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PREFACE

With the globalization of the modern economy, it becomes more and more
important to take into account various factors that can affect the economic
situation and market conditions in different industries, and a crucial issue
here is developing efficient methods of analyzing this information, in or-
der to understand the internal structure of the market and make effective
strategic decisions for successful operation of a business.

In recent years, a significant progress in the field of mathematical mod-
elling in finance and supply chain management has been made.

Among these advances, one can mention the development of novel ap-
proaches in risk management and portfolio optimization - one of the most
popular financial engineering problems first formulated and solved in the
famous work by Markowitz in the 50-s. Recent research works in this field
have resulted in developing new risk measures that utilize historical infor-
mation on stock prices and make the portfolio optimization models easily
solvable in practice. Moreover, new techniques of studying the behavior of
the stock market based on the analysis of the cross-correlations between
stocks have been introduced in the last several years, and these techniques
often provide a new insight into the market structure.

Another important problem arising in economics and finance is assess-
ing the performance of financial institutions according to certain criteria.
Numerous approaches have been developed in this field, and many of them
proved to be practically effective.

One more practical research direction that has been rapidly emerging
in the last several years is supply chain management, where mathematical
programming and network optimization techniques are widely used.

The material presented in the book describes models, methodologies,
and case studies in diverse areas, including stock market analysis, portfo-
lio optimization, classification techniques in economics, supply chain op-
timization, development of e-commerce applications, etc. We believe that
this book will be of interest to both theoreticians and practitioners working
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in the field of economics and finance.

We would like to take the opportunity to thank the authors of the chap-
ters, and World Scientific Publishing Co. for their assistance in producing
this book.

Panos M. Pardalos
Athanasios Migdalas
George Baourakis

August 2003




CHAPTER 13

PORTFOLIO OPTIMIZATION WITH DRAWDOWN
CONSTRAINTS

A. Chekhlov

TrendLogic Associates, Inc.;
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S. Uryasev
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E-mail: zabarank@ufl. edu

We propose a new one-parameter family of risk measures, which is called
Conditional Draw-down-at-Risk (CDaR). These measures of risk are
functionals of the portfolio drawdown (underwater) curve considered in
an active portfolio management. For some value of the tolerance param-
eter 3, the CDaR is defined as the mean of the worst (1 — 3) * 100%
drawdowns. The CDaR risk measure includes the Maximal Drawdown
and Average Drawdown as its limiting cases. For a particular example,
we find the optimal portfolios for a case of Maximal Drawdown, a case of
Average Drawdown, and several intermediate cases between these two.
The CDaR family of risk measures is similar to Conditional Value-at-
Risk (CVaR), which is also called Mean Shortfall, Mean Access loss, or
Tail Value-at-Risk. Some recommendations on how to select the opti-
mal risk measure for getting practically stable portfolios are provided.
We solved a real life portfolio allocation problem using the proposed
measures.

209
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1. Introduction

Optimal portfolio allocation is a longstanding issue in both practical port-
folio management and academic research on portfolio theory. Various meth-
ods have been proposed and studied (for a recent review, see, for example,
Ref. 6). All of them, as a starting point, assume some measure of portfolio
risk.

From a standpoint of a fund manager, who trades clients’ or bank’s
proprietary capital, and for whom the clients’ accounts are the only source
of income coming in the form of management and incentive fees, losing
these accounts is equivalent to the death of his business. This is true with
no regard to whether the employed strategy is long-term valid and has very
attractive expected return characteristics. Such fund manager’s primary
concern is to keep the existing accounts and to attract the new ones in order
to increase his revenues. A particular client who was persuaded into opening
an account with the manager through reading the disclosure document,
listening to the manager’s attractive story, knowing his previous returns,
etc., will decide on firing the manager based, most likely, on his account’s
drawdown sizes and duration. In particular, it is highly uncommon, for a
Commodity Trading Advisor (CTA) to still hold a client whose account
was in a drawdown, even of small size, for longer than 2 years. By the same
token, it is unlikely that a particular client will tolerate a 50% drawdown in
an account with an average- or small-risk CTA. Similarly, in an investment
bank setup, a proprietary system trader will be expected to make money in
1 year at the longest, i.e., he cannot be in a drawdown for longer than a year.
Also, he/she may be shut down if a certain maximal drawdown condition
will be breached, which, normally, is around 20% of his backing equity.
Additionally, he will be given a warning drawdown level at which he will be
reviewed for letting him keep running the system (around 15%). Obviously,
these issues make managed accounts practitioners very concerned about
both the size and duration of their clients’ accounts drawdowns.

