗
χ(γ))) is a concave curve.

Proof. Denoting g(x) =
∑K

j=1 pjwjN (x), we show that for any γ1,2 ∈ [0, 1] and
τ ∈ [0, 1]

g(x∗
χ(τγ1 + (1 − τ)γ2)) ≥ τg(x∗

χ(γ1)) + (1 − τ)g(x∗
χ(γ2)) .

According to the proof of Theorem 6.1, we have

g(x∗
χ(γ)) = max

x∈X,y
g(x)

s.t. H(x, y) ≤ γ ,

and using notation Gλ(x, y) = g(x) − λH(x, y), we obtain

g(x∗
χ(γ)) = min

λ≥0
max
x∈X,y

(Gλ(x, y) + λγ) = min
λ≥0

(Gλ(x(λ), y(λ)) + λγ) .

Since expression Gλ(x(λ), y(λ)) + λγ is linear with respect to γ, minλ≥0(Gλ(x(λ),
y(λ)) + λγ) is a concave function of γ. Indeed,

min
λ≥0

(Gλ(x(λ), y(λ)) + λ(τγ1 + (1 − τ)γ2))

= min
λ≥0

(τ(Gλ(x(λ), y(λ)) + λγ1) + (1 − τ)(Gλ(x(λ), y(λ)) + λγ2))

≥ τ min
λ≥0

(Gλ(x(λ), y(λ)) + λγ1) + (1 − τ)min
λ≥0

(Gλ(x(λ), y(λ)) + λγ2) .

This fact proves the proposition.
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Risk-adjusted return is an important characteristic for choosing an optimal port-
folio on an efficient frontier that evaluates the ratio of the portfolio reward to the
portfolio risk

ρχ(γ) = γ−1
K∑

j=1

pjwjN (x∗
χ(γ)) . (6.11)

A fund manager is interested in such a value of γ ∈ [0, 1], for which the risk-
adjusted return ρχ(γ) is maximal. It is interpreted to be the best balance between
the risk accepted and the rate of return achieved. According to Proposition 6.1,∑K

j=1 pjwjN (x∗
χ(γ)) is concave, hence, when this function achieves its maximum

at γ > 0, ratio ρχ(γ) has a finite global maximum. Although ρχ(γ) is a nonlinear
function with respect to γ, a problem for finding ρχ(γ) maximum and corresponding
optimal γ is reduced to an LP.

Proposition 6.2. The optimization problem maxγ∈[0,1] ρχ(γ) is reduced to LP

max
ũ,v,x̃∈X̃,ỹ,z̃

K∑
j=1

pjwiN (x̃)

s.t.

L∑
i=1

χi


ỹi +

1
(1 − αi)N

N∑
k=1

K∑
j=1

pj z̃ijk


 ≤ 1 ,

z̃ijk ≥ ũjk − ỹi ,

ũjk ≥ ũj(k−1) − r
(p)
jk (x̃) ,

ũjk ≥ 0, ũj0 = 0, z̃ijk ≥ 0 ,

i = 1, L, j = 1, K, k = 1, N .

(6.12)

If x̃∗ is an optimal solution to (6.12) then ρχ(γ∗) = maxγ∈[0,1] ρχ(γ) =
∑K

j=1

pjwjN (x̃∗), with optimal value γ∗ = 1/
∑m

l=0 x̃∗
l and corresponding optimal portfolio

x∗
l = x̃∗

l γ
∗, l = 0, m.

Proof. Since

max
γ∈[0,1]

ρχ(γ) = max
γ∈[0,1]

γ−1
K∑

j=1

pjwjN (x∗
χ(γ)) = max

γ∈[0,1]
max
x∈Xχ

γ−1
K∑

j=1

pjwjN (x) ,

where Xχ is the set of constraints in problem (6.3), the problem of maxγ∈[0,1]

maxx∈Xχ γ−1
∑K

j=1 pjwjN (x) is reduced to LP (6.12) by changing variables x̃l =
xl/γ, ỹi = yi/γ, ũkj = ukj/γ, z̃ijk = zijk/γ, l = 0, m, i = 1, L, j = 1, K, k = 1, N .
Set X̃ may include additional variable v = 1/γ. For instance, a box constraint
xmin ≤ xl ≤ xmax from the set X is transformed to xmin v ≤ x̃l ≤ xmax v, which is
an element of X̃.
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7. Drawdown Measure in Real-life Portfolio Optimization

7.1. Static asset allocation

This section formulates and solves a real-life portfolio optimization problem with
a static set of weights using drawdown measure. A problem of dynamic weight
allocation when asset (or a set of assets) is log-Brownian under a constraint on the
worst equity drawdown was considered in several papers. First, a 1-dimensional case
was solved by Grossman and Zhou [12] as a mathematical programming problem.
Then, the problem was generalized to a multi-dimensional case by Cvitanic and
Karatzas [7].

