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A B S T R A C T

This thesis focuses upon the large-scale and long-time statistical properties of 

several forced-dissipative fluid dynamical systems, including: (i) the one-dimensional 

Burgers equation, (ii) a  model one-dimensional equation without Galilean invariance, 

and the two-dimensional Navier-Stokes system  with (vi) and without (iii) effects of dif­

ferential rotation in the /3-plane approximation. It is shown that a  certain large-scale 

forcing in the Burgers equation results in statistical properties which are remarkably 

close to those of three-dimensional fully developed turbulence. The corresponding 

probability distribution function of velocity differences possesses nontrivial algebraic 

tails due to the effects of shock waves, thus leading to a biscaling behavior of the 

velocity structure functions. A phenomenological theory describing the experimen­

tal findings is proposed. Experimental results are compared with predictions of the 

one-loop renormalized perturbation expansion. It is dem onstrated tha t cubic non- 

linearity in a one-dimensional Burgers-like system  which violates Galilean invariance 

allows efficient analytical treatm ent using the Renormalization Group (RG) and the 

e-expansion methods, unlike its Burgers counterpart. The corresponding flxed-point 

critical behavior is studied in detail using a flnite-step RG transformation. For the 

two-dimensional Navier-Stokes system, it is shown that a two-parametric eddy vis­

cosity in the inverse energy transfer regime is in excellent agreement with predictions 

based upon the RG theory, as well as other closure models. This result yields a new 

strategy of large-eddy simulation of two-dimensional turbulent flows which was suc­

cessfully tested in a wide range of flow param eters. Effects of differential rotation are 

shown to strongly alter the large-scale properties of forced two-dimensional turbul­

ence. The directional energy spectrum  at very long times is found to be essentially 

anisotropic with two scaling laws; one similar to Kolmogorov and the other

-  to Rhines A:“®-law. Practical applications of our results are discussed.
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Preface

This thesis is composed of a collection of results obtained for several simplified prob­

lems which may be referred to  as fluid turbulence models. Some of them  are as 

“simple” as Burgers equation, others are more complicated and, hopefully, more re­

alistic in describing real-life turbulence properties. Among the m ain tools of this 

study is numerical com putation, which otherwise may be called direct numerical sim­

ulation (DNS) of the equations of motions involved. One of the m ajor theoretical 

tools employed is the dynamic renormalization group theory (RG) coupled with the 

e-expansion, by analogy with similar methods used in the theory of critical phenom­

ena. In some places, to  fill in gaps between subjects, we will use other theoretical 

tools borrowed from classical and geophysical fluid dynamics, statistical physics, ki­

netic theory, probability theory and others. Our style of convincing the reader will 

remain at a  physical level of rigor throughout the thesis, as is normally done in the 

physical turbulence literature. In most cases, the validity of im portant conclusions is 

verified via comparison of their consequences with the results of DNS. Our general 

goal or, philosophically, what we mean by solving a problem, is to  find the large-scale, 

long-time statistical behavior of the considered forced-dissipative system. The models 

include different types of nonlinearity, scalings of the force, numbers of spatial di­

mensions, effects of differential rotation. More specifically, the following models are 
considered:

•  One-dimensional forced-dissipative Burgers equation;

•  One-dimensional forced-dissipative equation which does not possess Galilean 

invariance and with cubic nonlinearity of the mKdV-type;

XI
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•  Two-dimensional forced-dissipative Navier-Stokes equation;

•  Two-dimensional forced-dissipative Navier-Stokes equation with effects of dif­

ferential rotation in the ^-plane approximation;

The original results we obtain here can be briefly outlined as follows:

1. It is shown th a t solutions to the one-dimensional forced-dissipative Burgers

equation may display properties close to Kolmogorov turbulence, in contrast to 

what was believed previously. For negative velocity gradients it is found that 

the probability distribution functions have algebraic tails, leading to nontrivial 

biscaling behavior of velocity structure functions.

2. Near-equilibrium statistical properties of a cubically nonlinear Galilean nonin­

variant equation of the mKdV-type are studied using finite-step dynamic RG 

theory and the e-expansion. It is found that the system displays a phase transi­

tion at the therm al equilibrium point from Gaussian to  non-Gaussian behavior.

3. For the isotropic Navier-Stokes equations, it is shown tha t a two-parametric 

eddy viscosity, first introduced by R. Kraichnan, accurately describes results of 

DNS and agrees well with the corresponding predictions based on RG theory.

4. For the case of ^-plane turbulence the shape of the anisotropic, differential 

rotation-induced energy spectrum  is not lim ited to  the k > region, as was 

previously believed. Effects of j3 appear across Fourier-space and for k < k^ 

the energy spectrum  has a  two-slope form, with Rhines k~^ scaling along the 

±7T/2-directions and Kolmogorov scaling in other directions.

5. On the basis of result 3 above, a large eddy simulation (LES) strategy is proposed 

for the two-dimensional Navier-Stokes equations and successfully tested across 

a wide range of parameters.

Some of these results are included in the publications [11, 12, 9, 10, 24, 83].

This thesis does not claim to provide a complete treatm ent of the problems dis­

cussed and the results presented here in most cases should be followed by a more
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thorough analysis, especially for the case of result (1) above and applications for the 

case of result (4) above. In fact, results contained in [11, 12] have stim ulated more 

deep theoretical studies of the proposed problem by other research groups, which 

hopefully will lead to some fruitful collaboration. Also, the LES strategy proposed 

in [83] may be followed by applications to  global circulation geophysical models of the 

ocean and atmosphere. Investigation of the  cutoff-dependent eddy viscosities [9, 83] 

for more complicated problems than  isotropic ones, e.g., problems which include ef­

fects of differential rotation, is also very promising.

The work presented in this thesis was done during the period 1993-1995 while the 

author had the honor to be a post-general graduate student in the Program  in Applied 

and Com putational M athem atics at Princeton University under the supervision of 
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with whom I interacted closely while working. Among them  are Victor Yakhot, Ilya 

Staroselsky, Semion Sukoriansky and Boris Galperin. Scientific collaboration with 

these persons eventually has led to  personal friendships the im portance of which is 

hard to  overestimate. My wholehearted thanks to them  and all others who have 

helped me in establishing as a scientist.

Also I wish to acknowledge stim ulating discussions with V. Yakhot, A. Migdal, 

and Ya. Sinai of the m aterial contained in Chapter 1. For the results contained in 

Chapter 3, I would like to thank E. Jackson for his valuable help w ith some program­

ming issues and R. Kraichnan, who kindly provided his original numerical data  for 

the two-param etric eddy viscosity.

Special thanks are due to B. Galperin and Departm ent of M arine Sciences of the 

University of South Florida for inviting me to be their guest in December, 1994. 

Mexico Bay shore was a very nice place to  work in the middle of winter.

Going back in time, I would like to extend my sincere gratitude and respect to Prof. 

N. A. Inogamov from the Landau Institu te  for Theoretical Physics, who convinced 

me at the proper tim e how beautiful and exciting physics, and, particularly, fluid
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dynamics, may be. It was my very good luck to  m eet him while I was looking for an 
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Chapter 1 

The Forced-Dissipative Burgers 

Equation

It has long been believed th a t solutions to  Burgers equation are not a good model 

of hydrodynamic turbulence. For example, J. M. Burgers, in the Introduction to  his 
well-known book [8], wrote:

It has come forward tha t the phenomena pictured by the solutions of 

this equation are far removed from hydrodynam ic turbulence. The equat­

ion can be considered as referring to motions in an infinitely compressible 

m edium, without pressure, and there is nothing in the system which deals 

with shear or with vortex motion. Certain correlation problems can be 

studied and show analogies with correlation problems in hydrodynamic 

turbulence. But the statistical problems connected with the solutions of 

the equation refer to  features which depend upon the randomness of the 

initial conditions. It appears th a t in the limiting case of infinitely small 

viscosity, the algorithm used in the solution of the equation acts as a kind 

of ‘selector’, which transm its certain details of the initial data  to the so­

lution, while eliminating other details ( . . . ) .  There is no mechanism for 

mixing features of the initial da ta  and thereby generating new random ­
ness.
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One of the first authors to  write extensively on the Burgers equation was Prof. E. Hopf 

-  indeed, in some literature Burgers equation is even called the Burgers-Hopf equation. 

Prof. Hopf in his paper [30] on the subject wrote:

We doubt th a t Burgers equation fully illustrates the statistics of free 

turbulence. Kolmogoroff’s idea about the probability distribution of the 

turbulent fluctuations in the small is essentially concerned with the veloc­

ity differences, not the velocities themselves. Equation ( . . . )  is too simple 

a model to display chance fluctuations of these differences.

This is certainly true about the Cauchy problem for the unforced Burgers equation 

with random initial data. But this does not mean that the same statem ents apply to 

a statistical ensemble of steady-states in the forced-dissipative case.

In this Chapter we will pose and numerically solve a problem which possesses a 

wide range of properties which are commonly attributed  to real-life three-dimensional 

turbulence. The problem of the forced-dissipative Burgers equation with a  power-law 

force self-correlation function raises a variety of simultaneous issues to be studied. Re­

sults for some of them , those involving the greatest theoretical interest, are considered 

in some detail here. Among them  are: a case leading to Kolmogorovian properties of 

turbulence in one dimension, where the exponent of the force self-correlation function 

y — 1 (for a full definition of y, see below); a  case with a steeper forcing scaling 

law, with y = 3/2; and a  case with large-scale forcing (the limiting case, when the 

power law degenerates into a f-function). Experim entation in all these cases is quite 

“theoretical” , because no direct counterparts to these phenomena may be found in 

real life, and, therefore, no natural experiments are possible. However, there exists 

a growing theoretical interest in such experiments because, as we will demonstrate 

below, these systems may and in some cases do show properties very close to those in 

much more complicated three-dimensional turbulent systems. Numerical experimen­

tation, which is now possible due to the wide availability of powerful computational 

facilities, should naturally come first in such situations, followed by slower, but, of 

course, more fundamental and “reliable” theoretical studies. In the case of the prob­

lems raised here a variety of theoretical studies in our and other scientific groups
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has been initiated. There is a hope tha t soon the  problem considered here will ob­

tain analytical treatm ent, leading to  new understanding of Kolmogorovian properties 

[34, 35] and interm ittency effects for pressure-free turbulence in one and, possibly, 

even in three dimensions. Although there exist some very im portant astrophysical 

applications for Burgers-like systems, it is also hoped tha t these results will have some 

im pact on real-life fluid turbulence. In this regard, such aspects as the importance 

of the stirring force and the pressure terra in dimensions higher than one still require 

investigation.

Section 1.1 below, which deals with general properties of Kolmogorov turbulence 

for Burgers equation, is based on the paper [11]. Section 1.2 describes in more detail 

the statistical properties of the solution obtained in Section 1.1 through a variety of 

probability distribution functions. Analytical studies currently in progress [62, 92] 

(to be published later) use this information extensively. New nontrivial behavior of 

the probability distribution functions is discovered, which illustrate effects of coherent 

structures in the turbulent flow. Some of these results are included in [12]. The case of 

large-scale forcing was to some extent studied in the previous literature and in Section

1.3 we also present some results for this case which are in qualitative agreement with 

the previous studies. Section 1.4 gives some new results for the case y = 3/2  which 

exemplify the fact tha t one-loop RG predictions in the finite e — 3 + y case are 

not necessarily correct. Finally, Section 1.5 reviews basic qualitative features of the 

Renormalization Group approach applied to hydrodynamic problems and provides its 

application to the d-dimensional irrotational forced-dissipative Burgers equation.

1.1 Kolmogorov Turbulence in the Random-Force- 

Driven Burgers Equation

From a theoretical viewpoint, one of the most challenging features of strong hydro- 

dynamic turbulence is the interplay between an almost Gaussian random background 

and coherent ordered structures responsible for deviations from Gaussian statistics. 

Although coherent structures have been visualized in three-dimensional flows as sheets
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or tubes of high vorticity [66], little is known about their analytic structure, stability 

and, as a consequence, about their relevance to turbulence dynamics. For a recent re­

view of experimental and numerical results in three-dimensional turbulence, see [56]. 

In two-dimensional systems, the role of coherent structures is much be tter under­

stood: The flow can be decomposed into two components, a background field having 

close to Gaussian statistics and coherent, extremely stable point vortices, responsible 

for strongly non-Gaussian features of the flow [74, 75]. Still, the analytic structure 

of such vortices and the distributions of their sizes and strengths are not yet under­

stood and this is one of the reasons why a full statistical theory of two-dimensional 

turbulence does not yet exist.

The analytic properties of the one-dimensional Burgers equation [8, 41, 21]

dv  1 dv^ d^v

subject to initial and boundary conditions, are understood rather well: the flow is 

dom inated by shocks, leading to an energy spectrum  E{k)  oc [8]. The same energy 

spectrum  exponent is obtained on the basis of the so-called model of intermittency, 

applied to  the one-dimensional case [22]. Moreover, in some cases, the Burgers eq­

uation has a stationary solution. For example, if u =  —U and v = U at x = <yo 

and —oo respectively, then f/(x ) — —U tanh  [x f//(2  i/o)], which describes a single 

shock of width I % Vq/U.  In this particular solution, “fluid” particles, created at the 

boundaries, are carried towards the center of the shock where they disappear. Shock 

formation is the most significant dynamic property of the Burgers equation; shocks 

have been studied in systems decaying from specific initial conditions and in systems 

driven by large-scale random  noise [68, 67, 65]. In the la tte r case, the energy spectrum 

is E{k)  oc k~^ and all velocity structure functions 52„(r) — [u(x 4- r)  — u(x)]^" scale 

as 5̂ 2m(r) oc r^, characteristic of the shocks. Some closure studies of this problem may 
be found, for example, in [37].

A totally different result is found in a  system governed by (1.1) driven by a white- 

in-time random force / ( x , t )  defined by its correlation function

f { k , u j ) f { k \ u } ' )  =  2{2-KY Dok-^8{k-^k' )6{u} -Vu}’) ( 1 .2 )
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with y =  —2 corresponding to  therm al equilibrium. Here, in the limit fc —» 0 and 

w —» 0 the two-point velocity correlation function is given by

C(k,u,) -  j  ^  ̂  (1-3)
with a. = z = 3/2 corresponding to E(A:)=const. Both the  exponents z  and a  may 

be evaluated using theories based on one-loop renormalized perturbation expansions 

[16, 95, 50] and have been confirmed by numerical experim ents [95]. Examples of 

applying the replica trick to  this problem may be found in [32, 97, 28]. In this case, 

the small-scale forcing was strong enough to  prevent form ation of shocks and the 

t'^ -energy  spectrum . In recent papers [84, 20], it was shown that computation of 

second loops for the y = —2 case does not invalidate the results of the one-loop 

approximation.

Here we are interested in an interm ediate case of a system governed by (1.1) with a 

forcing function added to  the  right side defined by the relation (1.2) with y =  1. This 

case is extremely interesting because it corresponds to “alm ost” constant energy flux 

n(A:) in wavenumber space: n(fc) oc log(t/&o), where ko is the inverse of the largest 

allowed scale in the system. Since the analytic structure of (1.1) resembles th a t of the 

Navier-Stokes equations, the Kolmogorov argum ent leading to  E{k)  oc can be

applied at least on a superficial level. However, in this case the process of generation 

of the Kolmogorov spectrum  must compete with the natural tendency of the  solutions 

to Burgers equation to form coherent shocks, thus leading to  interesting dynamics.

We investigate fluctuations generated by equation (1.1) w ith a hyperviscous dis­

sipation term  i/q ( —l)*’’*'̂  d^^v/dx^^  and driven by a random  force f ( x , t ) .  Numerical 

results, shown below, correspond to p =  6, which has been chosen empirically to 

produce a sufficiently sharp ultra-violet energy spectrum  fall-off. The effect of the 

hyperviscous dissipation on solutions of Burgers equation has been studied in a re­

cent paper [6] and we will not dwell upon this issue here. We will just mention tha t 

its use is dictated by the desire to have as wide a  universal range as possible and 

is based on the assumption tha t universal infra-red properties should not depend on 

the type of dissipation chosen. To simulate (1.2), the random  force has been assigned 

in Fourier space as: f { k , t )  = A f / y / H  <?&, where cr* is a Gaussian random
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function with \<Jkf = 1 and St is the  tim e-step. The force cut-off is chosen well 

inside the dissipation range of the  energy spectrum . In the case p — 1 the dissipation 

scale is, according to  the relation given above, Ij % uq/Uq, where Uq is the velocity 

of the m ost energetic shock in the system. The spatial discretization is based on the 

Fourier-Galerkin pseudospectral m ethod w ith the nonlinear term  computed using the 

conservative form and a de-aliasing procedure based on the 2/3-rule. The tem poral 

discretization includes two second-order schemes: a Runge-Kutta scheme for restart­

ing and a  stiffly-stable Adams-type scheme described in [33] for serial computations. 

The spectral resolution used is 12288 including the aliased modes. O ther param eters 

are chosen to be: va =  9.0 x 10“ '*°, St = 5.0 x 10“®, and A f  =  1.4142 x 10“^. It 

was carefully verified tha t this set of param eters does lead to strong coupling in the 

inertial range 10 <  A: <  600, such th a t the  viscous term  in the energy equation derived 

from (1.1) is negligibly small compared w ith the  corresponding nonlinear term .

The results of numerical experiments are presented in Figs. 1.1 — 1.6. Integration 

was performed for approximately 11 where Tto = Tr/Km. % 100 is the large eddy 

turnover tim e. After approxim ately 0.5 a statistically steady-state is achieved. In 

Fig. 1.1 we plot two successive realizations of the velocity field in this steady-state. 

One can see the typical saw-tooth structures, characteristic of the dynamical system 

governed by Burgers equation. In our case, however, they are superimposed on a 

random  velocity field. It was noticed th a t the system spends most of its tim e in 

a sta te  where there are only a  few (three — four) large-amplitude shocks and many 

sm all-am plitude ones. However processes leading to the  creation of a single strong 

shock and its later breakdown into several smaller ones constantly take place. The 

time-evolution of the total energy in the system  E{t)  demonstrates strong (with an 

am plitude of more than 100% of the  average energy) fluctuations, characteristic of 

the instability of the large-scale structures (see Fig. 1.2). The time-averaged energy 

spectrum  EÇk,t) [E{t) = f  E{k, t )dk],  presented in Fig. 1.3, is well approxim ated 

by the  Kolmogorov law: E{k)  oc w ith ^  =  5/3  ±  0.02. The error bars were 

estim ated in the following way: various values of the param eter (3 were used to plot 

the compensated energy spectrum  e(fc) =  k^E{k)  and only values of the exponent /3
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for which e(k)  was within the  experim ental noise in the entire interval 10 < Jfc < 600 

were chosen as satisfactory. The velocity structure functions S 2n(r)  are shown in Fig.