First, we want to mention Ref. 7, where an assumption of log-normality
of equity statistics and use of dynamic programming theory led to an exact
analytical solution of a maximal drawdown problem for a one-dimensional
case. A subsequent generalization of this work for multiple dimensions was
done in Ref. 3. In difference to these works, which were looking to find a
time-dependent fraction of “capital at risk”, we will be looking to find a
constant set of weights, which will satisfy a certain risk condition over a
period of time. We make no assumption about the underlying probability
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distribution, which allows considering variety of practical applications. We
primarily concentrate on the portfolio equity curves over a particular past
history path, which, effectively, makes the risk measures not stochastic but
historical. Being perfectly aware of this insufficiency, we leave the issue of
predictive power of a constant set of weights for future research, trying to
introduce and test the new approach in this simplified version. To some
extend we consider a setup similar to the index tracking problem [4] where
an index historical performance is replicated by a portfolio with constant
weights.

In this chapter, we have introduced and studied a one-parameter family
of risk measures called Conditional Drawdown-at-Risk (CDaR). This mea-
sure of risk quantifies in aggregated format the number and magnitude of
the portfolio drawdowns over some period of time. By definition, a draw-
down is the drop in the portfolio value comparing to the maximum achieved
in the past. We can define drawdown in absolute or relative (percentage)
terms. For example, if at the present time the portfolio value equals $9M
and the maximal portfolio value in the past was $10M, we can say that
the portfolio drawdown in absolute terms equals $1M and in relative terms
equals 10%. For some value of the tolerance parameter 3, the -CDaR is
defined as the mean of the worst (1 — ) * 100% drawdowns experienced
over some period of time. For instance, 0.95-CDaR (or 95%- CDaR) is the
average of the worst 5% drawdowns over the considered time interval. The
CDaR risk measure includes the average drawdown and maximal draw-
down as its limiting cases. The CDaR takes into account both the size
and duration of the drawdowns, whereas the maximal drawdown measure
concentrates on a single event — maximal account’s loss from its previous
peak.

CDaR is related to Value-at-Risk (VaR) risk measure and to Condi-
tional Value-at-Risk (CVaR) risk measure studied in Ref. 13. By definition,
with respect to a specified probability level 3, the 3-VaR of a portfolio is
the lowest amount o such that, with probability 3, the loss will not exceed
« in a specified time 7 (see, for instance, Ref. 5), whereas the 5-CVaR
is the conditional expectation of losses above that amount e. The CDaR
risk measure is similar to CVaR and can be viewed as a modification of
the CVaR to the case when the loss-function is defined as a drawdown.
CDaR and CVaR are conceptually closely related percentile-based risk per-
formance measures. Optimization approaches developed for CVaR can be
directly extended to CDaR. Ref. 11 considers several equivalent approaches
for generating return-CVaR efficient frontiers; in particular, it considers an
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approach, which maximizes return with CVaR constraints. A nice feature of
this approach is that the threshold, which is exceeded (1 — 3) * 100%, is cal-
culated automatically using an additional variable (see details in Refs. 11,
13) and the resulting problem is linear. CVaR is known also as Mean Ex-
cess Loss, Mean Shortfall,*? or Tail Value-at-Risk.2 A case study on the
hedging of a portfolio of options using the CVaR minimization technique
is included in [11]. Also, the CVaR minimization approach was applied to
credit risk management of a portfolio of bonds.! A case study on optimiza-
tion of a portfolio of stocks with CVaR. constraints is considered in Ref. 11.

Similar to the Markowitz mean-variance approach,’ we formulate and
solve the optimization problem with the return performance function and
CDaR constraints. The return-CDaR optimization problem is a piece-wise
linear convex optimization problem (see definition of convexity in Ref. 12),
which can be reduced to a linear programming problem using auxiliary
variables. Explanation of the procedure for reducing the piece-wise linear
convex optimization problems to linear programming problems is beyond
the scope of this chapter. In formulating the optimization problems with
CDaR constraints and reducing it to a linear programming problem, we
follow ideas presented in Ref. 11. Linear programming allows solving large
optimization problems with hundreds of thousands of instruments. The
algorithm is fast, numerically stable, and provides a solution during one
run (without adjusting parameters like in genetic algorithms or neural net-
works). Linear programming approaches are routinely used in portfolio opti-
mization with various criteria, such as mean absolute deviation.® maximum
deviation,!* and mean regret.* The reader interested in other applications
of optimization techniques in the finance area can find relevant papers in
Ref. 15.