In contrast to Grossman and Zhou [12] and Cvitanic and Karatzas [7], we are
interested in a constant set of weights that optimizes a certain portfolio of assets,
which are not assumed to have a log-brownian dynamics. This problem is stimulated
by several important practical financial applications, particularly related to the so-
called hedge-fund business.

A Commodity Trading Advisor (CTA) company is a hedge fund that nor-
mally trades several (sometimes, more than a 100) futures markets simultaneously
using some mathematical strategies that it believes have certain edge. Such a com-
pany manages substantial assets as a part of all hedge funds, by some estimates,
close to $100 BN. Most of the CTA community trades the, so-called, long-term
trend-following systems, but there are now multiple examples of short-term mean-
reverting trading systems as well. These systems may be viewed as some functions of
the individual futures market price realized prior to the present time. These strate-
gies normally have a substantial smoothing-out effect on the futures prices and have
close to stationary properties. Every CTA, then, has to allocate a certain portion of
overall risk (or overall capital that it manages) to each and every “market”. Due to
a substantial level of stationarity of the strategies, each CTA calculates the weights
according to a certain internal proprietary weight allocation procedure. Normally,
this set remains fixed and does not change unless a certain market gets added or
removed from the set, which normally happens when a new system is introduced,
when a certain market disappears (like Deutsche Mark or French Franc in 1999),
or a new market is being added. A standard practice in the CTA community is to
use some version of the classical Markowitz mean-variance approach.

Another important example of static asset allocation comes form the so-called,
Fund of Fund (FoF) business. In the recent several years this sector of hedge funds
has experienced a substantial growth. A typical FoF manager gives allocations of
its clients’ capital to a set of pre-selected managers, normally between five and 25.
It does so fairly infrequently, because of liquidity constraints imposed by managers
themselves, but this is not the only reason. FoF views equity return streams as
fairly stationary time series with some attractive return, risk, and correlation prop-
erties, which need some time to present themselves. Unless some unexpected event
happens, the allocations are given for a substantial period of time, on average of
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two years or more. A group of analysts in a typical FoF is responsible for finding a
constant set of weights, which makes a total portfolio of the FoF to be attractive
to its clients.

Both of these typical cases are faced with a problem of finding a constant set
of weights, which optimize their portfolios in a certain sense. The practical goal of
this paper is to facilitate this process with a clear and statistically sound algorithm,
which utilizes a newly designed set of risk-measures based on a notion of equity
drawdown.

Despite their known potential drawbacks, it is a well-accepted and, moreover,
recommended practice [27], is to study historical back-tested strategy results of a
hedge fund and, based on these results, obtain an estimate of the inherent risk
using some risk measures. The only popular quantitative risk measure is VaR [27].
Various insufficiencies of the VaR measure are also widely known. We believe that
the results developed in our study would facilitate understanding of how this can
be achieved.

7.2. Historical data and scenario generation

Even though scientists and engineers used certain simple versions of re-sampling
procedures since 1930s, it was namely B. Efron [9] who unified the disconnected
ideas; and re-sampling emerged as a robust method of estimating confidence inter-
vals of some measurable functions over a statistical sample of data. Method is
particularly useful for the time series where obtaining other realizations of the data
may be difficult or even impossible.

Bootstrap is a form of re-sampling the original data set bootstrap, which “re-
samples with replacement.” Sometimes, the simplest version of it is called “non-
parametric bootstrap.” The method originally was applied to some sociological and
biological applications, staying in the shade for statistical, engineering and finan-
cial applications up until the 1990s. Due to their intrinsic “one realization only”-
nature, the financial time series could be one of the best applications for re-sampling
methods.