1.4 for various values of n . From Fig. 1.4 we see th a t for all n  higher than  two ^ 2„ (r) oc 

r^3n vvith /3an % 0.91, indicating th a t these correlation functions are dom inated by 

coherent shocks. We were not able to  detect logarithm ic corrections to  the energy 

spectrum  E(k) .  However, the  fact tha t high-order m om ents, presented in Fig. 1.4, 

are characterized by exponents close to, but not exactly equal to  unity  indicates that 

logarithmic contributions cannot be ruled out. One rem arkable result is related to the

dissipation rate  correlation function presented in Fig. 1.5, G (r)= e(x  +  r)e(x) oc r~**, 

with an interm ittency exponent p % 0.25 ±  0.05 m easured inside the  universal range 

0.01 < r < 0.63. Note th a t the dissipation rate  correlation function is defined in 

physical space and, since e(x) is nonlinear in u(x), the  2/3-rule de-éiliasing procedure 

was also used for its com putation. The value of the dissipation ra te  exponent p, so 

obtained is close to  th a t observed in experiments on three-dim ensional turbulence: 

p = 0.25 ±  0.05, see [77], and its general shape resembles the  model shape of G{r) 

proposed for three-dim ensional turbulence in [55]. We would like to emphasize that 

in the present work the  dissipation rate  e(x) =  vo id^v fdx^ ' f  w ith p  =  6 strongly 

differs from the norm al viscosity case with p =  1. The fact th a t the  exponent p  

obtained in this work is close to  one observed in real-life turbulence provides an 

indication tha t the correlation function of the dissipation rate  for inertial range values 

of the displacement r  is independent of the structure of the  dissipation range. A 

similar conclusion was reached in recent numerical experim ents of three-dimensional 

turbulence [5]. As one can see from Fig. 1.5, the accuracy of the  exponent p  is not as 

good as tha t of the exponent in the expression for the energy spectrum . In addition, 

to assess the im portance of the result, the role of the  hyperviscosity in the dissipation 

rate correlation function m ust be investigated further.

Im portant inform ation about the  dynamics of a nonlinear system  can be extracted 

from the correlation function defined by (1.3). In a  scale-invariant regime, according 

to theories based on one-loop renormalized perturbation expansions [16, 95, 50] (we
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will elaborate on these and other one-loop formulas in Section 1.6 below)

where =  0) % [3 i?o/(47r)]^^^ corresponding to  z =  2 /3  and a  =  —7/3

in (1.3). The frequency dependence of the effective viscosity */(t,w) is neglected in 

the relation (1.4). This is done because it is assumed th a t the dynamics of inertial 

range modes v(k,uj)  is dom inated by “distant interactions” with modes v{q,Çî) with 

l&l |g| and can be described by a ^-dependent eddy-viscosity. It is clear th a t this 

approxim ation cannot be valid when we are interested in the  behavior of the most 

powerful large-scale structures because of the strong interaction between them  that 

leads to the shock instabilities we observe here. The energy spectrum  derived from 

(1.4) is [58, 16]; E(k )  = 2 f C ( k , u ; ) d  i ^ / {2'nf  = [Dg/(6%")]'/^ k~^f^. The energy 

flux in wavenumber space can be expressed in term s of the am plitude of the force 

correlation function D q as follows: n ( t )  =  II(A!o) +  Dq log(A:/Jbo). Then, the value 

of the  “Kolmogorov” constant is: Cr  =  {[n(fc) — n(&o)] /  log (t/Ao)}"^^^ k^/^E{k)  = 

[1/(6 7T̂ )]̂ ^̂ . The numerical value C/f % 0.257 is quite close to the results of numerical 
simulation, see Fig. 1.3. Some discrepancy in the Kolmogorov constant may be 

explained by the fact th a t this theory does not give a small coupling constant and 

higher-order corrections may change the value of the theoretical prediction. But 

the fact th a t the result of one-loop prediction correctly reproduces even the order 

of m agnitude is quite remarkable. As in m any other cases, understanding of the 

reasons for good agreement between the theory, based on a one-loop renormalized 

perturbation expansion, and experim ental data, remains a m ajor challenge.

The com putational procedure for the  evaluation of C{k,w)  is as follows. Starting 

from some initial moment t =  to in a statistically steady state, the solution v{k, t )  

is stored at tim es tj  =  <o +  T j /A f , where T  =  100 is chosen to be of the order of 

Tto- Then, at t =  tjvf, the solution v{k,uj)  is found via a discrete Fourier transform. 

Repeating this procedure in tim e, and assuming each realization of v{k,uj)  to be 

independent of the  others, which certainly is only an approxim ation, one can compute 

C(k,co) as an average over such realizations. Memory lim itations forced us to keep
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only the first 200 wavenumbers and to  lim it ourselves to  Af =  3000. The results 

of these computations of C{k ,u) ,  presented in Fig. 1.6, can be compared with the 

prediction (1.4). The relation (1.4) was derived neglecting the infra-red divergences 

resulting in transport of small-scale fluctuations by the large-scale coherent structures. 

This kinem atic interaction ( “sweeping effect” ) can be accounted for by a Doppler shift 

w —» (jJ-\-kV in (1.4), where V  is the characteristic velocity of the  large scale structures. 

It is of m ajor interest whether C ( t ,  w) is described by (1.4) or not and whether V  is 

zero or not. If the sweeping effect is present in the long-time behavior then there are 

three possible scaling regimes of C{k,uj)  as w 0-}-: C {k ,u )  oc k~^ if t  C  (w^/Do)^/^, 

C ( t ,w )  oc k-''!^  if (w^/Do)"/^ e t c  and C (t,w )  oc k~^ if t  »  It is

clear from Fig. 1.6 th a t the theoretical prediction (1.4) is surprisingly accurate in the 

lim it of both large and small frequencies w. Only in a narrow interm ediate range of 

wavenumbers such that w % i/(t,w  -  0) does prediction (1.4) fail. T he flattening 

of C ( t,w )  observed in this interval indicates th a t the scaling function F (x )  in (1.3) is a 

decreasing function of x  when æ % 1. The quantitative agreement between theory and 

simulations in the lim it of large wavenumbers k  shows th a t the “sweeping velocity” V  

is small. This may be a consequence of the fact th a t the large-scale shocks are almost 

steady. We would also like to note tha t the  accuracy of our C ( t ,  w) com putation may 

not be easily increased because of com puter resource limits. The above result leads to 

an interesting possibility: Infra-red divergences present in the theory are not summed 

up into a mere transfer of small-scale fluctuations by the  large-scale structures, but 

are reflected in the creation of a large-scale condensate state, which in this case has 

the very simple physical meaning of a collection of strong shocks moving with a very 

small velocity V . Derivation of an equation of motion describing the dynamics of 

coherent shocks is an im portant and interesting problem and will be the subject of 
future work.

The above results, obtained in a simple one-dimensional system, are surprisingly 

similar to results of experim ental investigations of real-life three-dimensional turbul­

ence. In the one-dimensional case, however, the dynamics and geometrical structure 

of the turbulence building blocks are well understood and a cascade process is readily
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envisioned as a  coagulation of weak, wide shocks (shock w idth and am plitude are 

related as Z % vafU)  into ever stronger, narrower structures until dissipation takes 

over. Moreover, the to ta l dissipation rate  in an interval of length r  is prescribed and 

is equal to oc log {rUojvo)^ Given these simplifications, one may hope th a t a full 

Kolmogorov-type theory of turbulence in the  one-dimensional Burgers equation is not 
out of reach.

1.2 Kolmogorov Turbulence in the Random-Force- 

Driven Burgers Equation: Anomalous Scal­

ing and Probability Density Functions

In the  previous Section (see, also [11]), we have shown th a t investigation of the 

velocity structure functions 5„(t-) =  [u{x -|- r )  -  u(x)]" =  (A u)", with integer n, 

revealed strong deviations from the Kolmogorov picture of turbulence: all moments 

5'Tx>3(r) oc with % 1, characteristic of strong shocks. Thus, the system  governed 

by (1.1) — (1.2) shows both “norm al” (Kolmogorov) and anomalous scalings with the 

la tter dom inated by coherent structures (shocks). In this Section, we are interested in 

the details of the  probability density functions (PD Fs) characterizing the fluctuations 

generated by (1.1) — (1.2) and in the role the structures play in the determ ination 

of shape of the PDFs. Most of these results are included in [12]. The probability 

density V { A u , r )  is defined such th a t V { X , r ) d X  is the  probability to  find a velocity 

difference A u =  u(x +  r )  — u(x) v/ithin the interval ( X , X  +  d X)  for infinitesimally 
small dX.

As we have already mentioned above, the m ost prom inent feature of Burgers 

equation is a tendency to  create shocks and, consequently, to  increase the negative 

velocity differences A u <  0 and decrease the positive ones A u > 0  [8]. Thus, strong 

asym m etry of the curve V { A u , r )  is expected. The two-point PD F 'P (A u ,r)  was 

m easured for a set of separations r  covering a  variety of scales in the  system in the 

following way. The range of variation of the velocity difference, —5 < A u / Um» <  5,
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Figure 1.1: Solutions v {x , t )  at tim es t =  90.0 (upper) and t =  213.5 (lower).
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Figure 1.2: Time-evolution of the to tal energy E{t).
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Figure 1.3: The dotted curve here represents the energy spectrum  E{k)  (left êixis), 

and the straight line above it has the exact slope —5/3. The solid curve is the 

compensated energy spectrum  Ck  defined in the tex t (right axis).
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Figure 1.4: Velocity structure functions (u(x +  r)  — t;(x))^” for n  — 2 ,3 ,4  (dotted 

curves) w ith linear least-squares fits (solid lines).
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Figure 1.5: Energy dissipation correlation function e(æ +  r)e (x )  with linear least- 

squares fit, giving the interm ittency exponent fx, =  0.25 ±  0.05.
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Figure 1.6: Points denote the self-correlation function of the solution C(k,w)  for fixed 

frequencies w — 2 7 rm /r  with m  =  1, m  =  5, m  =  10, m  =  15 and r  =  100.05. Solid 

lines denote the corresponding asymptotic behavior of the  one-loop prediction given 

by (1.4).
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was divided into 10  ̂ bins. The data  were collected during a tim e longer than 10 

large eddy turnover times (corresponding to O(IO^) time-steps) and were distributed 

among the appropriate bins to generate a  histogram. Fig. 1.7 presents V { A u , r )  for 

the inertial range separations r jd x  =  200, 250, 300, 350, 400, where dx — 27t/12288 is

the mesh size. It follows from (1.1) —(1.2) tha t (Au)^ oc r  log r; tha t is why this PDF 

has a shifted maximum at approximately <f> — (Ait)/i2^/^ % 0.5. Here the function 

R(r) ,  defined as R(r)  =  [f(x  +  y) — /(z)]^  dy, was also directly measured. The 

PD F 'P(A u, r)  for r jd x  =  200 within the universal range, is shown in Fig. 1.8 on a 

logarithmic-linear scale. It follows from the analysis of the data  that

'P (A u ,r) oc (A u)“’ j for An C  0, (1.5)

with g % 4 and

7^(A u,r) oc for A u »  0, (1.6)

with a constant a  % 1/9. This result is highly nontrivial because the observed 

algebraic decay of the PDF ’P( Au, r )  as A u —» —oc leads to divergence of the moments 

Sn{r) for n  > 3 for the inviscid case. However, in the viscous problem with î o ^  0 the 

occurrence of shocks with an amplitude A u > Uq ~  L yjDq/ Uq is highly improbable 

and one can expect the PDF 'P(A u) to  decrease sharply for A u > Uq- This is 

sufficient for the existence of all moments S n { r ) .  The single-point PDF is presented 

in Fig. 1.9. One can observe the measured “P (u ) together with the best Gaussian fit 

■p(u) oc with 7  % 1/4. However, deviations from gaussianity are noticeable

for 3 < \ujUrTns\ < 0.5.

Let us make a note about the function R{r)  mentioned above. This function is of 

principal importance in the theory of probability density functions [62, 92] currently 

in progress. Formal computation of the R(r)  for the y = 1 case, similarly to how 

it is done in [54], diverges if viscosity is exactly equal to zero. At the same time,

introduction of the ultra-violet cut-off wavenumber kj, which is associated with the

viscous dissipation, leads to the finiteness of this function and asym ptotic behav­

ior: R(r)  oc —r log (rkd), as is possible to  show. This emphasizes once again the 

importance of infinitecimal viscosity in this problem.
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To develop a phenomenological theory we assume th a t the flow can be represented 

as a superposition of coherent and random components. The coherent contribution 

is visualized as a “gas of shocks” and a  single structure (shock) can be approximated 

by the exact tanh-solution of the unforced problem [8]. In particular, let us assume 

that solution for the normal (not the hyper-) viscosity case has the form

u (x , t) = —^ U i  tanh (1.7)
t= 0 2ui0

The first contribution to the right side of (1.7) describes the “gas of shocks” , whereas 

the second represents the effects unaccounted for by the first term . Here and 

Ui denote the coordinates of the centers of the shocks and the shock amplitudes 

respectively. It will become clear below that the detailed shape of the shock assumed 

in (1.7) is unim portant. The most essential feature of the  tanh-solution (1.7) is that 

the shock width L % vo/Ui, which means that, the stronger the shock, the more 
narrow it is.

The argument presented below is based on the assumption th a t energy dissi­

pation takes place exclusively inside the shocks. Then the mean dissipation rate
e =  Vo{du jdxy  in an interval of length r  is

'  4 r„ o  1 . 0  ,;L„cosh" Vi cosh^ y; ’  ̂ ^

where we denote Ŷ  = [x — a») î7i/(2i'o). The main contribution to the sum comes 

from the strong and narrow shocks, and therefore we can neglect the nondiagonal 

terms with i ^  j .  Assuming the density of the shocks to  be r-independent we have
^  r/3 773

Another way to derive this is to take the integral in (1.8) exactly and consider its

asymptotic behavior for Uo/Ui r  L, which makes sense if the viscosity is small

enough. One may deduce then, that under this condition, integral in fact will not
depend on the specific value of r.

On the other hand, it can be directly shown from (1.1) — (1.2) that

'r Uo'
1^0

ër — Do In . (1.10)
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Introducing the probability density V{U,r)  to  find a shock with amplitude U in an 

interval of length r , we obtain from the last two relations

fl/o
U ^V {U ,r )dU  oc D o r ln [  -

I'O

from which we readily establish the form of P{U, r)

£ °  U ^ V (U ,r )d U  !X D o r l n ( ^ ^ Y  ( l .U )

7 > ( a , r ) < x ^ .  (1.12)

Since "P{U,r) — V { U ) r j L  where L  denotes the system size, the relation (1.12) estab­

lishes the probability density P{U)  oc U~* of finding a shock of am plitude U. Note 

that r j  L  is the probability to  find a shock center within the interval of length r. The 

physical meaning of the lower integration limit in (1.11) and the value of the exponent 

X will be discussed in what follows. Formula (1.12) is a consequence of relations (1.9) 

and (1.10), and is valid in the logarithmic case when the forcing function is defined 

by (1.2). It is only in this case tha t we can establish the form of the PDF.

The goal of a statistical theory is to calculate the energy spectrum  and correlation 

functions of velocity differences 5„(r). The structure functions S ' n ( r )  are very im por­

tan t since they measure local spatial inhomogeneity and order in the system. For 

example, if u{x , t )  = const, all 5n(’") =  0. In the case of a single shock of am plitude 

U, evaluation of 5'rj(r) is very simple: The velocity differences are zero everywhere, 

unless the single shock is situated between the points separated by the distance r. 

For these points: u{x 4- r)  — u(x) — U and 5„(r) =  U ^ t / L .  In this case the  en­

ergy spectrum  E{k) = |u(A:)|^/2, which is the Fourier transform of 5"2(r), is readily 

evaluated to give E{k)  oc k~^ [8]. In the forced problem considered in this work, the 

situation is not so simple since we are dealing with many shocks of various strengths 

and amplitudes. Still, knowledge of P{U)  enables us to evaluate the structure func­

tions Sn('f'). Let us choose an interval of length r and consider shocks with widths 

I < T and I > r separately. Using (1.12) we obtain

a .( r )  = i r  V {U , r ) d U c c j  V "  V ( U )  dU,  (1 .13)

where Uo is the amplitude of the strongest and narrowest shock in the system. The 

lower integration limit U[r) accounts for contributions coming from wide “typical”
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structures with I far .  A  simple calculation shows that the weakest shocks with I r

do not contribute to  the correlation functions. The above expression can be evaluated 

in the following way: Let us assume that U{r) oc r*, where a; is a yet unknown 

exponent. The physics behind this expression is very clear: The spatial inhomogeneity 

on the scale r  is represented as an effective “dressed” shock of am plitude U{r) oc r®. 

This construction, consistent with the concept of effective (eddy) viscosity, yields 

U{r) % y ^ g (r). Then, the exponent x may be found from the condition

S2 {r )ocr^^  = r U~^dU cxr^-^ ,  (1.14)

which leads to x =  1/3. Equation (1.14) is obtained in a way similar to  the semi- 

dynamical dimensional considerations which are the basis of the Kolmogorov theory 

of turbulence, which gives: S 2{r) = 0(r^/^). However, unlike the Kolmogorov theory, 

the above relation, when combined with (1.12) and (1.13), gives the anomalous scaling 

of the higher-order moments. Indeed, it follows from (1.12) — (1.13) th a t all moments 

■S'Ti(r) with n > 3 are completely determined by the upper cut-off in (1.13)

S „ { r ) = r  r ° U ^ - U U  = r ^ ^ ,  V n > 3 ,  (1.15)
%/r* 71 ^  O

which is in excellent quantitative agreement with the outcome of [11]. Using the 

expressions above, we can calculate all S„{r) for small positive n

5 ' n ( r ) c x r s ,  V 0 < n < 3 ,  ( 1 . 1 6 )

as in the Kolmogorov theory of turbulence [34, 35]. Thus, the anomalous scaling of the 

velocity structure functions S„{r) appears only for n  > 3. The prediction (1.15) has 

been tested in [11]. It has been shown that S2n(r) oc with ^2n % 0.91 for n  > 2, 

indicating that these correlation functions are dominated by coherent shocks. The 

results of the measurements of the structure functions S„ with n  = 1/3, 2 /3 , . . .  ,6 /3 , 

presented on Fig. 1.10, are in good agreement with the scaling law (1.16).

Fig. 1.11 presents the PD F of the shock amplitudes. The problem of the shock 

location was solved in the following simple but reliable way. At each spatial point 

X the local gradient of the solution u '(x) was measured. Then, if u '(x ) >  0, it was
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assumed th a t this point x is outside of a  shock, otherwise x  lies inside of a shock. 

Once inside a shock, one can march in x until the gradient becomes zero, and thus 

the boundaries of the shock may be located. Note that the shock am plitude obtained 

in this way has been corrected to  exclude the Gibbs phenomenon typical in spectral 

approximations of discontinuous functions. To reduce the statistical noise in 'P(U) in 

Fig. 1.11, a simple smoothing procedure was applied: V iU )  was averaged over eight 

surrounding values. The result presented in Fig. 1.11 demonstrates tha t

V{U)  oc U~^ (1.17)

for all \U/UrTns\ > 0.5. The fact that 'P (A u) % T (f/)  when A u < 0 tells us tha t in 

this range 7^(Au) is dominated by the well-separated shocks. This confirms the main 

assumption of the phenomenological theory presented above. It follows from Figs. 

1.7, 1.10 that the PDF obeys a  simple scaling: V { A u , r )  =  P {AujR} /^ )  and tha t the 

anomaly in the high-order moments results only from the slow (algebraic) decrease 

of the probability density in the interval A u < 0. As was pointed out above, in this 
case one expects a cut-off at some A u % U q.