2. General Setup

Denote by function w(x,t) the uncompounded portfolio value at time ¢,
where portfolio vector x = (z1,za, ..., z,,) consists of weights of m instru-
ments in the portfolio. The drawdown function at time ¢ is defined as the
difference between the maximum of the function w(x,#) over the history
preceding the point # and the value of this function at time ¢

Floxt) = masx, {wix, 7)} - w(x,0). (1)

We consider three risk measures: (i) Maximum Drawdown (MaxDD),
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(ii) Average Drawdown (AvDD), and (iii) Conditional Drawdown-at-Risk
(CDaR). The last risk measure, Conditional Drawdown-at-Risk, is actually
a family of performance measures depending upon a parameter 3. It is
defined similar to Conditional Value-at-Risk studied in Ref. 2 and, as special
cases, includes the Maximum Drawdown and the Average Drawdown risk
measures.

Maximum drawdown on an the interval [0, 77, is calculated by maximiz-
ing the drawdown function f(x,t), ie.,

M(x) = Jnak {f(x,8)}- (2)

The average drawdown is equal to

'
A&%:%/fmﬂﬁ. 3)
0

For some value of the parameter 3 € [0,1], the CDaR, is defined as
the mean of the worst (1 — ) x 100% drawdowns. For instance, if 8 = 0,
then CDaR is the average drawdown, and if § = 0.95, then CDaR is the
average of the worst 5% drawdowns. Let us denote by a(x, 3) a threshold
such that (1 — ) * 100% of drawdowns exceed this threshold. Then, CDaR
with tolerance level 3 can be expressed as follows

1 A
As(x) = 7577 p/ feetydt, Q={te[0,T]: f(x,t) > alx.A)}. (4)

Here, when /3 tends to 1, CDaR tends to the maximum drawdown, i.e.
Aj(x) = M(x).

To limit possible risks, depending upon our risk preference, we can im-
pose constraints on the maximum drawdown given by (2)

M(x) < 1. C,

on average drawdown given by (3)

A(x) € 1»C,

on CDaR given by (4)
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Ag(x) < w3 C,

or combine several constraints together

M(X) < 1251 C, A(X) < 1251 O., Ag(X) < V3 C, (5)

where the constant C' represents the available capital and the coefficients
v1, v and vz define the proportion of this capital which is “allowed to be
lost”. Usually,

0<nn<l 0<1r<l]l 0<w<l (6)

Suppose that the historical returns for m portfolio instruments on in-
terval [0,7T] are available. Let vector y(t) = (y1(t),y2(t),...,ym(t)) be
a set of uncompounded cumulative net profits for m portfolio instru-
ments at a time moment ¢t. The cumulative portfolio value then equals

w(x,t) = xil yk(t) z = y(t) - x.

The average annualized return R(x) over a period [0,7], which is a
linear function of x, is defined as follows

R = 7 wix0) = 5 ¥(0) % @

where d is the number of years in the time interval [0, T).
For the case considered, the so-called technological constraints on the
vector x need to be imposed. Here, we assume that they are given by the

set of box constraints:

X:{x: Tmin STk < Tax, VE= 1:m}- (8)

for some constant values of zyi, and Tax.

Our objective is to maximize the return R(x) subject to constraints on
various risk performance measures and technological constraints (8) on the
portfolio positions.

3. Problem Statement

Maximization of the average return with constraints on maximum draw-
down can be formulated as the following mathematical programming prob-
lem

-
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max R(x)
xeX
s.t. M(x) <1 C.

Maximization of the average return with constraints on the average
drawdown can be formulated as follows

(9)

max R(x)
xEX (10)
s.t. A(x) < C.
Analogously, maximization of the average return with constraints on
CDaR can be formulated as follows

max R(x)
xEX (11)
s.t. Ag(x)<wv3C.

Similar to [2], the problems (9), (10), (11) can be reduced to linear
programming problems using some auxiliary variables.