Within financial applications, a strong particular interest in obtaining estimates
of certain measurable quantities (such as rate of return, or standard deviation),
comes from the development of trading systems. It is well known, that a problem
of actual using over-fitted trading systems can possibly lead to substantial finan-
cial losses. Therefore, it is hard to underestimate the importance of a problem of
discovering how over-fitted a particular trading system is. Among a few examples,
one can mention a single asset trading system, for example, a system which trades
a back-adjusted continuous 10-year US Government Note futures contract, or, a
more general portfolio optimization problem such as allocation of weights between
several assets in a portfolio subject to certain constraints.

Our study considers a particular example of optimal portfolio-allocation prob-
lem. This example could be very relevant for global CTA managers, who apply
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certain trading systems (very frequently, long-term trend-following systems) across
a wide set of global futures markets attempting to take advantage of price move-
ments occurring in these markets. Normally, after they are content with their trad-
ing system, they have to make a decision of allocating their portfolio risk between
various markets.

In this example, we are given a set of sample paths of certain futures trading
systems (in this particular case, some long-term trend-following system) as applied
to a set of 32 different global futures markets. The system includes long, short or flat
markets, and always trades the same number of contracts with the average trade
length from one to two months.

Here is a list of the markets with their corresponding exchanges that were traded
by the system. Ticker symbols of FutureSource are used for their abbreviation. In
alphabetical order of ticker symbol:

1. AAO — The Australian All Ordinaries Index (OTC).
2. AD — Australian Dollar Currency Futures (CME).
3. AXB — Australian 10-Year Bond Futures (SFE).
4. BD — US Long (30-Year) Treasury Bond Futures (CBT).
5. BP — British Pound Sterling Currency Futures (CME).
6. CD — Canadian Dollar Currency Futures (CME).
7. CP — Copper Futures (COMEX).
8. DGB — German 10-Year Bond (Bund) Futures (LIFFE).
9. DX — US Dollar Index Currency Futures (FNX).

10. ED — 90-Day Euro Dollar Futures (CME).
11. EU — Euro Currency Futures (CME).
12. FV — US 5-Year Treasury Note Futures (CBT).
13. FXADJY — Australian Dollar vs. Japanese Yen Cross Currency Forward

(OTC).
14. FXBPJY — British Pound Sterling vs. Japanese Yen Cross Currency Forward

(OTC).
15. FXEUBP — Euro vs. British Pound Sterling Cross Currency Forward (OTC).
16. FXEUJY — Euro vs. Japanese Yen Cross Currency Forward (OTC).
17. FXEUSF — Euro vs. Swiss Franc Cross Currency Forward (OTC).
18. FXNZUS — New Zealand Dollar Currency Forward (OTC).
19. FXUSSG — Singaporean Dollar Currency Forward (OTC).
20. FXUSSK — Swedish Krona Currency Forward (OTC).
21. GC — Gold 100 Oz. Futures (COMEX).
22. JY — Japanese Yen Currency Futures (CME).
23. LBT — Italian 10-Year Bond Forward (OTC).
24. LFT — FTSE-100 Index Futures (LIFFE).
25. LGL — Long Gilt (UK 10-Year Bond) Futures (LIFFE).
26. LML — Aluminum Futures (COMEX).
27. MNN — French Notional Bond Futures (MATIF).
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28. SF — Swiss Franc Currency Futures (CME).
29. SI — Silver Futures (COMEX).
30. SJB — JGB (Japanese 10-Year Government Bond) Futures (TSE).
31. SNI — NIKKEI-225 Index Futures (SIMEX).
32. TY — 10-Year US Government Bond Futures (CBT).

These markets include most major asset classes traded through futures: fixed-
income (short-term and long-term, both domestic and international), international
equity indices, currencies and cross-currencies, and metals. Given set of 32 time
series with daily rates of return covers a period of time between 6/12/1995 and
12/13/1999. Time is measured in trading days only, with a convention of five work-
days per week, with adding previous day closing data for holidays with missing
data.

A basic version of non-parametric bootstrap re-sampling generates “children”
samples from the original “father” sample in the following way: it fills out a “child”
with father’s daily rates of return in random order “with replacement”, i.e., when
the same daily rate of return can be pulled out twice or more. Well-known difficulty
in obtaining a re-sampled probability distribution function by such a procedure is
that if the original “father” time series has certain auto-correlation structure, it
will be totally lost in the “children”-re-samples because of random mixing in re-
sample generation. At the same time, namely those auto-correlation properties of
the time series, if present, should be responsible for the trend-following systems
having positive rate of return. To remedy the situation, we will use a modification
of a simple bootstrap re-sampling, which is called block-bootstrap re-sampling. Here
is a brief description of the procedure.