1.3 The Large-Scale Forcing Case

The problem involving a force concentrated only at the largest scales in the system 

has attracted  some scientific attention [8, 68, 37]. Despite this, and also despite the 

fact that most of the quantitative features of the solution are more or less known, this 

problem remains unresolved in the rigorous sense: a satisfactory analytical solution 

has not been yet found.

Burgers himself [8] believed that this problem leads to an exactly constant energy 

flux in wavenumber space from the largest to the smallest scales, down to  the dissipa­

tive. Prim arily from numerical experiments [87] and from such approximate theories 

as closure [37], the following properties of the solution are believed to be true: energy 

spectrum scaling is k~^; moments of velocity differences t/"  scale as [87] for high 

enough n; the solution in physical space u(x, t) consists of countable num ber of shock 

waves and smooth ram p regions [8] : shocks move in the positive x-direction and tend
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Figure 1.7: Two-point PD F V { A u , r )  = P[Au/R}^^)  for separations r / d x  = 200, 

250, 300, 350, 400 within the universal range. The collapse of various curves supports 
the choice of the scaling variable ^  — { A u ) / R}^^.
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Figure 1.8: Two-point PD F "P(Au, r )  for r /d x  — 200 on a logarithmic-linear scale. 

Solid lines correspond to  the relations (A u)” '* and discussed in the text.
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Figure 1.9: Single-point PDF T (u )  with the Gaussian fit
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Figure 1.10: Velocity structure functions |A u |" for noninteger values n  =

1/3) 2 /3 ,. .  . ,6 /3  (dotted curves). Slopes of the linear least square fits (solid lines) 

from top to bottom: 0.111, 0.222, 0.330, 0.433, 0.531, 0.620, respectively.
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Figure 1.11: PD F of shock am plitudes, F(U),  on a logarithmic-logarithmic scale 
(points). The slope of the solid line is —4.
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to coalesce. Some rigorous results, although somewhat distant from being physically 

transparent and useful, may be found in [67].

Here we briefly present results of a simulation with the following param eter values: 

spectral resolution 12288, hyperviscosity with z/q =  9 x 10“ '’° and p — 6, and time-step 

T =  5 X 10“®; the run was continued for over three-four large eddy turnover times.

We do observe tha t the energy flux in Fourier space is nearly constant, see Fig. 

1.12; the exponent of the energy spectrum is —2 with good accuracy, as may be 

seen in Fig. 1.13. The to tal energy, similar to y =  1 case, exhibits large-amplitude 

fluctuations, corresponding to interactions of the largest shocks, see Fig. 1.14. A 

notable feature of the  physical space solution, depicted in Fig. 1.15, is a finite and 

small number of shocks. Due to the fact tha t the force here affects only the amplitudes 

of harmonics with the longest wavelengths (in this particular run the force was nonzero 

for the first 10 wavenumbers k  only), shocks are created rather slowly, through the 

gradual steepening of initially smooth negative gradients. This is in contrast to  the 

y ~  1 case, where shocks could be created almost at once through the introduction 
of sharp gradients a t small scales directly by the force.

Velocity differences presented in Fig. 1.16 confirm the previously noted fact that 

all the moments C/” oc r ’ for all n  >  1 and are determined by shocks (viscous cutoff), 

leading to “maximal interm ittency” effects in this case compared with all the y < 2 
cases.

1.4 A Force AVith a Steeper Scaling Law

The particular case y ~  3/2 has special importance. As we will demonstrate below, 

the one-loop renormalization group (RG) approximation gives the following prediction 

for the energy spectrum  exponent ^ s iv )  =  1 -  2e/3 for y > - 2  and z/g(y) =  0 for all 

y ^  ~2, where e =  3 -|- y. This theory thus proposes a “phase transition” at y — —2, 

leading to a jum p in the energy exponent at the transition point and corresponding 

jumps in some other exponents (of the RG eddy viscosity, for example). Let us 

emphasize that this is true under the condition that RG “works” in this case. It is
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Figure 1.12: Energy flux in the large-scale forcing case; & <  10 are not shown because 
they inject energy in the system.
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Figure 1.13: Energy spectrum  in the large-scale forcing case. Slope of the linear 
least-square fit is approximately equal to  —2.03.
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Figure 1.14: Total energy evolution in the large-scale forcing case.
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Figure 1.15: Physical space solution u (x , t )  at t — 523 in the large-scale forcing case.
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known (and we will show it in Section 1.6) tha t all cases with y < —2 are equivalent 

to the therm al equilibrium case y = —2 and thus form one universality class for this 

problem: y < - 2  (which may be called thermodynamic equilibrium turbulence).

It is known th a t cases with y > 2  are statistically equivalent to the above con­

sidered case of the large-scale force (we have checked this, although we do not show 

the results of this here for brevity) and so forms a second universality class for this 

problem: y > 2  (which may be called turbulence with strong large-scale structures).

Also, as we have shown, the interm ediate case with ÿ =  1 is well described by 

the one-loop RG results and gives scaling in agreement with the prediction i/E{y) — 

1 — 2e/3 — —5/3. It is of considerable interest whether this prediction also holds true 

for all other interm ediate values of y: y £  [-2 ,2 ], for example for 1 < j/ < 2. For 

example, the RG prediction gives f/g(y =  3/2) — —2. We compare this prediction 
here with the outcome of numerical simulation.

Results of calculations with resolution 12288, Dt = 5 x  10“®, A f  — 2 x  10“^, and 

I/o =  9 X 10“ '* are presented in Figs. 1.17 -  1.20. First, and most importantly, we 

observe from Fig. 1.17 tha t the energy spectrum exponent i/g ^  - 2  but rather, is 

approximately —1.88, showing that, for forces with a correlation function steeper than 

k  ^, the exponent i/g is smaller than the one given by the one-loop RG prediction. 

These and our other numerical results indicate that there may be no jump in the 

exponent at =  2 at all, although this should be considered as a working hypothesis 

for now. Variations of the to tal energy with tim e presented in Fig. 1.18 for this case 

are different from the y = 1 case in that the amplitudes of fluctuations are larger, 

indicating that the effect of structures in the flow becomes even more pronounced. 

The physical space solution shown in Fig. 1.19, on the whole, resembles that in 

the y — 1 case with, possibly, greater contrast between the large-scale and random 

components. Scaling laws of velocity differences, depicted in Fig. 1.20, show that 
oc r^ starts approximately at p % 2 — 2.3.

The data presented here provides some evidence that the one-loop RG predictions 

are inapplicable to y = 3/2 and, possibly, for all y > 1 cases. Further numerical and 

theoretical studies of changes in the statistical properties of the system with variation
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of y are necessary.

1.5 One-Loop Renormalization Group (RG) Pre­

dictions

Further insight into the statistical properties of the Burgers equation may be obtained 

using the Renormalization Group (RG) approach. Although the validity of this ap­

proach is questionable even in higher dimensions, and it is even more questionable in 

one dimension, we feel necessary to present some results which complement the di­

rect numerical simulations (DNS) and phenomenological theory discussed in Sections
1.1 -  1.4.

1.5.1 R ev iew  o f  th e RG A pproach in H ydrodynam ics

In this thesis the RG procedure will be used several times and we will review some of 

the basic philosophical issues of its application to hydrodynamics and the qualitative 

description of the necessary steps. Although in the next Section we will employ it for 

the Burgers equation, it should be understood th a t a similar philosophy is used in all 
other applications in Chapters 2 ,3 ,4  and 5.

Since the mid-60's, considerable progress has been achieved in the theory of critical 

phenomena through the use of the RG approach. The basis of the microscopic ap­

proach to the theory of phase transitions induced by large-scale fluctuations have been 

developed by K. Wilson [88]. Among the m ajor features of his approach, which was 

given the name of the renormalization group approach, are: the subsequent reduction 

of the description to  account for the large-scale fluctuations, scaling transformations 

of the field variables, a rather special diagram m atic technique, and an expansion in 

term s of a param eter e, where d — e is a noninteger dimension [46]. At the present 

tim e, the RG approach is not only used in the theory of critical phenomena, but also 

successfully applied to many other physical problems. The fact that the behavior of a 

substance in the neighborhood of the phase transition (say, near the critical temper-
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Figure 1.17: Energy spectrum  in the  case y  =  3/2. Slope of the linear least-square 

fit is approximately equal to —1.88.



1.5. ONE-LOOP RG  PRED ICTIO NS 36

0.0015

0.001

0.0005

0

0 100 200 300

Figure 1.18: Total energy evolution in the case y =  3/2.
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Figure 1.19: Physical space solution u {x ,t)  at t  =  312 for the case y — 3/2.
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Figure 1.20: Velocity structure functions \u{x + r , t )  -  u{x ,t) \^  for the powers p =

1/3, 2 /3 , . . .  , 10/3 with least square fits within the inertial range for the case y =  3/2.
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ature) has many similarities to the behavior of a turbulent fluid has also been known 

for at least 20 years. These two classes of phenomena share at least one feature in 

common: their microscopic dynamics is very complicated and is governed by non­

linear equations with an enormous number of degrees of freedom. At the same tim e 

in both cases the large-scale dynamics is considerably simpler; with good accuracy 

it may be described by the linear Langevin equation. Therefore, m ultiple attem pts 

have been undertaken to apply a  statistical theory such as RG to  describe large-scale 
fluid turbulence properties.

It has come forward that the turbulence problem is more subtle and its dynamical 

effects are very im portant; whereas the  dynamic version of the RG approach was 

not well established. Therefore it became obvious tha t the RG approach should 

evolve through substantial modifications and new developments in methodology to 

satisfy the needs specific to fluid turbulence. This may be one of the reasons why 

RG applications in hydrodynamics have been substantially less successful than in 

the theory of critical phenomena. At the same tim e it is understood that the RG 

approach may and does give new im portant information about turbulence properties. 

M ultiple examples of this fact, which will be referenced in what follows, are provided 
in Refs. [16, 18, 95, 50, 93, 94, 13, 84, 20, 78, 79].

Here we will employ in detail only one particular version of the RG transformation, 
namely the one in wavenumber space.

First, one basic modification of conventional turbulence is necessary: the intro­

duction of the stirring force [16]. This is a requirement of the theory which is not 

directly related with the concrete physical source of turbulence: we formally will study 

properties of turbulence induced by this force and not by some complicated boundary 

conditions or other sources. The basis for this is the so-called correspondence prin­

ciple [16, 93] which may be expressed as the existence of a correspondence between 

real-life turbulent situations and situations with the force, if scales far removed from 

the largest (energy supplying) scale are considered. On such scales one can consider 

th a t the real cause of turbulence may be replaced with an effective large-scale force 

acting on the system. The relationship of the  large-scale force with the power-law
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correlation function considered here has been addressed in some detail in [51].

An im portant requirement of finiteness of energy in the system calls for the in­

troduction of the ultra-violet cut-off wavenumber, which may be associated approxi­

m ately with the inverse dissipative scale. At the initial step the governing system of 

equations (Navier-Stokes, for example) is called the bare system and all the entering 

param eters (like the viscosity coefficient) are called bare param eters. As in the theory 

of critical phenomena, the RG transform ation should be defined in such a way that it 

gradually reduces the number of degrees of freedom in the system, leaving the most 

im portant ones which determ ine the dynamics. On physical grounds we assume that 

most practically interesting situations of strong turbulence are determined by the 
large-scale fluctuations.

The role of small-scale fluctuations is two-fold: averaging over them  leads to 

the corrections to the param eters of the system (such as the viscosity or the force 

am plitude) and in this sense they are im portant. On the other hand, it is assumed 

that their action may totally be replaced with thus-altered param eters of the system, 

and in this sense they are irrelevant and may be fully elim inated from the system. 

This causes the RG transform ation to gradually remove (average out) the fastest and 

the smallest modes from the system. Such procedure may be done in a variety of 

ways, one of which is employed in this thesis and in many other cited references. 

This process, which is called a wavenumber shell-elimination., may deal with a finite 

width shell or infinitesimally small width shell, depending on the particular situation. 

The shell is defined as a region in wavenumber space which is bounded by the ultra­

violet cut-off wavenumber and another smaller movable cut-off wavenumber. Any 

field variable, such as velocity u(fc) or forcing f {k) ,  corresponding to the small-scale 

modes from within the shell is denoted as n>(fc) or /> ( t ) .  The shell elimination itself 

is defined as averaging of the equation of motion, in which the fast and small-scale 

modes u^{k)  have been totally eliminated, over the noise /> ( t ) ,  the  statistics of 

which is assumed known. Infinitesimal shell-elimination, as we will illustrate below, 

is analytically more attractive: it leads to differential recursion relations, which are 

easier to analyze. Finite-step shell-elimination is what one should expect normally
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and it leads to difference recursion relations. Some particular details of the procedure 

will be described in several concrete applications below.

Each step of the shell-elimination in the nonlinear equation of the Navier-Stokes 

type leads to an infinite number of term s in the averaged equation. The RG procedure 

has a special language for the classification and accounting of the term s tha t arise, 

based on the diagram m atic technique [90] similar to the one developed by Feynman. 

This technique dram atically simplifies the analysis.

Another essential step in the original RG theory is the  stretching transformation, 

which, after the shell has been eliminated, restores the size of the Fourier space to 

the original one. By means of this step the problem is formally almost reduced to 

the initial one, except for the changed (clothed) entering param eters (viscosity and 

others). Although in the first applications of the RG approach to the turbulence 

problem the stretching transform ation has been unchanged, it was understood later 

[18, 93] tha t the elimination of this constraint will lead to  the clothed viscosity having 

the well-known physical meaning associated with the turbulent or eddy viscosity.

The evolution of the governing system of equations under the RG transform a­

tion may be m apped into the RG  phase space motion, tha t is, into the evolution of 

param eters like viscosity as the number of steps of applying the transform ation grows.

The central point of the RG theory is a  notion of a fixed point. As in the theory of 

critical phenomena, the basic assumption is tha t if the RG transform ation is defined 

correctly, then the fixed points of the recursion relations should correspond to some 

physically relevant states of the system. To find the fixed points of a given system 

under thus-defined RG transform ation is the goal of the RG theory. Knowing the 

fixed-points and the behavior of the solutions to  the recursive relations in the neigh­

borhood of the fixed-points for strongly turbulent situations turns out not to  depend 

on such microscopic param eters as the bare viscosity but to be determined by the 

character of nonlinear interaction, which is in perfect agreement with what may be 
expected for real-life turbulence.

The notion of the fixed point naturally leads to the  notion of universality and 

universality classes. Universality simply means tha t the  physically relevant fixed-
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points should not depend on the bare param eters of the system. Also, all the fixed- 

points may be classified into several classes which correspond to some completely 

different physical properties (such as the sym m etry with respect to a transformation).

Another central notion in the  RG approach which was first introduced by Wilson 

[88], is the notion of the relevant and irrelevant parameters. This notion forms a 

solid basis under any RG analysis. The definition of irrelevant param eter may be 

given as follows. Consider a param eter, say, fourth-order (hyper-) viscosity added to 

our system. Apply the RG approach to thus-extended system and solve for the fixed- 

points. If it turns out th a t the fixed-points do not depend on this new param eter, it is 

called irrelevant for this system. Any other param eters are called relevant and namely 

on their basis the m ajor large-scale and long-time statistical properties of the system 

are determined. On the basis of several examples considered in what follows and 

results of [50, 16, 93], we can make conclusion that the normal viscosity coefficient, 

normal (nonthermal) force am plitude always are relevant param eters for the Navier- 

Stokes-type systems. Therm al noise may become relevant in two dimensions. It is 

always a requirement of any RG approach to check is there are no other relevant 
param eters in the system.

These are the essential notions and steps of the RG approach applied to fluid 

dynamics. The RG theory has been applied not only to the Navier-Stokes equations 

but to other physically im portant statem ents having relevance to  fluid motions with 

extremely large number of degrees of freedom. For more details of the RG procedure 
we direct the reader to the cited literature.

Here we will use the dynamic RG transform ation based upon perturbation the­

ory and the e-expansion. We will consider one-dimensional and d-dimensional cases 

separately: the one-dimensional case is presented in detail, whereas results for the 

d-dimensional case are given concisely in the  form of final results.
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1.5.2 T he O ne-D im ensional Burgers Equation

G eneral S ta tem en t and N ota tion s. We begin by stating the problem in the 

physical space. Consider the one-dimensional Burgers equation

-t- n n ,  =  f/Q -t- /  (1.18)

to be studied for all real x  and t. Consider the  space-time Fourier transform defined 
as

/ + 0 0  f +00
u( '

/ + 0 0  f +00

*00 W   00

u ( x , i ) =  /  /  u(A:,u;)e‘(“‘̂ ‘+**> ^  (1.19)
*/ —00 */—00  27T 27T

We will use the Fourier-space f-function defined as

/  ^ (p ) -  p)dp = F{k).
j p

In Fourier space, the basic equation becomes

u{k ,c j ){ - iu )  uok^) = f {k , ( j j )~

^  I  /  u(p,V')u(A: -  -  -^)dpd^. ( 1 .2 0 )
i k

2(27t)

We begin by introducing convenient notations for 2-vectors: fc =  {&,w}, f  f  dk dw = 

J dk\ for the vertex operator: A{k) = - i k j {2 {2 Tr f ) \  and for the bare Green’s fun­

ction: G "(t) =  (—iw  -f Uok^)~^. Sometimes, when it does not lead to misunder­

standing, we will use k instead of k  for simplicity. We further denote by _ o _(jfc) the 
convolution procedure /  _(p)_(jfc — p) dp.

The force is assumed to  be white-noise in tim e and a Gaussian random function 

in space, specified by its second-order correlation function

( / ( p ) / ( 9 )) =2(27T)=Z)(p)^(p-f 9 ). ( 1 .2 1 )

In what follows, we assume

T)(p) =  Z>o +  To Ip Î  , (1.22)
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where Do is the bare am plitude of the norm al forcing and To is the therm al noise 

amplitude, which is generated entirely by the RG-transformation, so th a t To =  0.

Another param eter of interest, also generated through the application of the RG, 

is the coupling constant A. We formally introduce it by inserting Ao =  1 into the 
basic equation

u ^  G° f  + Xq G° A { u o u ) .  (1.23)

The param eter Aq carries no physical dimension and is introduced primarily to sim­

plify accounting for the diagrams. We also introduce a cutoff wavenumber into our 

system: Aj, assuming that all variable quantities of the u(fc)-type will become zero

whenever fc >  Aj. This param eter plays the role of the dissipative cutoff in real
systems.