Efficient Frontier

=
w

Rate of Return, R(x)
ro (4] E- o (=31 -~ g
N
N
\
L 4
\

Uncompounded Portfolio
2 ROD O o WS iNoy, e

o

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
MaxDD, M(x)

(=]

Fig. 1. Efficient frontier for the MaxDD problem (rate of return versus MaxDD).
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Efficient Frontier

S5 e
o

R (x)
-]

Uncompounded Portfolio

Rate of Return,

2 2 2 =2 2 o o
T T -

—

(=]

0.005 0.01 0.015 0.02 0.025 0.03 0.035
AvDD, A(x)

(=1

Fig. 2. Efficient frontier for the AvDD problem (rate of return versus AvDD).

It is necessary to mention several issues related to technological con-
straints (8). In our case, we chose Ty, = 0.2 and T, = 0.8. This choice
was dictated by the need to have the resultant margin-to-equity ratio in the
account within admissible bounds, which are specific for a particular port-
folio. These constraints, in this futures trading setup is analogous to the
" fully-invested” condition from classical Sharpe-Markowitz theory,! and it
is namely this condition, which makes the efficient frontier concave. In the
absence of these constraints, the efficient frontier would be a straight line
passing through (0,0), due to the virtually infinite leverage of these types
of strategies. Another subtle issue has to do with the stability of the opti-
mal portfolios if the constraints are "too lax”. It is a matter of empirical
evidence that the more lax the constraints are — the better portfolio eq-
uity curve you can get through optimal mixing — and the less stable with
respect to walk-forward analysis these results would be. The above set of
constraints was empirically found to be both leading to sufficiently stable
portfolios and allowing enough mixing of the individual equity curves.

4. Discrete Model

By dividing interval [0, 7] into IV equal intervals (for instance, trading days)
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R(x) Reward-MaxDD

080 - T Baasacs

0.80 -

0.70 sres
—+—0% CDaR

0.60 + —&—5% CDaR
—o—100% CDaR

0.40

0.30

0.20 MaxDD, M(x)

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Fig. 3. Reward-MaxDD graphs for optimal portfolios with (1 — 3) = 0, 0.05, 0.4 and 1
CDaR constraints (rate of return versus MaxDD). The frontier is efficient only for the
case with (1 —8) = 0 CDaR constraints, which corresponds to the MaxDD risk measure.

LT =
t,;zz-j—\;., i=1,N, (12)

we create the discrete approximations of the vector function y(t)

y(t:) =i, (13)
the drawdown function
fi(x) = llggi{w > s (14)

and the average annualized return function

R(x) = N X (15)

.
ca”Y
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R(x) Reward-AvDD
0.90 - ! = T =
0.80 -
0.70
—+—0% CDaR
B —=—5%CDaR
0.50 - -4—40% CDaR
—a—100% CDaR
040 - =
0.30 -
20— ' N, ' ' ' AvDD, A(x)
0.007 0.012 0.017 0.022 0.027 0.032

Fig. 4. Reward-AvDD graphs for optimal portfolios with (1 — 3) = 0, 0.05, 0.4 and
1 CDaR constraints (rate of return versus AvDD). The frontier is efficient only for the
case with (1 — 3) = 1 CDaR constraints, which corresponds to the AvDD risk measure.

For the discrete time case, problems (9), (10) and (11) can be accord-
ingly reformulated. The optimization problem with constraint on maximum
drawdown is given below

max YN X

s t. max { max{y; -x}—vy; x} <14 C,
pax {max{y;-x} -yi-x} SuC, (16)
T € [Imimﬂ:nmx]a Vik=1m.

The optimization problem with constraint on average drawdown can be
written as follows
max i X
; Cd¥N

N
s. 1. % i;{lngl?gj{yj-x}—y,..x} <wC, (17)

T € [mmin-. 3-'nmx]- Vk=1m.
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MaxDD Ratio
8 - s SR, —ER . - U
75 -
? :
65 - ——0% CDaR
= —8—5% CDaR
-A—40% CDaR
55 - —8—100% CDaR
5 3
45 -
41 ! | I I L M(x)

0.04 0.06 0.08 0.10 0.12 0.14 0.16

Fig. 5. MaxDDRatio graphs for optimal portfolios with (1 — 3) = 0, 0.05, 0.4 and
1 CDaR constraints (MaxDDRatio versus MaxDD). The maximum MaxDDRatio is
achieved in the case with (1 — 3) = 0 CDaR constraints, which corresponds to the
MaxDD risk measure.