First, we need to empirically study the correlation properties of the time series
involved. For all data series, we have numerically calculated their auto-correlation
coefficients C(n) for the period of 200 days, where n = 200 is number of days
in a period. The cut-off of 200 trading days was chosen in such a way that the
measurements of correlation coefficient would still have some statistical accuracy
on a sample length of 1076 days used.

Next, we empirically found a threshold for the absolute value of the auto-
correlation coefficients equal to 2.5%, above which the values of coefficient larger
than this threshold are statistically significant. Then, reducing number of days n in
the period from 200 to 0, for all time series, we found the first value n∗ that violates
condition C(n) ≤ 2.5%. In this case, the value of n∗, which provides the statistically
significant correlation lengths for all considered time series, is 100 trading days.

Now, instead of randomly picking an individual daily return from the original
data series, we pick un-interchanged blocks of daily returns of length 100 trading
days, starting from a random starting point. To ensure consistency across all time
series, and preserve the cross-market correlation structure, we choose the same
starting point for all 32 time series. That is, we use the same random starting point
for all markets, then draw another starting point, and use it across all markets
again, etc., until the necessary number of “children” re-samples will be filled-in.
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7.3. Numerical results

We consider additional (“technological”) box constraints on portfolio weights 0.2 ≤
xi ≤ 0.8, i = 1, 32. This choice was dictated by the need to have the resultant
margin-to-equity ratio in the account within admissible bounds, which are specific
for a particular portfolio. In futures trading setup, “technological” constraints are
analogous to the “fully-invested” condition from classical Sharpe–Markowitz theory
[14], which make the efficient frontier strictly concave. In the absence of these con-
straints, the efficient frontier would be a straight line passing through (0,0), due to
the virtually infinite leverage of these types of strategies. If all positions are equal
to the lower bound 0.2, then the sum of the positions is 0.2 × 32 = 6.4 and the
minimal leverage is 6.4. However, if all positions are equal to the upper bound 0.8,
then the sum of the positions is 0.8× 32 = 25.6 and the maximal leverage becomes
25.6. The optimal allocation of weights picks both the optimal leverage and pro-
portions between instruments. Another subtle issue has to do with the stability of
the optimal portfolios if the constraints are “too lax”. It is a matter of empirical
evidence that the more lax the constraints are, the better portfolio equity curve you
can get through optimal mixing, and the less stable with respect to walk-forward
analysis these results would be. The above set of constraints was empirically found
to be both leading to sufficiently stable portfolios and providing enough mixing of
the individual equity curves.

We solved optimization problems (6.9), (6.10) and (6.3) with MaxDD, AvDD
and 0.8-CDD (α = 0.8) measures, respectively, in the cases of 1-historical, 100 and

Efficient Frontiers, AvDD

0%

20%

40%

60%

80%

0% 2%           4%          6%           8%         10%        12% 14%

Average Drawdown

R
at

e 
o

f 
re

tu
rn

1 sample path 100 sample paths 300 sample paths

Fig. 6. Efficient frontiers: Average Drawdown.



FA 1
January 27, 2005 16:3 WSPC-104-IJTAF SPI-J071 00276

Drawdown Measure in Portfolio Optimization 45

300 sample paths generated for all 32 instruments. All optimization problems were
solved using CPLEX package. The graphs of efficient frontiers and tables with opti-
mal portfolio configurations for optimization problems with MaxDD, AvDD, and
0.8-CDD in all three cases: 1, 100 and 300 sample paths are presented by Figs. 6,

Optimal risk-adjusted returns, AvDD
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8, 10 and Tables 1–9, respectively. We, also, enclose the risk-adjusted returns (annu-
alized rate of return divided by the corresponding value of a drawdown measure)
for each of these cases, see Figs. 7, 9 and 11. The solutions achieving maximal
risk-adjusted returns are boldfaced, see Tables 1–9.
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Table 1. Average Drawdown optimization: 1 sample path.