V iscosity  c o rre c tio n . The term  in the perturbation series which gives rise to  a 
correction to  the viscosity has the known [16, 93, 95] form

4 Ag G°(A) A(k)  I  G%p) A(p) G^(k  -  p) f>{k  -  p)
J p

j ^u^{q )G° (p  -  q) f ^ { p  -  q)dqdp.  (1.24)

Using it, the correction to the viscosity can be constructed

^  -  p)D(p)dp.  (1.25)

In the limit w 0 the frequency integration gives

Substitution for A (t)  and the change of variable p —> p -|- Jfc/2 leads to

_  Ag 1 f  {̂ 0 |p +  | |  " +  To (p +  1)^1 (p -  I )

A w u ^ k J p e w  (p  +  I )  (p" +  %)

with the integration region

dp, (1.27)

n ' = | p : A <  P + ^  < A - 6 A,  A <  p -  ^  < A -  ^ a | (1.28)
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Performing the integration in the lim its k —» 0+, 6A —> 0— one obtains

(D o A - . -M y  +  3) +  T o )M  
4iri/J A A ' ^

Force correction . The term  leading to the corrections 6D q  and STq  describes the 
zero-mean correction to the bare force

« /< (* )  =  Ao.4(<:) f G ° ( p ) G ° ( k - p ) f > ( p ) f > ( , k - p ) d p .  (1.30)Jp

Its correlation function, using W ick’s theorem and after integration over frequency, 
turns out to be

with the integration region

fi =  {p • A <  IpI <  A — SA, A < Ip — Aî| < A — 6^A}. (1.32)

Finally, taking the integral in (1.31) in the limits k —k 0-1-, SA 0—, yields

{ S f Hk , ) S f < ( k , ) )  =  + t , ) ( 5 î A Z Ç ± i y ! 6 A .  (1.33)

This, in turn, leads to the following corrections to  the force am plitudes

SDo — 0 ,

_ XI ( D o A - y - ^ + T o f
~  /t., ..3 n47t Uq A^ SA. (1.34)

This gives us the correction to  the force correlation function amplitude: SD(k) = 
S T o k \

Stretch in g  transform ation . Now, after the infinitely thin shell of wavenumbers 

has been removed, the interm ediate Burgers equation becomes

u^{k,uj)  ( - Z W  -I- ( i/o + Suo) =  ( f ^{k ,uj )  + Sf'^{k,u;))  -f  

+ /4 (t)  / (Ao +  fAo(p)) u'^{p,‘ip)u'^[k —p,uj — tp)dpd‘tp -f
J p

+2AgA(fc) f  u'^(p)G^(k — p ) A { k  — p) f  u^(q)u'^(k — p — q) dq d p +
Jp Jq

0(Ag), (1.35)
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with the corrected force correlation function

( ( r  (*i) + (* i)) { r i h ) + s f<(k , ) ) )  =

=  2 (2 t)= « (£ i+ * 2 )  {D(k, )  + 6 D [ h ) ) -  (1.36)

For reasons discussed in detail in [16, 93], we disregard ^Aq(A;), using the fact tha t it 

actually is irrelevant in the limit A —» 0+, t  0+  (in the Wilson [88] and Ma [46] 

sense). The last term  in (1.35) contains triple nonlinearity in u'^, the only term  in 
the perturbation series of order Ag.

We apply the following group of stretching transform ations to the above problem 
(1.35) -  (1.36)

k k e~'', LJ —k u) 6““ ’’, n —» n  e~^’’, with :

r = a  =  a ( e ) ,  (3 = ^{e).  (1 .3 7 )

Together with the averaging over k G [A, A -  fA], this corresponds to the linear 
renormalization semi group in the sense of Ma [46].

The variables of interest are then rescaled as follows

Do Do To -> To (1.38)

where we have introduced the param eter e =  3 +  y.

Using these rescaling relations and the above corrections to the dimensional con­

stants of our system, we can perform the above procedure an infinite number of times, 

yielding the following differential recursion relations for the dimensional parameters

-US
d log D

= 3 a  + 2 P ~  2,5 log A 
d  log T  , f  9  \  ^
^  =  a ( ^  +  i )  + 3 a  +  2 ^ - l ,  (1.39)
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where we have used the following nondimensional combinations (Reynolds numbers)

Z) , T  A2 ,

From these equations, relations for the nondimensional coupling constants g and h 

can be constructed;

| ^  =  3 ( e ,  +  A ) - 2 e ,

= 3 ( £ 5 + A ) - 2 - (1. 41)

Simple analysis leads to the following statem ent for the above system: for  Ve 

the trivial fixed point o /(1 .41) is unstable to infinitesimal perturbations as A ^  0+. 

Indeed, the solution of the linearized system (1.41) in this case is

{g, hy =  Cl Cl A -|- C 2 6 2  A  ̂—* 0 0  as A —> 0+, (1.42)

where ci and 6 2  are eigenvectors. This leads to the conclusion that no stable basic

solution exists upon which the e-expansion may be built. Exact solutions of (1.41) 

for two particular values of e =  0,1 illustrate this. In the case e = 0

+  (1.43)

and for the case e =  1 (y =  —2 )

" = (i+^AV‘"i’ =
where Ci and C2 are arbitrary constants.

Now we can also consider the separate universality classes y < —2 and y > —2, 

where (1.41) can be simplified by letting g = 0 and h = 0, respectively.

In the case y < —2 (therm al noise dominates) we have a solution for h

satisfying fi(Aj) =  ho. It is easy to see tha t limA-»o+ h(A) = 1.
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R y > ~ 2  (external force dominates), we similarly have

=  3 + 2^  ( A y  ( '■ « )
Do \  A q /

such that g{kd) =  go- It is also easy to see tha t limA_o+ g(A) =  2/3 in this case.

The conclusion which can be drawn from this analysis is as follows. The truncation 

o f the diagrammatic series is not justified by the smallness o f the limiting couplings. 

Therefore, strictly speaking, the whole diagrammatic series should be taken into ac­
count in the corrections.

U se o f th e  O ne-L oop R esu lts . Despite the fact tha t the limiting couplings are 

not small, we will try  to  employ the one-loop results as if they were obtained self- 

consistently, in the hope tha t summation of all the diagramm atic corrections will not 

change the scaling law predictions which follow from the one-loop approximation. 

Assume now that the  scale-elimination is performed without subsequent stretch-
Then, from (1.39), we have D(A) = D q, A(A) =  Xq. For y >  —2 we then obtain

for the eddy-viscosity

K A ) =  ( a -  -  A i- )} "  . (1.47)

This gives us the asym ptotic A 0-f behavior

i i ( A ) o c ( ^ ^ ^ )  A L (1.48)

For y < —2 one accordingly has

T ( A ) = ^ i / ( A ) ,  (1 .4 9 )

with the asymptotic A —> 0+ behavior

A“ î. (1.50)
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The results (1.48), (1.50) may be physically motivated as follows. In the case when

the energy is pum ped into the system  primarily at the large scales, the turbulent

viscosity turns out not to depend on the bare viscosity, and the nontrivial scaling

law IS determ ined by the exponent of the correlation function of the applied force.

In the case when the energy is supplied at small scales (at the "molecular" level),

it appears tha t the turbulent viscosity strongly depends on the bare viscosity and is

independent of y. The second formula in (1.49), which has been obtained by direct

com putation of the first-loop corrections, can be shown to hold to all orders in A and

is a m anifestation of the fluctuation-dissipation theorem [16]. The fact that there is

no smooth m atch between (1.48) and (1.50) at e =  1 shows tha t a phase transition 
occurs.

Following [16, 95], we can introduce the full (A:, w)-dependent correlation function 
and compute it in the lowest order in the lim iting coupling:

. /-/•; i  f
such tha t the energy spectrum , defined as j , ^E{k)dk = Etot-toial energy, can be 
computed [58, 16] as

As was pointed out in [16, 18], if one assumes th a t all the modes higher than k are 
removed (A t-k), then i/(A) % u{k). For y >  - 2  this gives

V Dok^~^

and for y <  —2:

IT

Note tha t the present results with e =  y +  3 taken for e =  1 precisely coincide with 

those in [16], which are obtained on the basis of e-expansion with e = 2  — d where d 
is the num ber of space dimensions.



1.5. ONE-LOOP RG PREDICTIONS  50

Corresponding energy spectra can now be obtained. The result for y > - 2  is

and for y < —2 it is

E(k)  = Eo = (1.56)
Z Uq

By employing these results one can get an estim ate for the Kolmogorov constant 

(by analogy with three-dimensional case) as follows. Define the energy flux-function 
T ( t )  as

dV{k)  fc Ao /■+“’
—^  = r { k )  = ~ —  j ^ ^ _ ^ I m { { u { p , i ) u { k - p , t ) u { - k , t ) ) }  dp. (1.57)

Then the stationary equation of motion implies the following relation for P(k)

T(A) =  -2 i/q  f  k^E{k)dk- \ -  I  R e { { f { k , t ) u ( - k , t ) ) }  dk, (1.58)
.'*=Ao Jk=Ao

considered in the limit A q —* 04- if this limit exists. Consider the second integral first. 
For a white-in-time force one can show that

Using this the second integral in (1.58) for y =  1 is equal to

A
^0  '“8 ( ^ )  ■ (160)

which does not depend on the shape of the energy spectrum  (1.55), but only on the 

force correlation function. If i/q is small enough, then the first integral in (1.58) is 

much smaller than the second for some 1 ~  Aq ^  A A j. Then the energy spectrum 
follows:

=  (1.61)
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1.5.3 tf-Dim ensional Case

Here we briefly consider some details of the d-dimensional RG for the randomly stirred 
Burgers equation

^  +  Ao (Ü, V) u  =  i/oAtT-l-/. (1.62)

Here all vectors are considered to have d Cartesian coordinates, e.g., x = {x i , . . . ,  xj}. 

We will limit ourselves to consideration of potential flows, that is,

^ ‘P- Ui = y  i = l , 2 , . . . , d ,  (1.63)

which leads to  a rotational sym m etry of the diagrams because the governing equation 
may be presented in Fourier space as

Uj(k)  =  G ° { k ) f j { k )  - U  j^u i{p )u i{k  ~ p )d p ,  (1.64)

where the bare propagator is defined as (P{k)  =  (-%w +  vo A:^)"\ If one does not im­

pose the potentiality condition, then the diagram m atic technique is more complicated 

and second-viscosity effects appear, which seems to  be an undesirable complication 

in this study. Also, the introduction of the velocity potential allows one to avoid 

dealing with the curl  operator in d-dimensions. For more information on the Navier- 

Stokes/Burgers equation statem ents in multiple dimensions and approaches other 
than RG, consider [17, 19].

From the potentiality of the solution u  the potentiality of the force f  follows. 

Therefore the force is defined as the white-in-time Gaussian random vector function 
with the second-order correlation function

{Ii(k,uj) fi(k',u}')) — 2Dq {2-kŸ^^ kjk i  k S ( k k ' )  6 {u> + uj )̂. (1.65)

As before, we will omit vector signs, using notations of the type k =  {jfe, cj} for brevity. 

Sometimes, when it does not lead to a m isunderstanding, we use k ~  k .

0(u'^ u ‘̂ )-d iag ram s. Om itting the lengthy derivations, we will just show the final 

result of the lowest-order (first-loop) term  in the perturbation series for u'j(k).  For
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details, consult references [16, 93]. After the finite shell elimination the result is

Here S,i =  27r‘*^^/r(d/2) is the surface area of d-dimensional sphere with unit radius. 

Using the identity V (V , u) =  Au-t- [V, [V, u]], which holds in d-dimensions, this leads 

to the viscosity correction. The resulting viscosity recursion relation is

^log i/
=  (1-67)

where: e =  4 +  y -  d, a(d) =  1/(2“'+* dvr''/^ r(d /2 )) ; and g =  D/(iy^ A‘) is a
nondimensional coupling constant.

0 (l)-d ia g ra in s . We recall that such terms lead to force am plitude corrections. De­

noting the lowest-order correction to  the force as / ,  the result of its correlation func­
tion calculation will be

{ f j W f m i k ’)) = -  ^  S(k -I- k') Sd kj 6 A A-7-2»+«f (l.gg)

In the case y =  —2, this leads to the following recursion relation for the force ampli­
tude

d  log D
=  (1-69)

where: 6(d) =  1/(2'*+^ T(d/2)).

C oupling constant in th e  case y > —2. It easily follows from the preceding 

results that the exact solution of the recursion relation for nondimensional coupling 
will be

' “ ' ’ ■ M î - ï X a "

where go = y(Aj) and g^ =  l/(3o ) =  d/2 T(d/2) 4 /3  2‘" For e >  0, the limiting 

value of the coupling constant as A —> 04- is g^, which may not be made small for 

any d >  0 . Situations with e < 0  lead to a well-defined trivial fixed-point regime.
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C oupling constant in th e  case y < - 2 . This case is identical to the one consid­

ered in [16, 95], In our notation, the solution for the coupling constant is

■ R T - “. )  ( a "  " " I

where: 9 2  =  2e(2 — e)/(2e — 1). The limiting value for e >  0 is 9 2  and the e- 

expansion can be formally organized. In fact, however, there are some difficulties: 

for 1.5 < d < 2, coupling constant changes its sign as it moves towards 9 2 , and this 

region cannot be described by the one-loop theory. The region 0 <  d <  1.5 possesses 

a good nontrivial fixed point 9 3 . Region d >  2  gives trivial (Gaussian) fixed-point 

behavior. The point d =  1 corresponds to the nontrivial fixed point with e =  1 . But 

this refers to therm al equilibrium cases only. As we have just shown, nonequilibrium 

cases do not seem to be rigorously accessible to the above one-loop theory because of 
the lack of a small expansion parameter.



Chapter 2

One-Dimensional

Galilean-Noninvariant System;
Effect Of Cubic Nonlinearity

In this Chapter we will consider an example of a forced-dissipative one-dimensional 

( ID)  system which does not possess Galilean invariance, which is an essential property 

of both Burgers and Navier-Stokes equations considered in the rest of the thesis. 

From a formal point of view, the system under study here is characterized by a cubic 

nonlinearity in the governing equation of motion, which makes it treatable by the e- 

expansion methods even in the ID-case, unlike its counterpart considered in Chapter 
1 .

It should be emphasized that such model ID forced-dissipative systems have been 

under extensive investigation for quite a long tim e [8 , 95]. This interest may be ex­

plained by the fact that they usually serve as simple toy models to understand such 

im portant global problems as turbulence in statistical systems with strong nonlinear­

ity, whereas systems with quadratic nonlinearity have been studied in the first place 

due to their obvious similarity to the Navier-Stokes system. As a result, there have 

been some progress in understanding universal statistical properties in the  forced- 

dissipative Burgers equation [8 , 16, 95]. At the same time, there still remain some

54
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principal theoretical difficulties in the strongly-coupled Burgers equation which are 
yet to be resolved [16, 9 5 ].

In this Chapter the statistical large-distance and long-time properties of the eq­

uation with a cubic nonlinearity of the mKdV-type

du du  2^  +  c „ ^  + Aou — = » „ ^ + /  (2 .1 )

are investigated. A notable feature of this equation is its Galilean noninvariance. 

Such equations are known to serve as models in physical applications, such as non­

linear Rossby waves in geophysics [31, 52]. A cubic nonlinearity of this type also 

appears in the derivation of the equations for the long weakly nonlinear gravity sur­

face waves. Third- and higher-order nonlinearities are usually neglected to obtain 

Burgers or KdV equations. As in the case of ID forced-dissipative Burgers equat­

ion, the equation with cubic nonlinearity is of nontrivial m athem atical interest as a 

prototype model for ocean and atmospheric turbulence. It may be considered also 

as a possible generalization of the forced-dissipative Burgers equation problem with 

a strong coupling which remains challenging. This problem provided an additional 

technical interest for us as a  possible application of a finite-step RG transformation 
to systems of hydrodynamic type.

2.1 Finite-Step RG Transformation

Consider the following problem written in the Fourier space 

G"*(À:)u(fc) =  f { k )  -

G~^{k) = —i  (w  — Co t )  -I- uq k^,

{ f {k) f {k ' ) )  = D{k) 8 {k +  k'), D{k)  =  2 ( 2 x f  D o \k\~y. (2.2)

Here we use the notation îc =  {A:,ü;}, frequently om itting the hat when it does not 
lead to a misunderstanding.

We make the common assumption about the existence of the dissipative cutoff 

wavenumber Aj such tha t all the Fourier-space functions are zero whenever k > Aj.
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Also for some 0 < A < Aj let us use the notation u^{k)  = u{k)  if 0 <  fc < A, 

u<(k) = 0 elsewhere and u>{k) =  u{k)  if A <  À: < Aj, =  0 elsewhere. Here

ti(A:) can be any function of the wavenumber.

Following the classical work [46], we define a step of the dynamic RG transform a­
tion for some intermediate wavenumber A as follows.

In equation (2.2) we eliminate all the by expressing them  through and 

/> , which leads to an infinite series in (2.2) (reversible part). The partial statistical 

averaging over leads to an infinite diagramm atic equation relating u'^ and f*' 
(nonreversible part). The nondimensional coupling constant

Aq D q
^ 0  =  with e = 2  + y  (2 .3 )

is a formal expansion param eter in the resulting diagramm atic series. If by some 

reason it turns out to be infinitesimally small, then computing only the lowest order 

in go nonvanishing diagrams will be sufficient and will lead to the corrections to 

dimensional constants of the system; {A o, ^o, Cq, £>o}. Finally, the stretching of the 

wavenumber space to its original size will give rise to a system formally coincident with 

the original one except for the changed dimensional constants and smaller “density” 

of degrees of freedom. The main assumption behind this procedure which is well 

established in the theory of critical phenomena is that the major statistical properties 

o f the system are preserved while applying the RG transformation [46, 8 8 ].

To rephrase abstractly, the transformation thus defined may be expressed as an 

operator Ils  dependent on one param eter 6  =  A j/A  acting on the point in the 

phase space p. This RG operator can be by construction factored into an averaging 

(Kadanoff-like) operator )Cs and a stretching operator Se. As a phase space for this 

problem we can consider the space spanned by the largest possible number of dimen- 

sionless combinations of all dimensional constants in the problem {A q, i/o, Cq, D q, A}. 

It turns out tha t there are only two possible nondimensional combinations composed 

from these constants. One is the  coupling (2.3), the other one contains the constant 
advection velocity cq

, Aq Dq
=  W Ï 7 Î -  (2 -^)



2.2. DETAILED STR U C T U R E  OF TH E D IA G R AM S  57

giving: /% =  {g,h} .  One can distinguish between finite ( 1  <  6  < +c») and in­

finitesimal (0 < 6  — 1 1) transformations. So, the application of the finite RG

transformation corresponds to a discrete motion of point in the phase space. That 

is if flo is known, then the specification of the law pn+i =  TZs [/C] fully defines this 

motion. If the infinitesimal transform ation can be defined, the motion of the point in 
the phase space will be continuous.

It is common to call such a transform ation a Renormalization Group (RG) trans­

formation. In fact, such an infinite set of operators /Cs is not a group at least due to 

a nonreversible part in its definition: averaging. T hat means that the inverse does 

not exist and Tie can form at most a semi-group. Another axiom in the definition of 

a group, namely that 3 6 3 : /Cf, /Cf, =  /Cg, also generally does not hold. In fact,

as can be demonstrated, in the case of the infinitesimal RG transform ation, a set of 

operators JCs does form an Abelian semi group with the property ICe l̂Cs, =  ICsiSi- 

For a finite RG transform ation this generally does not hold and the word group in the 

Renormalization Group here is not supposed to have the exact m athem atical meaning 
of a group.

Below we will be dealing with the finite RG transform ation in the case when 

— 0 0  < e 1. We will classify a diagram according to how many it has.