Following the approach for Conditional Value-at-Risk (CVaR) [2], it
can be proved that the discrete version of the optimization problem with
constraint on CDaR may be stated as follows

1
lTl)?(.lX myj\-' - X

J\r
5. t. OL'+mﬁ;({fgﬁgi{y_f-x}—yi-x}ma)‘*‘ <3, (18)

Tk € [-Tminf xmax]s YEk=1,m,

where we use the notation (g)™ = max{0, g}. An important feature of this
formulation is that it does not involve the threshold function a(x, 3). An
optimal solution to the problem (18) with respect to x and « gives the
optimal portfolio and the corresponding value of the threshold function.
The problems (16), (17), and (18) have been reduced to linear pro-
gramming problems using auxiliary variables and have been solved by the
CPLEX solver (inputs are prepared with C++ programming language).
An alternative verification of the solutions was obtained via solving simi-
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AVDD Ratio
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35 -
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Fig. 6. AvDDRatio graphs for optimal portfolios with (1 — B) = 0, 0.05, 0.4 and 1
CDaR constraints (AvDDRatio versus AvDD). The maximum AvDDRatio is achieved
in the case with (1-38)=1CDaR constraints, which corresponds to the AvDD risk
measure.

lar optimization problems using a more general Genetic Algorithm method
implemented in VB6, discussion of which is beyond the present scope.

5. Results

As the starting equity curves, we have used the equity curves generated by
a characteristic futures technical trading system in m = 32 different mar-
kets, covering a wide range of major liquid markets (currencies, currency
crosses, U.S. treasuries both short- and long-term, foreign long-term trea-
suries, international equity indices, and metals). The list of market ticker
symbols, provided in the results below, is mnemonic and corresponds to the
widely used data provider, FutureSource.

The individual equity curves, when the market existed at the time,
covered a time span of 1/1/1988 through 9/1/1999. The equity curves
were based on $20M backing equity in a margin account and were un-
compounded, i.e. it was assumed that the amount of risk being taken, was
always based of the original $20M, not taking the money being made or
lost into account,
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The problem, then, is to find a set of weights x = (21,2, ..., Zm), such
that it solves the minimization problems (16), (17), or (18). Let us denote
the problem (16) as the MaxDD problem, the problem (17) as the AvDD
problem, and the problem (18) as the S-CDaR problem. We have solved
the above optimization problems for cases of (1 —3) =0, 0.05, 0.1, 0.2, 0.4,
0.6, 0.8 and 1. As we have noted before, cases of (1—3) =0and (1-8) =1
correspond to MaxDD and AvDD problems, respectively.

.

Table 1. Solution results for the MaxDD problem. The solution achieving maximal Re-
ward/Risk ratio is boldfaced.

Risk, % 40 50 6.0 7.0 80 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
Reward, % | 25.0 36.3 44.5 51.4 57.3 63.0 67.7 71.7 75.2 78.0 80.4 81.9 82.9 83.0
Reward/Risk 6.26 7.27 7.42 7.34 7.16 7.00 6.77 6.52 6.27 6.00 5.74 5.46 5.18 4.88

Tables 1-2 and 3-4 provide the list of markets and corresponding sets of
optimal weights for MaxDD and AvDD problems. Tables 5-6 provide the
weights for the case with (1 — ) = 0.05 CDaR. In these tables, the solution
achieving maximal Reward/Risk ratio is boldfaced. Note that the smallest
value of risk is chosen in such a way that the solutions to the optimization
problem still exist. This means that each problem does not have a solution
beyond the upper and lower bounds of the risk range covered (the whole
efficient frontier is shown). Notions of risk and rate of return are expressed
in percent with respect to the original account size, i.e. $20M.