Rate of return, % 23.9 37.1 45.7 51.7 56.8 60.7 64.3 67.4 69.6 70.4
AvDD, % 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Risk-adj. return 7.98 9.27 9.13 8.62 8.12 7.59 7.15 6.74 6.33 5.86

AD 0.20 0.20 0.20 0.20 0.20 0.63 0.46 0.80 0.80 0.80
BD 0.20 0.20 0.39 0.20 0.20 0.20 0.80 0.80 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.65
CD 0.20 0.64 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.20 0.20 0.20 0.20 0.20 0.62 0.71 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.20 0.20 0.29 0.52 0.76 0.80 0.80 0.80 0.80
FXBPJY 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.49 0.51 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.27 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.47 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FXUSSG 0.70 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80
JY 0.20 0.41 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.67 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.22 0.73 0.80 0.80 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.45 0.80 0.80 0.80 0.80 0.80 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.20 0.77 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.39 0.73 0.80 0.80 0.80
SFAO 0.20 0.20 0.43 0.76 0.80 0.80 0.80 0.80 0.80 0.80
SFBD 0.22 0.53 0.44 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.24 0.80
SIJB 0.20 0.20 0.20 0.32 0.46 0.47 0.50 0.77 0.80 0.80
SINI 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.80 0.80
UXBU 0.20 0.54 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 2. Average Drawdown optimization: 100 sample paths.

Rate of return, % 20.8 26.4 36.1 43.4 49.7 55.8 61.5 66.3 70.1 73.1
AvDD, % 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Risk-adj. return 5.94 6.61 7.22 7.23 7.11 6.98 6.83 6.63 6.38 6.09

AD 0.20 0.20 0.20 0.22 0.30 0.36 0.77 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
CD 0.44 0.38 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.20 0.20 0.36 0.50 0.53 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.48
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.35 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.20 0.20 0.26 0.46 0.54 0.64 0.70 0.79 0.80
FXBPJY 0.20 0.29 0.69 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.22 0.45 0.75 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.48 0.45 0.20 0.20 0.21 0.51 0.80 0.80 0.80 0.80
FXEUSF 0.24 0.47 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.20 0.44 0.74 0.80 0.80 0.80 0.80

FXUSSG 0.26 0.36 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.56 0.73 0.72 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.38 0.80 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.34 0.78 0.80
JY 0.20 0.20 0.20 0.20 0.36 0.62 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.20 0.24 0.51 0.68 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.20 0.28 0.44 0.72 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.20 0.20 0.20 0.23 0.38 0.42 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.64 0.80
SFAO 0.20 0.31 0.42 0.77 0.80 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.20 0.45 0.58 0.80 0.80 0.80 0.80 0.80
SI 0.21 0.46 0.70 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SIJB 0.20 0.20 0.20 0.24 0.37 0.32 0.46 0.64 0.80 0.80
SINI 0.20 0.20 0.20 0.51 0.77 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.60
UXBU 0.21 0.58 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 3. Average Drawdown optimization: 300 sample paths.

Rate of return, % 20.5 26.1 35.4 42.9 49.4 55.4 60.8 65.3 69.0 71.9
AvDD, % 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Risk-adj. return 5.85 6.52 7.08 7.16 7.06 6.93 6.76 6.53 6.27 5.99

AD 0.20 0.20 0.20 0.29 0.26 0.51 0.80 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
CD 0.24 0.32 0.72 0.80 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.20 0.20 0.47 0.50 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.23 0.20 0.63
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.37 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.20 0.20 0.20 0.36 0.42 0.49 0.60 0.69 0.80
FXBPJY 0.20 0.20 0.66 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.27 0.55 0.77 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.62 0.73 0.29 0.33 0.37 0.69 0.80 0.80 0.80 0.80
FXEUSF 0.23 0.52 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.20 0.46 0.62 0.80 0.80 0.80 0.80

FXUSSG 0.22 0.33 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.59 0.69 0.65 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.24 0.80 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.22 0.62 0.72
JY 0.20 0.20 0.20 0.20 0.45 0.70 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.20 0.27 0.56 0.57 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.20 0.20 0.45 0.72 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.22 0.22 0.20 0.20 0.41 0.46 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.20 0.70 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.35 0.80 0.80
SFAO 0.20 0.25 0.38 0.63 0.78 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.20 0.40 0.63 0.80 0.80 0.80 0.80 0.80
SI 0.21 0.37 0.52 0.72 0.80 0.80 0.80 0.80 0.80 0.80
SIJB 0.20 0.20 0.20 0.27 0.32 0.38 0.50 0.69 0.80 0.80
SINI 0.20 0.20 0.22 0.67 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.50
UXBU 0.29 0.69 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 4. 0.8-Conditional Drawdown optimization: 1 sample path.