2.2 Detailed Structure of the Diagrams

D ia g ra m s of th e  0(u*^)-Type. There is one first-order in A diagram which leads 
to a correction to the bare advection speed

^  (2.5)

In the limit A; —> 0, u; —> 0  it gives

The only nonzero second-order in A diagram which leads to a correction to the 
bare viscosity is

2kX^
—  G(k)u<{k)  { l \ G > { p ) f  D(p) X
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X \G^(k — p — ç)j^ G^(g) q D{k — p — q) dp j (2.7)

with the integration region A < | p j  < Aj, A < |g| < Aj and A < |A: -  p -  ç| < Aj. 
After the frequency integration it becomes

Integrals over such an integration region will be dealt with as follows. First, we make 

the rotation by x /4  with stretching: q —> P +  9 and p —* p — q, after which the 

integration region becomes symmetric with respect to the p-axis. Using this, we get 
(up to a factor)

f  [  Ip +  gl ' +  (p +  9) Ip -  91“"^"} | t  -  2 p |- ' - «
J p j q -(  ̂+ c k - i u  [ { k - 2 p Y +  {p + q f +  ( p - q f ]

with a new integration region: { 9  >  0, A < |p +  9 I < Aj, A < |p -  9 ] < Aj,
A <  |A: — 2 p| < Aj}, which in fact consists of 4  subregions

—Aj -j-k
2   <  P <  —A, 0 <  9  <  -A  — p;

—Ad + A ^  ^  —A -f A: ^
2  -  ^  -  ---- 2  ’ A - p < 9 < A d  +  p;
A k Aj  — A
“ 2  -  P -  ----2 ~ '  -  ̂+  P -  9 < A d - p ;

A <  p < 0 < 9  <  - A  +  p. (2.10)

We are looking for an expansion of the integral depending on param eter k  for small 

values of k. After calculations up to  term s of order 0(A:^) the result will be

- -  ^(2 ^ ) 2t a ----- G{k)u<{k) (2~y-^ { A 1 + A 2 } + Bi  + B 2) . (2 .1 1 )

Introducing the notation e =  y +  2 , the nondimensional Ai ,  A 2 , Bi ,  B 2 are given by 
the following quadratures

rf-i
A i ( 6 , e ) ^  I "  I  {c(3^" +  9^) +  4("} X■JÇ=1 Jt]=0  ̂ /

X {(^ +  9 X ^ - 7?) " + {( -  v){(  + v)-^}  ,
(36" +7,2)2
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A^{S,e)= f  \  +  C '~ '  X

_ {U + v ) { v  - 0 ‘ + (̂  - + v )  *} ,
X ---------------------- ( 3^ + , = ) = ----------------------

„  , C  ,  /-'+Î {(I- ’îXf+ ’))“* + (I+’))(§“ ’!)“'} J

=  r -  +  K  ~  ^  ~  j , .  (2 .1 2 )
Â+ V

For arbitrary S and e these integrals are to be computed numerically.

Additionally, denote

F{6-, e) =  2 -‘ {Ai(5; e) +  Aa(5; e)} + 6 '^  B i(6 ; e) +  e). (2.13)

Then the correction to the bare viscosity follows

A . , («;')■ (214)

For e =  0 and after some algebra, one can reduce the expression for this correction
to

(2.15)

where

^ {i+ (W) ■ ( ^ ) } +

+ / /  Î (W ) - 4 ’ ; (% ) ‘̂ 4 • (216)
Formula (2.15) defines 6v for 8 > 2. For 1 <  5 <  2, 5i/ =  0 is true, which may be 

easily seen considering the geometrical properties of the integration region in (2 .9 ). 

A plot of the function F{8) computed numerically is shown in Fig. 2.1. It is possible 

to show that the following asym ptotic behavior as 5 —> +oo holds

m < x ^ l o g «  +  0 ( l ) .  (2.17)
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Figure 2.1: The function F{S) which determines the correction to the viscosity t/.
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D ia g ra m s o f  th e  0 (1 )-T y p e . Diagrams of such type lead to the bare force 

correction. Considering only the lowest order in A corrections, the  expression for the 

correlation function of the resulting corrections to the force may be reduced to

{ « / ( f c ) « / ( i ' ) >  =  X

X j f ^ | G X ( p ) |  | ( j X ( ç ) |  \G^{k  — p  — q ) f  D{p)D(q)D{k  — p — q)dpdq.  ( 2 . 1 8 )  

The frequency integration in the limit w —̂ 0  results in

{S f {k )6 f ( k ' ) )  =  J J ^ { p ^  +  q ^  +  ( k  -  p  -  ; ) : }  X

\p\-‘ M - ‘ \k -  p  -  q r  . .
c '  ( p 2 +  , 2  +  ( i t  -  p  _  q ) 2 f  ( 2  1 9 )

The integration region here is the same as in (2.9), therefore the same procedure for 

integration can be applied. After some algebra the result can be expressed as follows. 
Introduce the nondimensional function

(2 .2 0 )

Then in the limit t   ̂ 0 we get

2 A^ 9 A- 3 e{SmSfik')) = —  J  J  J(S- e), ( 2 . 2 1 )

which shows tha t in the infra-red limit the bare force acquires a therm al noise cor­
rection with the correlation function proportional to k^.

In the case e =  0 this result gives us the correction SD

•'(* )' ( 2  2 2 )

with

k  ' ;  (W  ̂ ( % )  • (2 2 2 )
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As in the case of E(S),  the  large S asym ptotic behavior of J(S)  is also logarithmic

log^ +  0 ( l) . (2.24)

The dependence J(S)  computed numerically is shown in Fig. 2.2.

D iag ram s o f th e  0 (u ^  u ^ )-T y p e . The only nonzero second-order diagram 
which contains a triple nonlinearity is

X r  G^(r)  |G^(fc — p — r)|^ D(k  — p — r) dr^ dpdq.  (2.25)

Denote for brevity here (  — k — p , Q  = u; — 'tp. Then the integral

J j G > { r )  |G > ( C - r ) | "  D ( C - r ) d r  (2.26)

with the integration region A < |(  -  r |  < Aj, A < |r | < Aj can be transformed into

S iDi r ^  f ) {(̂  - §)
u Jr=A+\^ Q -  c ( +  2ii^ {r^ + ^ )  ■

For small 0  and ^ this expression is 0(f?, ^), which makes it an irrelevant correction.
Therefore we conclude th a t =  0.

2.3 Recurrence Relations in the Trivial Case

Consider the stretching transform ation

k - k ,  w —> ^ w , -* (2.28)

Then an iterative application of the above averaging procedure together with such

rescaling will lead to recurrence relations for dimensional and nondimensional par­
ameters.
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Figure 2.2: The function J(S)  which determines the correction to the force correlation 
function am plitude D.
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Let us consider the case e — 0 first. Then the therm al noise is of the same order in 

k as the bare force, which lead us above to  SO given by (2.22). Recurrence relations 
for the dimensional param eters in this case will be

^ + 1  — f i d "

=  On

^ ” + 1  -

Introducing notations similar to (2.3), (2.4) for the nondimensional constants

AD  ̂ ADA
^ =  2 7 7 ï > * =

we derive the recurrence relations for them

1 1 + 5 ^  ^
« ( i + 3 i F m ) ( i  + K ( { - i ) ) -

There is one real-valued fixed point of the first equation ^ =  0 and there are two 

hi = 0, h2 — —1/S for the second one. Linear stability analysis shows tha t A2 is 

unstable. For 4 F ( f )   ̂«/(^) > 0 which is true for all S > 2, the leading asymptotic 

behavior as n  —» -t-oo of the solution in the neighborhood of the trivial fixed point is

which shows that the trivial fixed point is stable with respect to infinitesimally small 

perturbations. Convergence for the strong coupling (go ^  1) is very fast: gi =  

<^(1 / 5 0 )- Note that the positive sign in (2.32) corresponds to the Aq > 0 case and the 
negative sign to the Aq < 0  case.

Now consider the case e < 0. Here the therm al noise correction dominates the 

bare force as fc > 0; and, to be consistent, we need to consider the renormalization
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of the therm al noise amplitude, T. Therefore let

D{k) = 2{2TYTo \ k f  (2.33)

to be our bare force correlation function. W ithout repeating any of the calculations it 

is possible to write down all the results for this case using the ones already obtained. 

For this purpose, one needs to make a change G ^ T i n t h e e  =  0 case. From the 
fact tha t the therm al noise nondimensional constants

X T   ̂ X T A

will obey exactly the same recurrence relations (2.31), it follows that the whole region 

e <  0 forms a unique universality class for this problem with the trivial (Gaussian) 
fixed-point behavior.

2.4 Recurrence Relations in the Nontrivial Case

In this case the therm al noise correction defined by (2.21) is irrelevant and we get

SD = 0. For Su, we use formula (2.14). Again, averaging together with rescaling

(2.28) will lead to the recurrence relations. If we use the notation

XD   ̂ XD  
'  =  2 7 7 ^ '  * =  7 7 7 a ^ ’ (2.35)

then for the dimensional param eters, we get

c„+. = c .. (l + k ^ _ / )  J ,

t'n+1 = Un ( l +  F{S\ e))

. _  X 1

Dn+i = Dn S^-'  ̂ (2.36)

and for the dimenslonless parameters, we get
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A study of the fixed points gives the following results.

There are two fixed points gi =  0 and g2 — ; e). The solution in the

neighborhood of the trivial fixed point can be found: g„ =  go > +00  as n  —> +00 

for any go ^  0, therefore gi is unstable. Performing the same kind of linear stability 

analysis around ga, we assume g„ =  (e logS/ F{8)ff '^ +  G„ and get the solution for 

Gn '• Gn — —> 0 as n  —»■ + 00 . T hat proves that ga is a nontrivial fixed

point which is stable with respect to infinitesimal perturbations. So, as n  —» +00  the 
coupling constant g tends to

=  +  (2.38)

exponentially fast at large enough n.

For the nondimensional constant h similarly we obtain tha t there are two fixed

points =  0 and Aa =  (e — 1)6̂ ®“ ,̂ of which hi is stable for e < 1 and Aa is stable 
for e > 1.

2.5 The RG Operator % as 6  + 0 0

So far we have dealt with a purely m athem atical procedure. One of the results of 

this procedure was formula (2.38), which says that Vf : 2 < 6 < +oo there exists a 

unique fi weakly dependent on S such tha t TZ-sfJ- — fx. In fact we could hardly expect 

of /X not to depend on 6 for the reason already noted at the beginning: a set of finite 

RG transformations considered here does not form a group. Particularly here we do 

not have: Si- That can be illustrated by considering the example of the

correction to the viscosity 8u, given by (2.15). The correction 6u{6) is a complicated 

nonlinear function of 8 for which the property f(/(fi)d-fi/(fa) =  8u(8i fa) does not hold 

true. A similar situation has been observed in the finite RG analysis of the diffusion 

of a passive scalar in a random velocity field [94]. This is always the case for the finite 

RG transform ation in which second-loop corrections are im portant. In this problem, 

as we have determined above, the lim it f  —> 1-|- does not exist, because corrections 

8u and 8D vanish for all 1 < f  <  2, and the infinitesimal RG transform ation is not
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defined. Therefore a weak dependence of /i(f) is what we m ust expect. Does that 

mean tha t we cannot use the information obtained by the finite RG transformation?

We strongly believe that this is not true. In fact the finite RG transformation 

applies in more general cases than the infinitesimal one. To make use of the informa­

tion it supplies we need to make use of the following physical postulate, which has 

already worked in the case of the static RG [46]. We claim that the physical statisti­

cally stationary states of the problem correspond m athem atically to the taking of two 

limits n  —+ +oo and S —> -f-oo. The first one guarantees that we are at a fixed-point. 

The second one guarantees th a t we are at a  universal fixed-point. That is, if f  is 

not large enough we cannot “see” the universal behavior of the system, but as S gets 

larger we start to “see” it. In other words this may be called a microscope principle. 

At a very high resolution we “see” a m icrostructure of the solution which is of no 

use to us. Then as we gradually decrease the resolution we notice that after some 

tim e the picture we “see” does not change any more. T hat corresponds to taking the 

limit f  —*■ 4 -0 0 . Moreover, it is interesting that due to the logarithmic behavior at 

large 6 (cf. (2.17) and (2.23)) of the corrections 6u and 6D, the set {Rg} acquires the 
semi-group property as 8 —» -foo.

In the case of (2.37) the limit 8 —> -t-oc will lead to

- ■ - i r ê ) ' -

One of the ways to check the correctness of this postulate is by comparing the conse­

quences of this with numerical simulations.

2.6 Critical Behavior

One can get the large-eddy description when Fourier-modes are eliminated without 

the subsequent stretching, as it was done in [93]. Consider e > 0 first. Then from the 

recursion relations (2.36) it follows that: D„ =  D o ,  =  Aq, c^  = c q . A s  is derived 

in detail in Appendix A, the leading-order solution of the difference equations for
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and Cn, if e —> 0+ and n —» + 00, lead to

t,(A) =  v ^ J > o  c(A) -  Co. (2.40)
(3V37re)^

Define the full (t,w )-dependent correlation function and energy spectrum  as fol­
lows

c ( k , u , ) =  r ° °  r ° °  dk'  é j
J - 0 0  J - 0 0  2  2tt 2tt ’

£ ( t ) =
*/—00 ZTT

Then their evaluation near the fixed point for e >  0 can be readily performed

(3 % /3 ire )  '

The case e <  0 gives

(2.42)
for e =  0, and

+  ^(*’> =  ^ * ’° (2.43)
for e < 0.

In the spirit of the theory of critical phenomena [46], one can say tha t the sta­

tionary energy exponent ig  =  dlog(D(A:))/dlog(fc) in our problem exhibits a “phase 

transition” if the external param eter g =  e — 2 changes from - 2  -  0 to - 2  +  0, 

corresponding to a change from ig  =  0 in the e < 0 region to zg =  - e / 2  in the 

e > 0 region. The force correlation function exponent y here plays the role of the 

tem perature for the second-order phase transition in a ferromagnetic substance. The 

large-eddy viscosity exponent exhibits the same critical behavior at y =  - 2 .

Note that the above results are rigorous only for -cx> < e <C 1. And strictly 

speaking, the whole sum of the diagramm atic corrections to u, D  and A should be 

considered for finite e > 0. Only when sum m ation of diagrams up to all orders in 

A does not lead to any new “hidden” scaling laws, may the above predictions be 

used for finite e > 0 as well. The scaling laws derived here may still hold true for 
— 0 0  < e <  Ecrit % 0.83, as is shown in Appendix A.
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2.7 Irrelevance of Higher-Order Nonlinearities

Now let us return to recursion relations for e > 0 (2.36). One can fix the stretching 
param eters by requiring tha t D„ =  Do and A„ =  Aq; then we get

a  = 6^- i ,  /3 = S - ^ - i .  (2.44)

Now consider the higher-order nonlinearities which are generated in the process 

of scale-elimination. A property of our system is tha t all even-order nonlinear terms 
are fluctuating and having zero mean. The fifth-order nonlinearity is

^ — a -  r ) dpdqdrds ,  (2.45)

with constant /x param etrizing it. Consider /x as a new dimensional param eter in the 

system. It will be irrelevant in the sense of Wilson, if for /xo ^  0 the quintic coupling 

constant gs — f iD^  1/ ““* A'^® associated with /xo tends to a fixed point faster than the 

leading cubic coupling ga (see also [16]). Really, the rescaling transform ation (2.28) 
and the scale-elimination will lead to a recursion relation of the form

f̂ r.+i = p„ { l  + “loops” ) (2.46)

which gives a solution that decays exponentially to zero, if e < 5 and loop-corrections 

do not affect this behavior. Higher-order nonlinearities of this type can be treated in 

a similar way and are irrelevant if e < 5. Of course, we realize that this condition is 

correct only if the loop corrections do not change the exponent 2(e -  5); otherwise 
the condition of irrelevance will be different.
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2.8 Relation to the Forced-Dissipative Burgers 

Equation

Consider the equation in the physical domain (2.1). The change of the unknown 

function u —* u C/2  with C — const  leads to

( A
Co H ^   j Uj, + Xq C UUx + XqU^ Ux = Uq U x x  +  /■ (2.47)

After Galilean transform ation æ —> x -  (cq +  Aq G^/4) t into a moving frame of refer­
ence, this equation becomes

ut + XqC uux  + Xo Ux =  uo +  /•  (2.48)

If C is large enough, this becomes a forced-dissipative problem for the Burgers eq­

uation with a strong coupling regularized by a small cubic nonlinearity. How large 

should C be must be specified by comparing the bare coupling constants in front of 

the quadratic and cubic nonlinearities which respectively are

52 =  - 7 - l ± r .  93 = - ^ .  (2.49)
1/2 Aj <f

CAD& XD

The requirement that ga ^  9 3  leads to the condition on C  given by

C ' >   ̂4^.-1) ■ (2.50)
1/A j'

In fact in a lot of physical applications where the Burgers equation arises from 

the real physical problem via a series of simplifications, it appears in the form

(2.47) — (2.48). For this reason it is very interesting to consider both similarities 

and differences in the following two problems: (i) ID forced-dissipative Burgers eq­

uation and (ii) ID forced-dissipative Burgers equation with a small cubic nonlinearity 
considered here.

The theoretical work for (i) based on the one-loop RG for any exponent y and 

dimension d =  1 fails to lead to a small coupling and therefore does not verify the 

diagrammatic series truncation, as we have already seen in Chapter 1. Considering
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a variable space dimension d leads to  nontrivial fixed point behavior for 0 <  d < 

1.5 and y < —2 (therm al equilibrium) [16]. The most interesting cases y > —2 

(nonequilibrium) remain inaccessible by such theories.

A comparison of C{k,ux) and u{k) predicted by [16] for (i) with d =  1, y = 

—2 with our results shows that problems (i) and (ii) are substantially different: in 

(ii) nonlinearity is infinitesimal (trivial behavior) via RG whereas in (i) it is finite 

(nontrivial behavior). That is, taking the limit 9 3 / 9 2  0+  in (ii) gives a result that

is different from (i); this may be a ttributed  to the fact that this limit is being taken 

under the condition of broken sym m etry (Galilean noninvariance). This probably 

means that the cubic nonlinearity forms a singular perturbation. At the same time 

we notice that the energy spectrum exponents for (i) and (ii) seem to be the same 
for all y <  —2.



Chapter 3 

Isotropic Two-Dimensional 
Navier-Stokes System

In the previous Chapters we dealt with one-dimensional systems and we now pro­

ceed to the discussion of two-dimensional forced-dissipative systems. Chapter 3 illus­

trates some analytical methods and provides direct numerical simulation verification 

of these methods as applied to the two-dimensional isotropic Navier-Stokes system. 

The methods of Chapter 3 will be extensively used in Chapters 4 and 5 for the analysis 

of other two-dimensional systems which are more complex and may be more relevant 
for practical applications.

Homogeneous and isotropic turbulence has been a traditional idealization of real 

turbulent flows, which are usually neither homogeneous nor isotropic. However, this 

idealization has provided a wealth of information on the physics of turbulence and it 

still remains one of the main tools of theoretical and numerical turbulence research 

[54]. The same can be said about the dimensionality of the problem; indeed, many 

natural flows tha t span a large num ber of scales possess features of both three- (3D) 

and two-dimensional (2D) turbulence and can be classified somewhere between the 

purely 3D and 2D extremes. Thus, even though the focus of the following three 

Chapters is 2D turbulence one should keep in m ind that applications of the results to 

quasi-2D flows are intended. Quasi-2D turbulent flows are widely found in geophysics 

and engineering. Although, under normal circumstances, all flows are unstable to

72
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three-dimensional instabilities [2], there exist natural situations when a flow may 

attain  a quasi-2D configuration or even become quasi-two-dimensionalized on certain 

scales. There are two major factors tha t may cause a flow to become quasi-2D: 

geometry of the flow boundaries and/or certain body forces (or ‘extra  strains’) whose 

action leads to smoothing of the velocity fluctuations in a preferred direction. While 

in the geophysical context both factors are equally im portant (i.e., the small aspect 

ratio, density stratification, rotation), in the engineering context the second factor 

usually predominates (for instance, the so-called mechanism of “magnetic friction” in 

magneto-hydrodynamic flows with low magnetic Reynolds number [76]).