Efficient frontiers for problems reward-MaxDD and reward-AvDD, are
shown in Figures 1 and 2, respectively. We do not show efficient frontiers
for CDaR measure on separate graphs (except for MaxDD and AvDD).
However, we show on Figure 3 the reward-MaxDD graphs for portfolios
optimal with (1 — 8) = 0, 0.05, 0.4 and 1 CDaR constraints. As it is ex-
pected, the case with (1 — 3) = 0 CDaR corresponding to MaxDD has a
concave efficient frontier majorating other graphs. The reward is not max-
imal for each level of MaxDD when we solved the optimization problems
with (1 — 8) = 0.05, 0.4 and 1 CDaR constraints. Viewed from the refer-
ence point of MaxDD problem, (1—/3) < 1 solutions are uniformly ”worse”.
However, none of these solutions are truly better or worse than others from
a mathematical standpoint. Each of them provides the optimal solution in
its own sense. Some thoughts on which might be a better solution from a
practical standpoint are provided below. Similar to Figure 3, Figure 4 de-
picts the reward-AvDD graphs for portfolios optimal with (1— B) =0, 0.05,
0.4 and 1 CDaR constraints. The case with (1—3) = 1 CDaR corresponding
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to AvDD has a concave efficient frontier majorating other graphs.

As in classical portfolio theory, we are interested in a portfolio with
a maximal Reward/Risk ratio, i.e., the portfolio where the straight line
coming through (0,0) becomes tangent to the efficient frontier. We will call
the Reward /Risk ratios for Risk defined in terms of problems (16), (17), and

Table 2. Optimal portfolio configuration corresponding to Table 1.

AAO 0.20 0.25 0.25 0.28 0.21 0.39 0.68 0.80 0.69 0.80 0.80 0.80 0.80 0.80
AD 0.20 0.40 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
AXB 0.20 0.37 0.32 0.47 0.63 0.80 0.55 0.64 0.80 0.80 0.80 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.62 0.41 0.53 0.56 0.80 0.80 0.80 0.80 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.22 0.51 0.77 0.80 0.80 0.80
CD 0.25 0.59 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.62 0.80 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DGB 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.63 0.80 0.80 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.35 0.74 0.80 0.80 0.80
EU 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FV 0.20 0.20 0.39 0.58 0.52 0.50 0.54 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FXADJY 0.27 0.58 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FXBPJY 0.20 0.20 0.20 0.20 0.20 0.20 0.53 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.28 0.29 0.32 0.34 0.65 0.72 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FXEUJY 0.20 0.20 0.41 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

FXEUSF 0.33 0.20 0.25 0.30 0.73 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.27 0.80 0.80

FXUSSG 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.28 0.21 0.43 0.72 0.80 0.80 0.80

FXUSSK 0.20 0.80 0.80 0.65 0.73 0.70 0.60 0.35 0.20 0.20 0.20 0.80 0.80 0.80

GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.57 0.80 0.80
JY 0.20 0.23 0.34 0.25 0.37 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LBT 0.20 0.35 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LFT 0.20 0.20 0.20 0.20 0.39 0.63 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LGL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.80 0.80 0.80 0.80 0.80 0.80
LML 0.20 0.27 0.36 0.46 0.51 0.60 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80
MNN 0.20 0.30 0.42 0.45 0.44 0.80 0.80 0.80 0.77 0.80 0.80 0.80 0.80 0.80
SF 0.20 0.20 0.37 0.39 0.52 0.52 0.63 0.75 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.40 0.80
SJIB 0.49 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SINI 0.20 0.56 0.67 0.69 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.23 0.32 0.60 0.69 0.80 0.80 0.80 0.80 0.0 0.80 0.80 0.80

Table 3. Solution results for the AvDD problem. The solution achieving maximal
Reward /Risk ratio is boldfaced.

Risk, % 0.77 1.00 1.23 1.46 1.50 1.69 1.92 2.15 2.38 2.61 2.84 3.07
Reward, % 21.7 35.6 45.3 53.3 54.5 59.9 65.7 T0.6 T4.8 78.2 81.2 83.0
Reward/Risk| 28.2 35.6 36.8 36.5 36.3 354 34.2 32.9 31.4 30.0 28.6 27.0
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(18) as MaxDDRatio, AvDDRatio, and CDaRRatio which, by definition,