Rate of return, % 23.3 25.5 31.9 38.0 46.6 52.9 57.9 61.8 65.0 70.3
0.8-CDD, % 5.7 6.0 7.0 8.0 10.0 12.0 14.0 16.0 18.0 23.0
Risk-adj. return 4.09 4.24 4.56 4.75 4.66 4.41 4.14 3.86 3.61 3.06

AD 0.20 0.20 0.20 0.20 0.20 0.20 0.42 0.55 0.33 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.44 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.56
CD 0.20 0.20 0.20 0.20 0.27 0.80 0.80 0.80 0.80 0.80
CP 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.72 0.80 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.20 0.20 0.50 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.25 0.26 0.25 0.30 0.37 0.29 0.36 0.80 0.80
FXBPJY 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.33 0.39 0.53 0.76 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.20 0.20 0.20 0.52 0.27 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.25 0.40 0.68 0.80 0.80 0.80 0.80 0.80 0.80

FXUSSG 0.42 0.47 0.65 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.20 0.20 0.33 0.43 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
JY 0.20 0.25 0.60 0.77 0.80 0.80 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80
LIIB 0.20 0.20 0.49 0.44 0.74 0.80 0.80 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.20 0.20 0.20 0.26 0.59 0.48 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.61 0.80
SFAO 0.20 0.20 0.20 0.20 0.61 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.20 0.20 0.63 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
SIJB 0.20 0.21 0.20 0.29 0.29 0.38 0.60 0.80 0.80 0.80
SINI 0.47 0.58 0.60 0.67 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
UXBU 0.20 0.23 0.52 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 5. 0.8-Conditional Drawdown optimization: 100 sample paths.

Rate of return, % 19.4 24.7 30.1 39.3 46.7 53.6 60.1 65.7 70.0 74.5
0.8-CDD, % 6.2 7.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 23.0
Risk-adj. return 3.12 3.53 3.76 3.93 3.89 3.83 3.76 3.65 3.50 3.24

AD 0.20 0.20 0.20 0.20 0.21 0.29 0.62 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.74 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.55
CD 0.20 0.20 0.20 0.33 0.47 0.58 0.75 0.80 0.80 0.80
CP 0.20 0.20 0.20 0.41 0.46 0.62 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.28 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.24 0.50 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.20 0.20 0.20 0.23 0.36 0.45 0.60 0.79 0.80
FXBPJY 0.20 0.40 0.51 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.20 0.43 0.62 0.79 0.80 0.80 0.80 0.80
FXEUJY 0.39 0.54 0.49 0.47 0.77 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.20 0.43 0.67 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.20 0.40 0.75 0.80 0.80 0.80 0.80

FXUSSG 0.20 0.39 0.52 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.51 0.74 0.73 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.24 0.67 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.24 0.80
JY 0.20 0.20 0.20 0.20 0.25 0.41 0.70 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.20 0.20 0.35 0.72 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.23 0.43 0.57 0.75 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.77 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.24 0.80 0.80
SFAO 0.20 0.20 0.32 0.53 0.78 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.20 0.20 0.26 0.39 0.49 0.74 0.80 0.80
SI 0.20 0.20 0.26 0.55 0.72 0.80 0.80 0.80 0.80 0.80
SIJB 0.20 0.20 0.20 0.40 0.48 0.58 0.69 0.80 0.80 0.80
SINI 0.20 0.20 0.20 0.24 0.58 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
UXBU 0.20 0.47 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 6. 0.8-Conditional Drawdown optimization: 300 sample paths.

Rate of return, % 19.5 29.8 38.9 46.3 53.3 59.6 65.1 69.3 72.4 73.5
0.8-CDD, % 6.2 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 23.0
Risk-adj. return 3.14 3.73 3.89 3.86 3.80 3.73 3.62 3.46 3.29 3.19

AD 0.20 0.20 0.20 0.37 0.36 0.72 0.80 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.72 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.66
CD 0.20 0.20 0.33 0.37 0.47 0.71 0.80 0.80 0.80 0.80
CP 0.20 0.25 0.48 0.56 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.38 0.62 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.57 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.20 0.20 0.27 0.40 0.49 0.57 0.72 0.80 0.80
FXBPJY 0.20 0.50 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.47 0.64 0.80 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.58 0.66 0.64 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.20 0.72 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.32 0.63 0.80 0.80 0.80 0.80 0.80