3.1 6-Expansion Procedure Via One-Loop RG

This Section will review the RG and the e-expansion methods as applied to the Navier- 

Stokes system. We would like to give the most recent presentation of theory on which 

most of our further results are based. Due to their importance, our goal was to  verify 

these recent analytical results by other possible means like alternative derivations and 

comparisons with spectral closures and DNS, the direction pursued in the subsequent 
Sections.

3.1.1 S tatem ent o f th e Problem

Consider the two-dimensional incompressible Navier-Stokes system

- f  ( u ,  V) Ü = - V p + 1/ A h - I - g ,  -  0.

Introducing the vorticity (  =  [V ,u ]3 =  d v / d x  -  du /dy ,  f  = [V ,^g  and a stream  

function defined by u =  where : (V ^, V) =  0, one obtains the so-called
vorticity-stream function formulation

C =  -A-Ip. (3.1)
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Here and in the following the notation [■, -ja means the third component of the three- 

dimensional vector product, and we also use the following notation for the determ inant 

of the Jacobi matrix: d{ ( , i l j ) / d ( x , y )  =  d t p / dydC/ dx  -  d-tp/ dx d ( / d y .

Below we will employ the following definitions of the backward and forward Fourier 
transforms

C (s,t) EE C ( £ .„ r  =11 ^
Jk  Vw (27T )‘̂  27T

=  ((Z . /  ((g , '+(('4) j g

and the ^-function

B{x, t)  =  8(x)8( t )  =  f  f  ^ ̂  ̂  ̂  ̂  ̂ Jj^J^ (27t)2 27t'

Using these definitions the convolution theorem, for example, will take the form

—  J 2 tP Ÿ  — P,w -  i p ) d p ( h p .

Let us also introduce the so-called hare Green’s function or hare propagator defined 
as the linear part of the Navier-Stokes operator in Fourier space

G(k,u})= (^-iuj + u k ' ^ y ^ . (3.2)

It is customary to use the brief notation k =  w} for the three-vectors k. Using all 

these notations and definitions one can write down the governing equation in Fourier 
space as follows

l t - p l  .

Note tha t thus written the nonlinearity is symmetrized, i.e., invariant under the 
change p k — p.

Now we also need to be more specific about the noise f { k )  entering the basic 

equation (3.3). Turbulence here is assumed to be generated by this noise and its 

definition is therefore very im portant. Below we will consider the force f { x , t )  to be
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a zero-mean Gaussian white noise in tim e random function given by its two-point 

correlation function in Fourier-space

/ ( p ) / ( ? )  =  + 9 ), where: D{p) = 2(2x)^ (Dq +  To 1 '̂*) - (3.4)

We note th a t in the above definition of the force we have simultaneously considered 

two types of possible forces: therm al noise with the bare am plitude To and nontherm al 

part (if y ^  —2) with the bare am plitude D q. In doing so we follow the Ref. [79] 

where this approach was used for the first time, to  the best of our knowledge. It is 

a peculiarity of the two-dimensional case tha t initially negligibly small or even zero 

therm al noise is very strongly self-generated in the course of shell-elimination and 

its use is necessary for a correct description of the fixed-point properties. As it was 

first shown in [79], consideration of the therm al noise changes the properties of the 

fixed point in two dimensions, whereas it is an irrelevant variable for the nontrivial 

(y > —2) situations in all dimensions higher than two. Some of the details relevant 
to the two-dimensional case illustrating this are presented below.

3.1.2 U ltra-V io let Shell-Elim inât ion

Now we will follow the prescriptions of the book [46] and papers [16, 93, 18] which deal 

with the dynamic RG approach, particularly applied to the fluid flow equations. As 

was outlined in [46] for quite general nonlinear Langevin equations, we will perform 

the infinitesimal ultraviolet shell-elimination in the Fourier space.

First, in order to treat the ultraviolet divergences, we introduce the ultra-violet 

cutoff wavenumber, tha t is, we assume that all Fourier-space t-dependent functions 

become zero whenever h, >  A j  =  A q .  This assumption may be understood as an 

oversimplified a ttem pt to introduce a real-life dissipative cutoff wavenumber into the 

system. Although all the specific properties of the dissipative range are neglected 

in this approximation and a sharp cut-off is introduced instead of a smooth expo­

nential fall-off, it is assumed that these approximations do not alter the infra-red 

and long-time properties of the system, in which we are primarily interested. The 

self-consistency of this assumption will be verified in the  end.
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Now, consider another wavenumber A such that A <  Aj and let us write the 

governing equation for the region of fc-space defined over only the k < A-part. This 

requires averaging of our basic equation (3.3) over the force defined only in the band 

of wavenumbers [A, Aj] (the small-scale part of the force), under the assumption that 

the large-scale quantities (  and /  are statistically independent of the small-scale part 
of the force.

As explained in detail in the abovementioned references, averaging over the small- 

scale part of the force results in the infinite set of corrections to the  governing equation 

(3.3). These corrections are most easily considered in the language of Feynman-type 

diagrams [90]. W ithout going into the details of this well-established technique, but 

just using its results below, we will consider the resulting relevant corrections and 

compute them  in the infra-red and long-time limit. The level of the approximation 

of the resulting diagrammatic series will be one-loop, i.e., only one-vertex diagrams 

will be considered. For more details of the diagrammatic technique, see [46, 90, 

94]. Corresponding results are used here as a well-known tool without much further 
discussion.

3.1.3 C orrection to  th e Inverse Propagator

It is possible to show that the one-loop correction in the diagram m atic series for ^(Jb) 
leading to the lowest-order viscosity correction has the form

( 2 ^ ^  / |G ( P ) | '  G ( t - p ) D ( p )  ^  - — 1 ^  , [ L _  dp. {3.5)

The region of integration is over such p that: A <  |p] <  Aj and A <  t  ^  <  A j  and 

over frequencies -o o  < V» < +oo, which is a region of intersection of two shells of 

width —SA =  A j  — A >  0. Note tha t from the geometric properties of the integration 

region it is obvious that if k is kept constant while 6A —> 0 -  then the region becomes 

doubly-connected with the integration region area scaling as SA^. To avoid dealing 

with these complications in the RG procedure, we consider cases when k < —6A and 

this region is singly-connected and shrinks to the simple shell A <  jp] <  Aj as t  ^  0-4.
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This corresponds to taking both limits k —k 0+  and SA 0— simultaneously such

that k < —6A always.

Frequency integration may be done exactly using the residue theorem. Indeed,
-, (2

there are 3 poles: — ± ii/p  , and = w -\- it/ k — p and the contour of integra­

tion can be considered as a piece of the real-axis and a lower half-plane semi-circle 

of radius R  -t-oo. After the inner frequency V'-integration the result in the leading 

order of external frequency u) is

G{k)C{k) D { p ) [ k , ^  -  ]&}Ic) r  ' L - j p k - p  IP “ J

The problem of dealing with two noises may be considerably simplified by dealing 

with a single more general noise first and then reproducing the result for two noises 

taken together (the noise enters only linearly here).

The above integral may be performed exactly in all orders of a small param eter 

k using the following procedure. First we perform a rotation through the angle —cpk: 

p —> Tj,,, p, where (pk is a polar angle of k and =  {{cos (pk,sin <pk}, { —sin <pk, cos <pk}} 

is a two-dimensional rotation m atrix. The second transform ation is the symmetriza- 

tion of the integration region, tha t is, translation p —> p -|- ëi k/2,  where êi =  {1,0}. 

After these transform ations the resulting integral in polar coordinates p =  {p, rp} will 
be

_  TL 
2DG{k)C{k)k'^ f  {p‘̂ + k p c o s i P + ^ )  3 . 2 ,

(27t)2 i/2 4.V (2p2 4- ^ ^

(?■  Ç -  Arpcl, ^ } { Ç + fcpcL V.+ “ è} ‘'4’'''̂  + (3?)
with the new integration region over p such that: A <  |p4- 6/2 ei | <  Aj and A < 

Ip — 6/2 Cl I <  Aj. Note that the result is isotropic, i.e., (^^-independent, as one might 

expect for an isotropic original problem. Now we represent this double integral in the 

form of a repeated integral. Denote the integrand by F{k,p, ip).  Then we have

s i - ,  #  s "  f ( t , p , ÿ )  d p +
p— I cog ip+ y A * -^



3.1. ONE-LOOP RG P RE D IC TIO N S  78

  - co»V’+ \ / a 5- ^  «n* V»
+ S ^ l d , l , S  .  V dp, (3,8)

p =  — Y COS V'H- w  ^  a in ^  ^

which, after a change of the integration variable ip ^  tt — ip in the second integral, 

becomes

/ f  , ,  y-1 co.v+v/Â^ 4r
/   ̂ !-------- :----------  X•/V’—— f P~2 CO: ̂ 4- y  — L  gjn̂

X {F (fc,p ,'0 ) +  F ( 6 , p ,7t -  V»)} dp- (3.9)

After these transformations have been done, the Taylor expansion of the integrand 

can be termwise integrated in p, the result expanded in k again, and the result of 

this integrated in ip, giving the answer. This may be easily done, for example, using 

available symbolic algebra software [89]. The result gives us the following correction 
to the inverse propagator

W ------------- 3 2 . ( 2  +  p)

=  +  ( 3 1 ° )

the final approximation being done in the f  A -+ 0— limit. This is the required answer 

which generates the lowest-order viscosity correction

As we proposed before, here we have already recovered the result for both noises 
taken together.

3.1.4 C orrection to  th e  Force Self-C orrelation Function

In a way similar to th a t used in the case of the inverse propagator correction, we will 

obtain here the expression for the force self-correlation function correction. Consider 

the lowest-order bare force correction in Fourier space

=  2 ( & p  % [* '^ 3  G ( p ) / ( p ) G ( t - P ) / ( t - p ) # '  (3.12)
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After applying W ick’s theorem it is possible to show that it generates the following 

correlation function S f ( k ) S f ( k ’)

f(6  +  6')
2(27t)6 .p^  I  \  ^  \  |G(p)r l G ( i - p ) f  D ( p ) D ( k - p ) d p .  (3.13)

After exact frequency integration, the result to lowest-order in u> will be

27t 5(6 +  6')

K  F - p1  J

2

X

{ D p - y - \ - T p A  (d |6 -^  6-p|')
^   ^ d p - h O ( w ) . (3.14)

Applying the transformations from the previous Section, one gets

2 tt 6 { k k ’) k^  f  p^  s i n ^  IpI.

I
{

{p^ + k p  cos Ip ^  p^ — k p  cos "tp ^

-  (2p: +  f  ) 

■ }■
[ 6 ^ \ “ 3 /  )t2'

D  ( -j- kpcos  Vi + j 4 -  T  I p ^  4 -  kpcos  ip +  ~

D  ( p^ — 6 p cos Ip 4-
_ jt

e '
4- T  f p^ — kpcos  i/r 4- — ) } dp dip 0(w ). (3.15)

In the limit 5A —> 0—, the Taylor expansion and termwise integration give

7r6“ 5(6 +  6') ( D A - 2 " « - ^ T ) '
A

5A-kO (6",w ,5A").

This leads to the following corrections to the force amplitudes (y ^  —2)

(3.16)

(3.17)

3.1.5 N onlinear C oupling (N ondim ensionalization)

Consider the problem containing only the nontherm al noise first. Let us apply the fol­

lowing nondimensionalization transform ation to our dimensional problem (3.1),(3.4)

x - k X x ,  6 ^  , t - ^ T t ,  (  W ( , Ip ^  Pip,  f { x , t )  ^  F  f { x , t ) ,  (3.18)
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with quantities X,  T, W, P, F  carrying the appropriate dimensions. Choosing rescaling 
coefficients

, W  ^  D i T i  X i - \  F =  '  (3.19)1/

will put our dimensional problem (3.1),(3.4) into a nondimensional form

C =  —Alp,  and 

f ( . p ) / M  =  2 (27t)" |p1-»+: S(p + , ) .  (3.20)

where we have introduced the scale-dependent nondimensional coupling constant

D
g( X )  =  — (3. 21)

As may be seen, we have succeeded via the nondimensionalization (3.18) and (3.19)

in reducing the number of determining param eters from three X ,  u, D  to one g in the

problem without therm al noise. Introduction of the therm al noise will lead to another 
nondimensional param eter, one which may be expressed, for example, as

“  £) X«+2 > (3.22)

or as yet another (therm al) coupling constant

T
yr(A ') =  — , such that: gr = g h. (3.23)

As a scale of length in the following we will use X  = 1/A.

3.1.6 D ifferential R ecursive R elations

Now one can imagine th a t the scale-elimination procedure is done recursively an 

infinite number of times. This will lead to the following differential recursive relations 

obtained from the infinitesimal corrections (3.11), (3.17)

Slog T  _  g {I + h) 2

Slog A 167T h ’

^  =  (3.24)
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The closed system may be obtained in term s of nondimensional param eters g, h

Slog g 3 g
Slog A 32%

Slog h y (1 +  hŸ

or in terms of g,gr

Slog A 16% 

Slog g 3

{y - 2 h )  -  y -  2,

+ y +  2, (3.25)

Slog A 32%
Slog gr  1 (^ +  g r f  3

{y 9 — 2 y r)  — 2/ — 2,

{ y g - 2 g T ) .  (3.26)Slog A 16% gr  32%

Now we will proceed to study the properties of the solutions of this system. We are 

especially interested in the stable fixed-points, which, following the lines of the general 

RG idea [46], are associated with some physically meaningful states of  the system.

The dynamics of {g ,gr}  in phase-space for all A G [0, Aj] will be specified com­

pletely by fixing the initial conditions: y(Aj) =  go, gr iA f )  =  A(Aj) =  0. The last 

condition simply signifies tha t in the original system bare therm al noise was absent; it 

is completely generated in the course of shell-elimination. As was noted before, large- 

scale (A —» 0+) properties are expected to  be universal in all “normal turbulent” 

situations, that is, not to depend on the initial data  (yojt'o) and to be determined by 

the properties of (3.3), (3.4) alone.

3.1.7 Logarithm ic T heory

Note tha t in the above derivation the case y =  —2 is somewhat special and requires 

separate consideration. If y =  —2 then one needs to consider only one (thermal) 

input noise, and the force amplitude and viscosity corrections may be readily written 

down using (3.11) and (3.17)

*3’ = - î £ ^ .  (337)

from which the relations of the fluctuation-dissipation type [16, 18] may be derived

dlog T  dlog u g-r
dlog A dlog A 16% (3.28)
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The resulting equation for the therm al coupling in this case is

dlog gr  _  g r  
dlog A 8%

with the exact solution

(3.29)

,T(A ) =  (3.30)
90 A.

Note that the same results (3.29) and (3.30) could have been obtained by om itting 

the first equation and by formally inserting g = 0 in (3.26).

We see tha t as A —+ 0+ the coupling behaves as g r{^ )  (x Sir/{—log (A /A j)),

which verifies the fact th a t the truncation of the diagram m atic series (with effective 

expansion param eter gr  in this case) was done legitim ately because the expansion 

param eter is as small as necessary. The solution in term s of RG viscosity also follows

A \   ̂ /  , A \
KA) =  x/o ( l  -  £ '  as A ^ 0  +  . (3.31)

It should be noted that in the therm al equilibrium case the bare viscosity uq 

and initial coupling go remain in the results, which signifies tha t the amplitudes thus 

obtained in front of logarithmic dependencies are nonuni versai. This is what we would 

to expect in the therm al equilibrium case, however, because this situation simulates 

the noise made by the random molecular motion coming from the smallest scales 

(recall that the therm al noise am plitude is oc 6*). For discussion of this phenomenon, 

see [16, 18].

3.1.8 Trivial Case

In this case, as we will see shortly, nontherm al noise, although formally present as a 

phase-space variable, is irrelevant in the Wilson and Ma sense [88, 46]; tha t is, the 

fixed-point behavior will be totally unchanged if it was removed from consideration.

We claim that the trivial fixed point of system (3.26) is the only stable fixed point 

in the region y < —2. The fact that (3.26) has a trivial fixed point is obvious. The 

stability of this fixed point may be also verified. Asymptotically, in the neighborhood 

of this fixed point we assume that solutions g,gr  0+  as A —> 0-I-. Then from
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the first equation in (3.26) it immediately follows that g oc (A /A j)“*'“ ^, which is 

consistent with the assumption y —» 0+  as A —> 0+ if y < —2, which is the case. The 

asym ptotic solution for yy coincides with the one already obtained for the y =  ~2  

case, namely gj- oc S t:  j{ —log (A /A j)), as is easy to see. From this we conclude that 

y "C 5 t  as A 0+, and in this sense y < —2 case is similar to the y =  —2 case 
considered before.

3.1.9 N ontrivial Case and e-Expansion

Assume now that y =  — 2 -f e, where e 1 is a sufficiently small param eter. Then 

the following stable nontrivial fixed point of the system (3.25) may be found in the 
form of a series in e

'*• =  5 +  f  +  O(e^), g- = ^  + 0{e^).  (3.32)

Indeed, assume that some small perturbation A =  A* +  A', y =  y* +  y' arises. Then 

the linearized equation for perturbation in the leading order in e is

=  ,3 3 3 .
dlog A 2 V 7  a io g A  ÿ ' r  ' " J

solution of which is obviously decaying as A — 0+.

Having in mind the truncation of the perturbation diagrammatic series, we now 

require e to be as small as necessary for this truncation to be legitimate: higher- 

order diagrams are to be small compared with first-loop diagrams already considered. 

M athematically this question is very subtle, and it is also believed that solutions 

arising in the form of power series in e may have a zero radius of convergence, i.e. 

will be at most asymptotic expansions valid in the limit e —» 0-|-. There exists a great 

hope though, supported by extensive numerical evidence [11, 95] (in one dimension), 

[9] (in two dimensions), and [59] (in three dimensions), that results based on the 

lowest-order e-expansion give predictions very close to the unknown exact results 

valid, possibly, for finitely large e > 0 as well. This does not follow from the above

derivations, however, and may be considered as a working hypothesis, the validity of

which is to be verified in each particular case via accurate comparisons of the resulting
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predictions with the numerical solution. This assumption, first proposed in [93], is 

being exploited throughout the thesis.

Now the asym ptotic behavior of the RG-viscosity may be found in the neighbor­

hood of the fixed point g* = 327re/9, h* =  1/2 by substituting it into (3.24) giving 

the scaling law i/(A) oc To get the am plitude factor we use the definition of

the coupling constant (3.21); this results in

Note that according to [93], if we completely ignore the therm al noise from the very 

beginning, which may be reproduced, for example, from (3.24) by setting /i =  0; then 

the RG-viscosity solution is

^  ^ (=>-35)

which has the same scaling law but a different am plitude factor (difference is in 

the multiplicative factor (3/2)^/^ % 1.145). Indeed, we observe tha t considering the 

therm al noise renormalization leads to changed amplitudes in the fixed point. This 

proves that the therm al noise is a relevant variable in the two-dimensional case. As 

we observed, however, scaling laws remain unchanged. Moreover, we conclude that 

in all the nontrivial situations {y > —2) there is no dependence on the ultra-violet 

cutoff param eters i/q, go, which illustrates the universality of these results.