are
Table 4. Optimal portfolio configuration corresponding to Table 3.
AAO 0.20 0.46 0.61 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
AD 0.21 0.57 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
AXB 0.20 0.20 0.23 0.55 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80
BD 0.20 '0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.52 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.43 0.80 0.80 0.80
CD 0.20 0.37 0.54 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.24 0.60 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DGB 0.33 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.71 0.80
ED 0.20 0.30 0.35 0.33 0.32 0.21 0.31 0.44 0.70 0.75 0.80 0.80
EU 0.20 0.20 0.20 0.20 0.20 0.20 0.46 0.80 0.80 0.80 0.80 0.80
FV 0.20 0.20 0.37 0.50 0.53 0.76 0.80 0.80 0.80 0.80 0.80 0.80
FXADJY 0.20 0.20 0.20 0.31 0.33 0.42 0.57 0.73 0.80 0.80 0.80 0.80
FXBPJY 0.20 0.20 0.32 0.49 0.50 0.69 0.80 0.80 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.29 0.53 0.58 0.77 0.80 0.80 0.80 0.80 0.80 0.80
FXEUJY 0.20 0.59 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.29 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.20 0.20 0.27 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSG 0.20 0.20 0.20 0.40 0.48 0.71 0.80 0.80 0.80 0.80 0.80 0.80
FXUSSK 0.20 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.79
JY 0.20 0.38 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LBT 0.20 0.52 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.36 0.46 0.80
LGL 0.20 0.20 0.20 0.20 0.20 0.20 0.29 0.48 0.65 0.80 0.80 0.80
LML 0.20 0.20 0.21 0.34 0.34 0.49 0.64 0.80 0.80 0.80 0.80 0.80
MNN 0.20 0.20 0.20 0.20 0.20 0.20 0.42 0.80 0.80 0.80 0.80 0.80
SF 0.20 0.20 0.38 0.50 0.54 0.67 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
SJB 0.23 0.67 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SNI 0.20 0.33 0.47 0.62 0.66 0.72 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.32 0.69 0.77 0.80 0.80

Table 5. Solution resilts for the CDaR problem with (1 — 3) = 0.05. The solution achiev-
ing maximal Reward/Risk ratio is boldfaced.

Risk, % 3.0 32 37 38 39 40 5.0 6.0 7.0 80 9.0 10.0 11.0 12.0
Reward, % |24.2 27.2 33.3 34.4 35.5 36.6 46.3 54.7 62.1 68.4 73.9 78.6 82.0 83.0
a, % 2.55 2.64 3.10 3.18 3.27 3.36 4.26 5.13 6.02 6.81 7.66 8.61 9.57 9.98
Reward/Risk| 8.06 8.50 8.99 9.04 9.09 9.14 9.26 9.12 8.86 8.55 8.21 7.86 7.45 6.92
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Table 6. Optimal portfolio configuration corresponding to Table 5.
AAO 0.20 0.21 0.30 0.32 0.33 0.34 0.49 0.54 0.69 0.80 0.80 0.80 0.80 0.80
AD 0.24 0.36 0.60 0.64 0.68 0.69 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
AXB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.33 0.46 0.80 0.80 0.80 0.80
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.60 0.69 0.67 0.80 0.80 0.80 0.80
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80
CD 0.20 0.20 0.29 0.31 0.32 0.33 0.49 0.64 0.80 0.80 0.80 0.80 0.80 0.80
CP 0.23 0.34 0.41 0.44 0.46 0.51 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
DGB 0.50 0.71 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.80 0.80 0.80 0.80 0.80
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.31 0.80 0.80 0.80
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.26 0.27 0.31 0.28 0.28 0.48 0.64 0.80
EU 0.20 0.20 0.23 0.26 0.30 0.31 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FVv 0.20 0.20 0.20 0.23 0.25 0.30 0.47 0.47 0.56 0.73 0.80 0.80 0.80 0.80
FXADJY 0.20 0.22 0.33 0.34 0.35 0.36 0.49 0.69 0.80 0.80 0.80 0.80 0.80 0.80
FXBPJY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.32 0.50 0.73 0.80 0.80 0.80 0.80
FXEUBP 0.20 0.20 0.29 0.31 0.34 0.34 0.43 0.39 0.46 0.76 0.80 0.80 0.80 0.80
FXEUJY 0.20 0.35 0.68 0.72 0.74 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
FXEUSF 0.20 0.20 0.28 0.30 0.31 0.29 0.38 0.59 0.80 0.80 0.80 0.80 0.80 0.80
FXNZUS 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.77 0.80
FXUSSG 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.59 0.75 0.80 0.80 0.80 0.80
FXUSSK 0.20 0.20 0.22 0.22 0.24 0.25 0.61 0.80 0.80 0.80 0.79 0.80 0.80 0.80
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80
JY 0.31 0.35 0.42 0.43 0.45 0.47 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LBT 0.20 0.20 0.20 0.20 0.20 0.20 0.47 0.80 0.80 0.80 0.80 0.80 0.80 0.80
LFT 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.28 0.43 0.58 0.66 0.76 0.80 0.80
LGL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.27 0.66 0.80 0.80
LML 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.31 0.52 0.69 0.74 0.80 0.80
MNN 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.34 0.74 0.80 0.80 0.80 0.80 0.80
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.54 0.80 0.80 0.80 0.80 0.80 0.80
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.58 0.80
SJB 0.47 0.57 0.71 0.74 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
SNI 0.21 0.22 0.29 0.29 0.30 0.33 0.58 0.80 0.80 0.80 0.80 0.80 0.80 0.80
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.39 0.70 0.80 0.80 0.80
MaxDDRatio = @, AvDDRatio = E(i), CDaRRatio = ) ;
M (x) A(x) Ap(x)