FXUSSG 0.21 0.49 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.57 0.68 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.44 0.80 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.62 0.80
JY 0.20 0.20 0.20 0.40 0.59 0.80 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.20 0.39 0.72 0.80 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.33 0.49 0.70 0.80 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.39 0.80 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.35 0.80 0.80 0.80
SFAO 0.20 0.27 0.50 0.70 0.80 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.20 0.42 0.51 0.68 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.36 0.47 0.73 0.80 0.80 0.80 0.80 0.80
SIJB 0.20 0.20 0.41 0.49 0.56 0.68 0.80 0.80 0.80 0.80
SINI 0.20 0.20 0.33 0.71 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.62 0.80
UXBU 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 7. Maximum Drawdown optimization: 1 sample path.

Rate of return, % 24.3 39.7 47.6 54.6 58.8 62.6 65.5 67.6 69.3 70.4
MaxDD, % 7.5 10.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0
Risk-adj. return 3.24 3.97 3.97 3.64 3.27 2.98 2.73 2.50 2.31 2.13

AD 0.20 0.20 0.20 0.20 0.20 0.20 0.49 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.73
CD 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.33 0.20 0.55 0.80 0.80 0.80 0.80 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.20 0.48 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.57 0.54 0.49 0.79 0.80 0.80 0.80 0.80 0.80
FXBPJY 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.63 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.31 0.66 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.70 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FXUSSG 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.72 0.80
JY 0.20 0.41 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.23 0.20 0.20 0.20 0.20 0.20 0.80
MANB 0.20 0.20 0.20 0.20 0.20 0.33 0.80 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.32 0.80 0.80 0.80 0.80 0.80
SFAO 0.48 0.66 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80
SIJB 0.20 0.20 0.20 0.55 0.80 0.80 0.80 0.80 0.80 0.80
SINI 0.20 0.37 0.72 0.80 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.73 0.80 0.80
UXBU 0.20 0.47 0.68 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 8. Maximum Drawdown optimization: 100 sample paths.

Rate of return, % 21.3 32.2 41.7 49.2 55.5 60.8 65.6 69.5 72.6 74.0
MaxDD, % 9.6 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0
Risk-adj. return 2.21 2.68 2.78 2.74 2.64 2.53 2.43 2.32 2.20 2.06

AD 0.20 0.20 0.46 0.43 0.25 0.20 0.70 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.38 0.80 0.80 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.35 0.80
CD 0.20 0.20 0.20 0.20 0.45 0.49 0.73 0.74 0.80 0.80
CP 0.12 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.44 0.66 0.58 0.80 0.80 0.50 0.80 0.80 0.80
FXADJY 0.20 0.30 0.33 0.42 0.71 0.80 0.80 0.80 0.80 0.80
FXBPJY 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.61 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.20 0.20 0.23 0.20 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.20 0.44 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.51 0.80 0.80 0.80 0.80 0.80 0.80

FXUSSG 0.34 0.49 0.73 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.59 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.39
JY 0.20 0.20 0.46 0.30 0.29 0.63 0.70 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.69 0.80 0.80 0.80 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.20 0.40 0.80 0.80 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.29 0.20 0.20 0.20 0.20 0.20 0.64
MANB 0.20 0.20 0.20 0.32 0.20 0.29 0.28 0.20 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.55 0.80 0.80
SFAO 0.35 0.36 0.41 0.74 0.80 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.20 0.38 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.60 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SIJB 0.20 0.20 0.20 0.20 0.20 0.28 0.80 0.80 0.80 0.80
SINI 0.20 0.20 0.65 0.80 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.21 0.48 0.71 0.76 0.80 0.80
UXBU 0.20 0.66 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Table 9. Maximum Drawdown optimization: 300 sample paths.