3.1.10 Energy Spectrum

The RG formulation considered above differs from the one originally proposed by Ma 

[46] in the fact tha t rescaling relations are absent, therefore allowing the region of 

Fourier space on which the RG equation is defined to shrink to zero. This “simplified” 

version of RG was first proposed by Forster, Nelson, and Stephen [16], and then used 

by Fournier and Frisch in [18]; it not only gave the same fixed points as its rescaled 

counterpart but also allowed the energy exponents and universal amplitudes to be 

calculated, which was finally done in complete and self-consistent form in [93]. Some 

alternative ways to get the same results may be found in [27]. For some background
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m aterial on the correspondence between flows with a large-scale and a power-law 

forces, see [51].

Consider now only the case 0 < e 1 In the previous Sections we have removed 

all the Fourier modes with wavevector k such th a t A < Ic < Aj. Now, assume that 

the “external” wavenumber k is fixed and sufficiently small lying within the universal 

range, and let us remove all the modes with wavenumber higher than this wavenumber 

k. This may be formally achieved by taking the limit A ^  fc + 0 in the preceding 
results.

Also, as an auxiliary necessary result, let us obtain the renormalization of the 

therm al noise amplitude T. Near the fixed point (3.32) let us put y(A) and g(A) 

equal to their asym ptotic laws (3.32) and (3.34). Then from the first recursive relation 
(3.24) one may get

dlog T
oc —e.

dlog A "

which gives the scaling law T(A) oc B  A~*. The limiting amplitude B  may be found 

from the algebraic relation gr = g h taken near the fixed point. This leads to the 

following asym ptotic relation

T ( A ) o c :^ A - '.  (3.37)

Introduce the Fourier space two-point vorticity correlation function C{k,uj), de­
fined by

C{k,w)  = ^  (3,38)

Near the fixed point (3.32), in the lowest order in the e-expansion (or, in the limiting 

coupling-expansion) one gets
3 Do

C{k,u}) = ----------?------Ï--------- . (3.39)
‘- h

The steady-state energy spectrum, which is normalized by the condition /  E{k)dk  = 

i?tot-total energy, may be found from this correlation function as (see [54, 58, 16, 93])

=  k ( h f
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which, with the use of (3.39) reduces exactly to

Note the difference between the above result and the result based on the Yakhot- 

Orszag theory [93]: when formally applied to two dimensions without considering 

therm al noise renormalization, it will give the RG energy spectrum  am plitude (2/3)^^^ 

times smaller. This demonstrates once again that the therm al noise is a relevant 
variable in exactly two dimensions.

3.1.11 R G -B ased  E nstrophy Transfer Function

The aim of the following two Sections is to  present a way of employing the results 

obtained above for com putation of the energy (enstrophy) transfer function, thus 

“resolving” the arising closure problem via considering a small coupling limit. As 

we have seen from the above results, small coupling turns out to be a self-consistent 

assumption for the RG Navier-Stokes equation in the cases when —oo < e <C 1. 

But practically interesting cases of “strong” turbulence correspond to finitely large 

e > 0. Therefore, the direct application of the small coupling results for finitely large 

e > 0 may not be rigorously justified. Despite this, we will employ the small coupling 

assumption for the Kolmogorov e =  4 case, thus making the closure of moments 

equations. It is assumed, however, tha t a small-coupling condition in such cases is 
not associated with asymptotically small e.

Let us enumerate again what has been achieved in the previous Sections. In accor­

dance with the tradition in the existing turbulence phenomenology, we will express all 

the results in the time-wavenumber domain. After all the wavenumbers higher than 

some sufficiently small k were removed, the renormalized equation of motion and the 
definition of the force took the form

+ ^  f {k , i ) - \ -Xr  J ^ 9{k ,p } C{ p , t )C{k -p , t ) dp - \ -0 {X l ) ,

where:
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f { k ,  t) f { k \  t) = 2 {2ir f  Dr(k) 6{k-\-  p) 6{t -  t'),

Dr{k) = = u r ( k ) k \  u^{k) =  ( ^ ) ’ k - i .  (3.42)

Here we have introduced the accounting nondimensional param eter A, — 1 which

will be used to obtain the corresponding power of the coupling constant, arising after 

nondimensionalization of (3.42), which is assumed to be small. In what follows we 

will preserve equations in the dimensional form.

Let us outline briefly what we are planning to present in this Section. Using the 

assumption of small large-scale (renormalized) coupling we will close up the equation 

for the two-point covariance in Fourier space, considering perturbation theory in this 

coupling constant. The expression for the enstrophy transfer function will be derived 
in the lowest order in this coupling.

To proceed, first, we develop the perturbation theory in the small coupling limit 

in an analogous way to [90, 13]. Seek the fluctuating solution in the following form

( ( & , 0  =  (°(&, t) +  A. C'{k, t) +  C(k, t) +  0(AJ).  (3.43)

Then, from the renormalized equation of motion (3.42), equating the same powers of 
param eter A ,̂ we obtain

Ft +
e { k , t )  = f i k , t ) ,

+  =  J^9{k,p) C°(p,t) C{k ~ p,t) dp,

+  £  ( H i t )  = J^g(k,p)  { ( ' ( p , t ) e ( k  -  p , t )  + C { p , t ) C { k  -  p , t ) )  dp , (3M)

etc..

with the first two resulting solutions in the limit t —» -|-oo (to completely “forget” 

dependence on initial data)

J g = 0

C ( k , t ) =  f ‘ f  g { l ^ ( ‘‘i p , s ) C ( k - p , 3 ) d p e ‘'‘ t - ‘)ds.  (3.45)
J s =0 J p
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Now consider the equation for the Fourier-space two-point vorticity correlation 

function. From the RG equation of motion (3.42) one can derive

( ^  + ^  + zi-i) =  f { k , t ) a i , t ' )  + / ( ïv ô ë Â i )  + (3 .4 6 )

+A, p) «P, 0 < ( ï - p. « ) « * ' . ( ' )+ s ( ï ' .p )  «? ,< ')< (*- p .  <')«£',«)} dp-

Under the assumptions of stationarity in tim e and homogeneity in space, one has [54]

d
C ( k , t ) ( { k ' , t - )  = l 2 i , Ÿ W ( k , \ t - t ' \ ) S { k  +  k ' ) ,  and ^ + ^ = 0 .  (3.47)

A note about this stationarity property in the two-dimensional case should be made. 

In fact, for the inverse cascade situation, which is our primary interest here, taking 

the limit t —» -j-oo will create a  condensate state  at A: =  0 due to the flow of energy 

towards small wavenumbers (see [74, 75]). This condensate state is known to alter 

the properties of the inertial range owing to direct interactions with the mode A: =  0. 

Therefore, stationarity in the two-dimensional case has some special features. We will 

understand stationarity in the  sense tha t our system is observed and measured over 

very large but yet finite times, thus avoiding the need to deal with a condensate. 

Using the lowest-order solution one can derive

C°(A, t) f )  =  2 (27t)2 Dr{k) 6 [ k ^  k') e-"" (3.48)

From this, in the limit t -f oo the expression for the equal-time lowest-order cor­

relation function is

c%k, t) (0 (P , t) = 2 (27t)2 Dr{k) s [ k  + P )  (3.49)

Let us introduce expressions for the enstrophy and the energy per-scalar-mode spectra 
respectively:

^  |C (£ 0 | > (3.50)

They are normalized by the conditions Q{k)dk = Sltoi and E{k )d k  =  Etot- 
Using them  one obtains

t )  c ( P ,  t )  =  n \ k )  « (it +  k ' ) . (3.51)
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From the nonlinear term  in (3.46) we can introduce the equal-time covariance 

transfer function. As is easy to  see, the first nonvanishing term  in the series in for 

it is given by

T(k .  k') = 2X1 j^g(k ,  f )

+C“( P . 1 ) C * ( * - P . ‘ ) 0 ’( Ï ' . ‘ ) +  C’ (p . f )C“( £ - p , ( ) f " ( f c ' , ( ) }  dp. (3.52)

Note that in the equal-time case the terms in (3.46) become real-valued and all the 

fc'-terms are equal to the corresponding A:-terms, simplifying the resulting expression.

As one may see from the previous result, the com putation of the lowest-order 

transfer function reduces to the computation of the triple correlation functions of the 
form

C”(p .t)C“(*! -P , i)C'(fc ' .<)-  (3.53)

After substituting for and using W ick’s theorem together with the above formulas

(3.48) and (3.51), after some algebra, one derives tha t this triple correlation function 

(3.53) in the limit t —* +oo is equal to 
2(27t)^

—^  n°(p) n°( t - p | ) f ( t  -  P ) { g { - k ,  - p )  + g { - k , p  -  t ) j  0  (&,p, t  -  p|) ,

where we denoted 0  Â:, p, |fc — =  ------  (-3.54)
I'k-i- i'p + ^\k-p\

The quantity 0  thus defined has the dimension of tim e and is called eddy-relaxation 

time in the closure theories [58]. W ithout repeating similar calculations one obtains 

the other two triple correlation functions in (3.52) on the basis of simultaneous change: 

p k ' , k —> k' p, k' k — p made in (3.53), (3.54) once and twice respectively.

Using these results we obtain the following expression for the lowest-order vorticity 

correlation function transfer:

T {k ,P )  = 2{2TryS{k + P)  f  X
Ip A: p  A: — ^

X {n°(p) fi°( fc -  ^ )  A: [p(fc, p) + g(k,  k -  p ) ^ +

4 - n ° ( A :)  n ° ( p )  k - p \ ^  -  P ,  t )  -I- g (&  -  p ,  4-

-|-n°(A:)n°(|t -  pj)p [ g { p , p - k ) + g { p , k ) ] } .  (3.55)
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Now one can write down the enstrophy equation following from (3.46) as:

2uk n{k)  -  +  T(k) ,  (3.56)
7T

where the enstrophy transfer function T  is introduced and after the expansion of the 

geometrical factors, g may be presented in the form

1 0  (fc,p, 1 ^ -
X

X i k

+p

+  | ^ - P |  S2°(<:)!2“(p)+

(3.57)

3.1.12 K raichnan’s T w o-P aram etric E ddy-V iscosity

Let us follow [39], and introduce the notion of effective eddy-viscosity. For this pur­

pose, we choose some interm ediate wavenumber kc and split up the transfer function 
discussed above into two parts as

v/here

T { k ) ^ T < ( k , k , )  + T>{k,k, ) ,

T^{k ,kc)  = /  T { k , p , ^ d p d q ,
JA

(3.58)

(3.59)

and the region of integration À includes only p and q such that or is >  fcc, and 

q ~  k — p. We are using the standard notation T { k , p , ^  [39] for the integrand in
(3.57).

Now we define the two-parametric eddy-viscosity (TPEV ), taken in the lowest 

order in e-expansion, as

r>( t ,&c)u{k, kc) =
2k^n%k) ' (3.60)
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These two-parametric quantities are thus fully defined and may be reduced to 

simpler quadratures and com puted numerically, as has been first done on the basis 

of Test-Field Model (TFM ) closure in [39], and, more recently, in [78] on the basis of 

RG. We will return  to these results several more times in the following Sections and 

elaborate on some of the details of the transfer calculation in the last Chapter of the 

thesis. Let us just mention one principal result here.

The leading-order in A; —+ 0-f lim it of the effective eddy-viscosity in the Kolmog­

orov case of e =  4 may be expressed through the RG viscosity as (for details, see 
Appendix B)

t^(0,A:c) =  (3.61)

This result requires a special note. It means that the eddy-viscosity in 2D becomes 

negative in the lim it A; —* 0-f-, corresponding to the flow of energy to the large scales 

(inverse energy cascade). It also shows the im portant differences between the RG 

viscosity and the two-param etric one. The RG-based viscosity is a  positive quantity 

which is unable to  account for the inverse energy cascade, having the physical mean­

ing of the response of the Navier-Stokes system to the finite band of wavenumbers 

elimination. Namely the two-param etric eddy-viscosity has the physical meaning of 
turbulent viscosity in two dimensions.

Eddy-viscosity may be expressed through the universal function H{kjkc)  as fol­
lows:

v'(k,kc) = u{0 , kc)H{~) .  (3.62)

As we will see in what follows, this sign-changing function tends to  1.8 as A: ^  k^ and 

to —1 as A; —> 0, crossing the k/kc-axis  at k/k^ = 0.82. Such a behavior agrees very 

well with Kraichnan’s conclusions based on the TFM  closure [38].
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3.2 Direct Numerical Simulation (DNS) Tests Of 

Eddy Viscosity

It is well known that the existence of inviscid invariants /  of (3.1) results in the

flux of energy towards the largest spatial scales. The presence of this inverse cascade 

complicates the large-scale description of 2D flows and requires a refinement of the 

classical hydrodynamic notion of “eddy viscosity.” The concept of eddy viscosity is 

well defined for 3D turbulent flows, where energy cascades towards the smallest flow 

scales where it is dissipated. To achieve an adequate coarse-grained description of 

3D flow, one can introduce an increased “effective” dissipation at large scales which 

accounts for the unresolved dissipation.

In 2D flows, the inverse flux of energy at large scales and the enstrophy dissipa­

tion at small scales make the eddy viscosity concept more subtle. It was argued by 

Kraichnan [39] tha t, in Fourier space, a 2D eddy viscosity should include two par­

ameters: a cutoff wave number kc (which essentially determines the size of the coarse 

grain), and the wave num ber of a given mode, k. The two-parameter eddy viscosity 

(TPEV), denoted by u{k\kc), describes the energy exchange between a given resolved 

vorticity mode with the wave number k and all sub-grid, or unresolved, modes with 

k > kc] it accounts correctly for the energy and enstrophy fluxes between resolved and 

unresolved scales. The TPEV  is derived from the evolution equation for the spectral 
enstrophy density ü { k , t )  =  ^ ( ( k , t ) ( ( —k ,f)

(dt + 2uk^) 0(fc, t) = T„(k, t). (3.63)

Here, the enstrophy transfer function Tn(k , t )  is given by

Tn(k, t) = —  ^ ^ C ( P ,  OC(q, t )C{~K t) +  c.c., (3.64)

where c.c. stands for the complex conjugate term . Assuming tha t the system is in 

a statistical steady sta te  and extending integration in (3.64) only over all triangles 

(k, p, q) th a t |A: — p | < g < f c - | - p  and p or ç is greater than kc, one defines the
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two-parametric transfer Tn{k\kc) and TPEV [39]:

"('I*') = - ^ y

In a wide class of quasi-normal approximations [49], the two-param etric transfer 

Tn{k\kc) in two dimensions is given by

T n { k \ k c )  ^  J  ®-*:.p.q(P^ -  9^) 'sin a
P 9

L2 _  ^2 1.2 _  2
’  s i ( q ) n ( , k )  +  ^ - ^ n ( p ) ç t ( k ) dpdg, (3.66)

where 0_k,p,g is the triad relaxation time. Here, the angle a  is formed by the vectors 

p  and q, and / denotes integration over the area defined above (3.65).

The main difference between various spectral closure models is in the specification 

of 0-fc,p,q- In [39], T n { k \ k c )  was evaluated using TFM. It was found th a t TPEV  is 

a sign-changing function of the form u { k \ k c )  —  W { 0 \ k c ) \ N { k / k c ) ,  with z/(0|A:c) < 0, 

JV’(O) =  —1, and N{1)  % 1.8. The derivation of 0_k,p,g using the RG theory was 

given in [13] and adapted for 2D isotropic turbulence in [78]. In the present work, 

we compare v [ k \ k c )  for the inverse energy cascade regime calculated from DNS data 

with those predicted by TFM  and the RG theory.
We solve equation (3.1) numerically in a periodic box of the size 2% x 2w using 512^ 

Fourier modes. The numerical scheme involves a Fourier-Galerkin pseudo-spectral 

spatial approximation with the implicit Adams-type second order stiffly stable time- 

stepping scheme [33]. In order to increase the effective inertial range, mode-selective 

hyperviscosity [44] of the form t'(fc) — y&(t) 4- t/s(k) — + Ask^^  has been

introduced in the vorticity equation (3.1) instead of the molecular viscosity. The 

constant coefficients and A s  have been selected empirically so as to minimize the 

distortion of the energy inertial subrange.

To simulate the inverse energy cascade, high wave num ber forcing

f { k , t )  =  ^  +  S k . k f  +  S k , k f + i )  erg

is introduced in the vorticity equation; here, r  is the tim e-step, A f  is the forcing 

amplitude, and the random variable erg is a Gaussian random function with unit
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variance. It was assumed th a t no correlation in tim e exists, in such a way simulating 

the white-noise property of the force. The results are not sensitive to  initial vorticity 

field distributions, including the extreme case of the zero field. A series of numerical 

experiments with various k j  and other flow param eters have been performed. Here 

we shall report only the results with fc/ =  98 since they gave the broadest inertial 

range. O ther param eters used in these simulations were A j  — 0.03244, Ai, =  0.5, 

and A s  =  0.95 x 10“^ .̂ The value of A s  chosen is somewhat high, to ensure efficient 

enstrophy dissipation and to eliminate the need for the de-aliasing.

In Fig. 3.1 we plot the total energy Etot(i) = So°° 0,{k, t ) /k^  dk and the enstrophy 

ntot(i) =  D {k , t )dk  as functions of tim e. In Fig. 3.1 one can see that the 

energy grows with tim e and eventually tends to reach a steady state. However, the 

drift towards the energy steady state is significantly slower than towards th a t of the 

enstrophy. Defining the rms velocity as |u(k)|^ and the characteristic

turnover tim e of the largest eddies as Tt„ =  2 ir /F ^ ,, we infer from Fig. 3.1 that a 

steady state  for the total enstrophy was achieved after about 1.2 T(„, while about 5rtu 

were required to atta in  a steady state for the total energy. Note however, tha t all the 

modes with k > 5 have reached the steady state  after t % 2rtu, and only the largest 

modes were still developing. The results presented below pertain to  the integration 

time t < 10'* before the energy saturates at low wavenumbers.

In Fig. 3.2 we plot the time-averaged energy spectrum  obtained after about 5 Ttu- 

The inertial range E  cx extends over more than a decade in wave num ber space. 