The charts of MaxDDRatio and AvDDRatio quantities are shown in
Figures 5 and 6 for the same cases of (1 — ) as in Figures 3 and 4.

We have solved optimization problem (18) for cases of (1 — ) = 0,
0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1. Let us note that already the case of
(1 = B) = 0.05 (see Table 3), which considers minimization of the worst
5% part of the underwater curve, is producing a set of weights significantly
different from the (1 — 8) = 0 case (MaxDD problem), and (1 — 3) =
0.05 CDaR case includes several tens of events over which the averaging
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Reward/MaxDD Ratio

; .5
0.6 weight US
weight BP 0.7 0.8 020 025

Fig. 7. Example of Reward to Risk ratio of two instruments. The risk is defined by the
value of portfolio MaxDD.

was performed. We consider that optimization with (1 — 3) = 0.05 or 0.1
constraints produces a more robust portfolio than the optimization with
MaxDD or AvDD constraints. CDaR solution takes into account many
significant drawdowns, comparing to the case with MaxDD constraints,
which considers only the largest drawdown. Also, CDaR solution is not
dominated by many small drawdowns like the case with AvDD constraints.

We have also made an alternative check of our results via solving the
related nonlinear optimization problems corresponding to problems (16)-
(18). These problems have optimized the corresponding drawdown ratios
defined above within the same set of constraints. Verification was done
using Genetic Algorithm-based search software. We were satisfied to find
that this procedure has produced the same sets of weights for the optimal
solutions.

6. Conclusions

We have introduced a new CDaR risk measure, which, we believe, is useful
for the practical portfolio management. This measure is similar to CVaR
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Reward/AvDD Ratio

0.20

weight BP

weight US

Fig. 8. Example of Reward to Risk ratio of two instruments. The risk is defined by the
value of portfolio AvDD. Using MaxDD leads to nonsmooth picture while, using AvDD,
which is an integrated characteristic, determines the smooth ratio. Solutions based on
using CDaR or AvDD seem to be more robust than those obtained by using MaxDD.

risk measure and has the MaxDD and AvDD risk measures as its limiting
cases. We have studied Reward/Risk ratios implied by these measures of
risk, namely MaxDDRatio, AvDDRatio, and CDaRRatio. We have shown
that the portfolio allocation problem with CDaR, MaxDD and AvDD risk
measures can be efficiently solved. We have posed and for a real-life ex-
ample, solved a portfolio allocation problem. These developments, if imple-
mented in a managed accounts’ environment will allow a trading or risk
manager to allocate risk according to his personal assessment of extreme
drawdowns and their duration on his portfolio equity.

We believe that however attractive the MaxDD approach is, the solu-
tions produced by this optimization may have a significant statistical error
because the decision is based on a single observation of maximal loss. Hav-
ing a CDaR family of risk measures allows a risk manager to have control
over the worst (1 — ) # 100% of drawdowns, and due to statistical averag-
ing within that range, to get a better predictive power of this risk measure
in the future, and therefore a more stable portfolio. Our studies indicate
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that when considering CDaR with an appropriate level (e.g., 3 = 0.95, i.e.,
optimizing over the 5% of the worst drawdowns), one can get a more stable
weights allocation than that produced by the MaxDD problem. A detailed
study of this issue calls for a separate publication.
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