Rate of return, % 21.3 31.1 40.3 48.1 54.4 59.6 64.1 68.1 71.3 72.7
MaxDD, % 9.8 12.0 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0
Risk-adj. return 2.18 2.59 2.69 2.67 2.59 2.49 2.38 2.27 2.16 2.02

AD 0.20 0.20 0.37 0.63 0.36 0.20 0.46 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.79
CD 0.20 0.20 0.20 0.20 0.23 0.35 0.50 0.76 0.80 0.80
CP 0.50 0.76 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
EU 0.20 0.42 0.49 0.54 0.80 0.76 0.80 0.80 0.80 0.80
FXADJY 0.20 0.25 0.40 0.52 0.64 0.80 0.80 0.80 0.80 0.80
FXBPJY 0.29 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.21 0.51 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.20 0.20 0.24 0.64 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.20 0.21 0.50 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.37 0.28 0.68 0.80 0.80 0.80 0.80 0.80

FXUSSG 0.26 0.48 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.54 0.72 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
JY 0.20 0.20 0.27 0.26 0.21 0.61 0.80 0.80 0.80 0.80
LIFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
LIGI 0.20 0.20 0.20 0.27 0.80 0.80 0.80 0.80 0.80 0.80
LIIB 0.20 0.20 0.20 0.20 0.51 0.80 0.80 0.80 0.80 0.80
LMAL 0.20 0.20 0.20 0.37 0.20 0.20 0.20 0.20 0.26 0.70
MANB 0.20 0.20 0.20 0.55 0.23 0.31 0.31 0.20 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.56 0.80 0.80
SFAO 0.27 0.37 0.42 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SFBD 0.20 0.20 0.36 0.26 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.59 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SIJB 0.20 0.25 0.34 0.20 0.24 0.46 0.80 0.80 0.80 0.80
SINI 0.20 0.41 0.58 0.80 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.48 0.67 0.70 0.80 0.80
UXBU 0.20 0.61 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
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Optimal risk-adjusted returns, MaxDD
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Fig. 11. Optimal risk-adjusted returns: Maximum Drawdown.

8. Conclusions

We introduced drawdown measure, which, we believe, is useful for practical port-
folio management. This measure is similar to CVaR, includes the MaxDD and
AvDD measures as its limiting cases and possesses all properties of a deviation
measure. Moreover, it may be considered as a generalization of deviation measure
to a dynamic case. We developed the optimization techniques that efficiently solve
an asset-allocation problem with CDD, MaxDD and AvDD measures. We formu-
lated and, for a real-life example, solved a portfolio optimization problem. These
techniques, if implemented in a managed accounts’ environment, will allow a trad-
ing or risk manager to allocate risk according to his/her personal assessment of
extreme drawdowns and their duration on his/her portfolio equity.

We believe that however attractive the MaxDD measure is, the solutions pro-
duced using this measure in portfolio optimization may have a significant statistical
error because the decision is based on a single observation of the maximal loss.
Whereas CDD controls the worst (1 − α) ∗ 100% of drawdowns, and due to statis-
tical averaging within that range, obtains a better predictive power for the risk in
the future, leading to a more stable portfolio. Our study indicates that the CDD
with an appropriate level (α = 0.8, i.e., optimizing over the 20% of the worst draw-
downs) generates a more stable weights allocation than that produced using MaxDD
measure.

Numerical results of the considered real-life asset-allocation problem with draw-
down measure draw the following conclusions:
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• The statistical accuracy is already sufficient for the case of 100 sample paths, i.e.,
difference between 100-sample path solutions and 300-sample paths solutions is
negligible.

• For most of the allowable risk values (across all risk measures considered), the
efficient frontier for stochastic (re-sampled) solutions lies below and is less concave
than the so-called historical, or 1-scenario, efficient frontier. Only at the riskiest
end of the efficient frontier, the efficient frontiers either converge to one another
or intersect. This means that only for the riskiest portfolios, the stochastic, or,
re-sampled solutions, provide an improvement to the risk-adjusted returns.

• The risk adjusted returns, especially at the optimal (maximal risk-adjusted
return) point on the efficient frontier are, however, uniformly smaller than the re-
sampled, or, stochastic solutions. On average, re-sampled optimal risk-adjusted
returns solutions are 20% to 30% worse than those predicted by 1-path historical
solutions. This result supports the wide-spread idea that using only one his-
torical price path may lead (and probably does) to overstated and over-fitted
results, which may not realize on average in the future. Though the results of
the re-sampled or stochastic optimization lead to worse optimal solutions, those
solutions are more trustworthy.

• Analyzing 32-dimensional vectors of instruments weights for the optimal histor-
ical and stochastic solutions, we found that they are substantially different: for
example, the Euclidian norm of the stochastic optimal solution is, on average
50%, smaller than that for the historical optimal solution, and the angle between
these vectors in our particular case is 50 degrees.
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