Mean square line-fitting over the interval k E (12, 50) gives the scaling exponent close 

to the Kolmogorov value of 5/3. Note th a t a good agreement with the Kolmogorov 

scaling in the energy sub-range has been reported recently in [48] for 256^ simulations 

and in [74, 75] for very high resolution simulations with 2048^ Fourier modes. In 

Fig. 3.2 we also plot a compensated energy spectrum , k^^^ E{k),  where e is the

energy transfer rate. The value of the Kolmogorov constant calculated from this data  

is about Ck — 6.2, in reasonable agreement with the value 5.8 calculated from DNS 

in [47] using the 256^ resolution and 6.69 obtained analytically in [38] on the basis of 

TFM.
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In Fig. 3.3 we plot the dependent energy and enstrophy flux functions defined 

as Ilg (k) =  /o T n (n )n “  ̂dn and I ln ( t)  — Tn(n)dn, respectively. As expected, an 

inverse energy cascade with the constant energy transfer rate e develops for k < kf  = 

98, see Fig. 3.3. For k > k f ,  IIg(A;) and Iln(fc) both quickly fall to zero, due to 

the strong dissipation at wave numbers adjacent to kf.  In Fig. 3.3 we see tha t the 

flux of enstrophy in the energy sub-range A: < À:/ is zero. A strong enstrophy flux 

is observed for k > kf ,  until the enstrophy dissipation takes over and suppresses the 

flux of enstrophy into even smaller scales. The resolution employed in this study was 

insufficient to detect a well-defined enstrophy transfer range. The results plotted in 

Fig. 3.3 also indicate that the numerical scheme used conserves both to ta l energy 

and enstrophy, since Iln(O) =  Iln(oo) =  0 and Ilg(O) =  I I b ( o o )  = 0.

By computing the third-order vorticity correlation function in (3.64) we have cal­

culated k- and Azg-dependent enstrophy transfer function Tn(A:jA;c) employed in (3.65) 

extending the integration only over those p and q that either p > kc o t  q > k^. We 
set kc =  50, well inside the energy inertial subrange.

The DNS-inferred normalized TPEV  [ viz., N{klkc)  =  f/(A;|A:c)/|i/(0|A;c)|] is plotted 
in Fig. 3.4, along with the TFM -based [39] and the RG-based [78] analytical predic­

tions. The agreement between the DNS-based results and the TFM  and RG theories 

is very good over the entire energy transfer range, up to the wave numbers close to 

kc, where the DNS data  saturates, while TFM  and RG curves exhibit sharp cusp. 

The physics leading to this cusp is as follows. As k approaches kc, more elongated 

triads with either p or q kc become involved in the energy exchange between the 

mode k and the sub-grid scale modes. The contribution of these triads results in the 

cusp behavior of the theoretical TPEV . However, in finite box DNS with large-scale 

energy removal, the energy of small wave num ber modes is reduced (see Fig. 3.2), 

which implies tha t instead of the  sharp growth, the TPEV  should saturate  at A: —» kc. 

To illustrate and quantify this explanation, we recalculated the RG-based TPEV  with 

the enstrophy spectrum in (3.66) corrected at A: < 5 according to  Fig. 3.2. In Fig. 

3.5, we compare the DNS- and the RG-based TPEV  in their actual values, whereas 

the RG calculations were based upon the value of e found from DNS. The agreement
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between the two is very good. We have also calculated TPEV  for = 35,45 and 

55 and found th a t the DNS-inferred TPEV  scales with in full agreement with

the Kolmogorov and the Richardson laws. At all values of kc tested an equally good 

agreement between the DNS data  and the RG predictions was observed.

The good agreement dem onstrated in Figs. 3.4 and 3.5 provides an indirect vali­

dation of the TFM  and the RG results for isotropic 2D turbulence.
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Figure 3.1: Evolution of the total energy E (k)  (dotted  line) and enstrophy Q(k) (solid 

line) towards the steady state. Dashed line denotes the to tal energy with the first six 

modes excluded.
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Figure 3.2: Energy spectrum  E{k)  (solid line) and compensated energy spectrum  
(dotted line).
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Figure 3.3; The energy flux I lg ( t )  (solid line) and the enstrophy flux rin(A:) (dotted 
line).
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Figure 3.4: Normalized two-parametric eddy viscosity from DNS (dots), from TFM 
(dashed line), and from RG (solid line).
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Figure 3.5: Actual two-param etric eddy viscosity from DNS (dots) and from RG 

(solid line). In RG calculations, the energy spectrum  for fc < 5 was corrected in 

accordance with the DNS results, Fig. 3.2.



Chapter 4 

Anisotropic Two-Dimensional 
System; Turbulence on a ,3-Plane

Turbulent flows subjected to a differential rotation develop spectral anisotropy. Un­

derstanding and modeling of such flows present a m ajor theoretical and experimental 

challenge, mainly because of their im portance in geophysics, astrophysics and plasma 

physics. Here we study the simplest two-dimensional system of this kind which de­

scribes the flow of a thin layer of a homogeneous fluid on the surface of a rotating 

sphere. Techniques used in Chapter 3 will be applied to this anisotropic system along 

with long-time numerical simulations, thus bringing some new results.

We will study the long-time and large-distance statistical properties of the system 
described by

^  +  +  -C  =  AV'. (4.1)

Equation (4.1) combines features of isotropic 2D turbulence and planetary, or Rossby 

waves, and describes their interaction. The im portance of this equation for under­

standing of the geophysical processes on a planetary scale and its relative simplicity 

have placed it in one of the focal points of theoretical geophysical fluid dynamics, and 

much was learned from this equation. However, its large-scale behavior still remains a 

realm of controversy; its spectral evolution laws have not been well established, while 

the spectral anisotropy and the im portance of nonlinearity have received insufficient

102
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attention in the literature. The relevance of equation (4.1) for geophysical applica­

tions will be explained in Section 4.1, whereas the theoretical and numerical analysis 

for it will be presented in Sections 4.2 and 4.3 respectively.

In the context of the earth ’s atm ospheric turbulence, the experimental evidence 

suggests that the Kolmogorov inverse cascade persists on a variety of scales: from 

500 km down to 100 m (mesoscale) [4, 72]. Similar data  are obtained from the high- 

resolution “SKYHI” general circulation model simulations, see [81, 82]. The range 

of scales larger than 500 km and up to  several thousand of km is called “geostrophic 

turbulence range” [72], to emphasize that in this range the effects of rotation may not 

be neglected and may even be dominant. Currently it is widely accepted tha t in this 

range the energy spectrum  scales as k~^, which fits well the available experimental 

data  (see, for example, [72]). We need to note tha t in the real-life atmospheric 

turbulence the observed energy spectrum  is a result of joint action of several im portant 

effects, such as stratification, surface friction, differential rotation, and others. In this 

Chapter we are only interested in studying the effects of the differential rotation, or 

the /0-effects.

4.1 Geophysical Background

Here we will outline the derivation of equation (4.1) from the basic principles of 

geophysical fluid dynamics as well as some additional relevant issues.

G e o s tro p h ic  M o tio n . Atmospheric and ocean dynamics normally deals with the 

motion of a stratified incompressible fluid on the surface of rotating sphere with or 

without effects of topography. Since the Rossby number e =  U/(2Q L), where U is 

the characteristic large-scale velocity, O-angular velocity, and L-characteristic length 

scale, is small for large-scale motions, a series of approximations for the full equations 

of motion can be constructed [61]. The lowest order in this hierarchy describes the 

so-called geostrophic motion.

In the rotating coordinate frame with angular velocity the three-dimensional



4.1. GEOPHYSICAL BACKGROUND  104

momentum  equations read

~  +  ( u ,V ) u  +  2 [n,u] = - ^  + V $  +  i^Au, (4.2)
ot  p

where $  is the potential of external forces including the centrifugal force. Assume now 

th a t the Ekman num ber E  =  uj{2Q, L^) and the Rossby num ber are small. Estimates 

for the atmosphere give E  % 10“ ^̂  and e % 0.07 if f/ =  1 m jse c  and L — 100 km.  

Nondimensionalizing and neglecting term s relatively small in e and E,  one gets

2 [fî,ir] = - ^  +  V $ .  (4.3)
P

In the spherical coordinates where 6, r  denote longitude, latitude, and radius, this 

equation reads

1 dp
p (—2 Q V sind +  2 fi li; cosO) =

r  cosd d<l>

p2Çîv,sîn0  — —  "ortj —p2Dticos6  — ——— — P 9 -  (4.4)
T Oo Or

A second approximation is to regard as small the thickness of the fluid layer on the 

earth ’s surface: S =  D / L  1, where D  is the average thickness of the layer. Then 

using the smallness of 6 and ^ =  r  — ro -C Tq, where Tq is the earth ’s radius, we obtain

r 1 5p I dp dp

Here is the static density, i.e. that is density if no motion were present at all, 

and /  =  2 fi sinO is the Coriolis parameter. The first two equations in this formula 

constitute the so-called geostrophic approximation. They define geostrophic velocity 

to be functions of the pressure field as uh =  l / ( /p s )  k , V p  , where un  denotes the 

horizontal velocity and k is the Cartesian unit vector in the vertical direction.

Q u a s ig eo s tro p h ic  A p p ro x im a tio n . The system atic expansion in Rossby num­

ber e leading to  the geostrophic approximation in the lowest-order term  may also be 

constructed [61]. The next-order correction, which is called quasigeostrophic approx­

imation^ will be discussed now.
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Consider a plane shallow layer of fluid rotating with the angular velocity D [61]. 

Axes X and y are chosen in the layer’s plane; the axis z  and Q are perpendicular to 

it. The Coriolis param eter is here simply f  = 2f2. The rigid bottom  is defined by the 

surface z = h s ( x , y )  and h ( x , y , t )  denotes elevation of the upper layer boundary at 

the moment t. Then the depth of the fluid is H  ^  h — hs  % D,  where D  gives the 

m ean value of depth. We assume again th a t ^ =  D/Z, <C 1, where L is a horizontal 

length scale of the motion considered.

Performing nondimensionalization of the three-dimensional incompressible invis­

cid Navier-Stokes equations and keeping the same-order in 8 terms, one may arrive 

at the shallow water approximation [61]

du du du dh dv dv dv dh

As is clear, in the absence of rotation ( /  =  0) this system is equivalent to the two- 

dimensional compressible gas dynamics equations, where the height of the fluid layer 

acts as pressure.

Now we nondimensionalize this system again assuming the Rossby num ber e to be 

small. Let H  — D g — h s  Le such tha t t/ is the departure of the free surface from its 

rest level. Seeking solution in the asym ptotic form u — uq4- eu\  +  +  O(e^), and

assuming similar expansions for v,r}, from the 0 (l)-te rm s one may obtain a familiar 

geostrophic approximation: vq = drjofdx, uq =  —drjo/dy. Similarly, the 0(e)-term s 

yield

duo duo duo dj}i dvo dvo dvo dyji
- ^ + u o - ^ + « 0 - â r + “‘> ^ + ' ’“ Sî r +“' = “ s i ' ’

where E  = (L /R)^, R  = y /g D f f .  It can be rew ritten completely in term s of rjo as

^  ^  ^ A) ’'» + ’'s )  =  0 (^-S)

From this we see that despite the fact tha t the total u is a compressible field, its 

geostrophic part uq is incompressible, which allows to introduce the stream-function
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jp = 7}o, leading to

(  d  dtp d  dip d  \   ̂  ̂ ,
+  ( A V - f V ' + % )  =  0. (4.9)

The case of our future interest is R  ^  L, when the free surface is almost rigid.

R o ssb y  W aves. For the case of a linearly changing topography t}b — P y  there ex­
ists an exact solution of (4.9) in the form of normal modes: ip =  Re  e*(*=®+̂  y-wt+a)| 

with the dispersion relation: w =  —/3k/{k^ + P + F).  This solution is called Rossby 

wave (topographic in this context). Note that the sum of two such waves is already 

not an exact solution of the nonlinear equation (4.9) due to the interaction terras. 

At first glance, these waves exhibit “absurd” behavior following from the dispersion 

relation: the short waves are very slow, whereas the long waves are very fast.

/0-P lane. As is shown in [61], the following claim holds: the above-considered plane 

model with a topographic variation is dynamically totally equivalent to the differential 

rotation on the surface o f  the sphere. Indeed, if for some nonzero latitude the local 

tangential plane coordinates on the sphere are x in the east-west (longitudal) direc­

tion, and y in the south-north direction, then a small variation of Coriolis param eter 

can be w ritten as /  =  2ÇtsinO =  /o -l- /Sÿ, /3 = 2D,cos6o/ro. There exists a rigor­

ous derivation of this equivalence between the variation of topography in the plane 

rotating layer and the variation of the Coriolis param eter due to  the rotation on the 
sphere (see [61]).

L in e a r S ta b ility  o f  Z onal F low s on  a  /0 -P lane. Consider the shallow water 

system (4.6) in the /0-plane approximation for F  <C 1-case:

du du  du dp dv dv  dv dp

It is obvious tha t this system allows for exact solutions in the form of zonal currents: 

UQ ^U {y) ,  uo =  0, Po ^  P{y) = P{0) -  f  f { y ' )U { y ' ) d y ’. (4.11)
Jy'^O
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Let us generalize the well-known Rayleigh linear stability condition [15] of the plane- 

parallel flow for the case of nonzero /0-effect. Linearizing the basic equations in the 

neighborhood of the exact solution (4.11), and seeking perturbations in the form of 

normal modes in the x-direction, one can get the following generalization of Rayleigh’s 

equation for the stream-function ip{y):

For example, consider the vertically-periodic case ip{Q) — xjj{2Tr). Then, multiplying 

(4.12) by Tp* and integrating over a period, one gets

r  IV’f  dy = r  |ÿ|= I  -  k A  dy. (4.13)
J y —0 *'y=0 ( W — K U  J

Taking the imaginary part, one obtains (w — Wr -h icJi):

L o  1^1' (c , -  k U p +  ojf

from which it follows tha t i f  there exists u;; ^  0 (=instability), then there exists 

z  E [0, 27t] such that U ' \ z )  = /0. Therefore, the necessary stability condition of the 
zonal flow is U" ^  /3.

4.2 One-Loop RG Approach

Here we will generalize the results already described in detail in Section 3.1 to account 

for the effects of differential rotation considered in the geostrophic approximation on 

a /0-plane, described by (4.1). W ithout unnecessary repetition we will present only 

the final results of applying the one-loop RG-formalism described in Section 3.1.

One can write the statem ent in the Fourier-space as a single nonlinear integral 
equation

Go ^(t, w) (^(t,cu) — f[k ,o j)  — JV(A:, w), where denoted : 

Gô^(k,uj) =  - i  -f +  l'a k^,

1 1
p2 k — p

C{p,'^)C{k -  p,uj -  ip)dpdw. (4.15)
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For simplicity, we omit the therm al part of the force and consider force to be a 

white-noise, Gaussian random  function given by its second-order correlation function

i f{k ,u j) f{k ' ,u j ' ) )  =  2{27t)^ Do k ^ - ^ s { k  4 -k’) 6(w +  w')_ (4.16)

It is possible to dem onstrate th a t the one-loop correction for the propagator is

j p ‘-y(2t )
1 1

„2 i2P k ~ ^  ,
> X

^ G o(t —p ,w - i^ )d p d '^ ,  (4.17)

with the same integration region as in Section 3.1.

Frequency integration can be performed exactly to give 

^AgDo
1̂0

X

ÜJ /3o + ‘"“ p2 -H p — k
(4.18)

The leading-order behavior in k  m ay be found to be exactly equal to  the corresponding 
isotropic one

A - ' - '  «A Go{k, c,).

The one-loop correction to the  force correlation function is

(4.19)

2

Xl D l 6 { k  +  k ' )  f(w + w')
^ [P \k~^  ̂

k — ^  |Go(p,V')|^ |Go(^ —p,w —- )̂j dpdip

with its leading-order term

— S { k  + P)  8{uj + w') k^ SA.

(4.20)

(4.21)

We observe that the one-loop corrections remain unaffected by the /3-term; the (3- 

term  itself does not gain a correction also {does not renormalize). This presents a 

significant difficulty in applying the RG results to the /3-plane equation.
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Thus a formal extension of the results of Section 3.1 would contradict known 

experimental and numerical data  (including our da ta  presented below), since the 

anisotropic term  does alter the large-scale turbulence dynamics.

Here we will only propose several ways to resolve thus issue analytically. First, 

it may turn out th a t the one-loop RG results are insufficient to  describe the effect 

of the ^-term  on large scales. In fact we have calculated the second loops which 

generate corresponding corrections to the inverse propagator and we did observe tha t 

there exists a ^-dependent viscosity correction arising from the second loops. An 

accurate consideration of the two-loop RG, however algebraically complicated, may 

yield correct results. Second, it may happen tha t a RG is not applicable in this 

particular case, at least in the formulation used here. The th ird  possibility m ay be 

that going one step back to the forced-dissipative shallow water equations with a 

varying Coriolis param eter will enrich the problem formulation sufficiently so th a t 

the RG theory may be regularized. We shall consider these objectives for future 

work. At this stage, however, one of the most straightforward and productive tools 

is DNS, the results of which will be presented in the next section.

4.3 Anisotropic Energy Spectrum in /?-Plane Tur­

bulence

The simplest system displaying effects of differential rotation due to  surface sphericity, 

is the /3-plane model for the relative vorticity, described by (4.1). As we have outlined 

above, equation (4.1) may be derived in the so-called quasigeostrophic approxim ation 

to describe the local properties of a thin fluid layer on the surface of the rotating 

sphere for small la titude variations, see e.g. [61, 3]. Here we consider only motions 

with scales L R,  where R  is the so-called Rossby deformation radius [61], so tha t 

in (4.6) the effects of the layer thickness variation are neglected and the flow becomes 

effectively incompressible. We have shown that in the inviscid case (4.1) is known to 

have a class of exact solutions (4.11) in the form of zonal currents determined by an 

arbitrary velocity profile U[y), which simply describes a geostrophic velocity. There
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exists strong experimental evidence th a t the zonal currents are actually observed in 

large-scale oceanic flows, see [60, 85]. The ^-term  in the equation for fluctuations

(4.1) itself does not lead to a corresponding term  in the energy equation, due to 

the fact tha t in the solution of the linearized problem (4.1) only its complex phase 

depends on /3. But this does not mean that the energy spectrum  resulting from

(4.1) will be /3-independent. It is namely the nonlinear term  in (4.1) which makes 

the transform ation of complex phases into complex amplitudes, thus leading to  the 

^-dependence of the energy spectrum . In this section we shall report on some details 

of our numerical studies of this ^-dependence. Some of the results presented here are 

reported in [10, 24].
As is commonly assumed in most geophysical applications, the forcing /  in the 

Fourier space is considered peaked at some high wavenumber A:/, and a zero-mean 

Gaussian white-in-time random function defined by

f { k ,  t) /(Jt', t') = 2ttt} S{k -  k f)6{k  +  *') 6{t -  t'). (4.22)

Thus defined, the force supplies the enstrophy f2(i) with a rate /  j/(fc,t)j dk — rj and 

the energy E{t) with a rate /  |/(fc, t) | (k^ dk = I  = Tffk'j into the system  and in the 

inviscid case E{t)  =  F^(0) + et  and Q{t) =  f2(0) + fft.

Compared to the P = 0 case, the nonzero (3 in (4.1) introduces a new scale into

the system, which on a purely dimensional basis is

ks =  ( f  )  ’ . O'- %  =  (  y )  ’ ■ (4.23)

Superficially considered, the term  i /3 fk  cos 4>({k,t) vanishes as A: oo and the large

k dynamics is not affected by the /3-term. Intuitively, there should be a scale where 

the /3-term becomes im portant and there are noticeable deviations from the isotropic 

dynamics. Therefore, we will define k^ as a wavenumber at which the  modulus of the 

/3-term is of the same order as the corresponding viscous term , which leads to the first 

formula in (4.23). It follows from this definition that for k < kp the solution of (4.1) 

becomes more and more dependent on and (f>. In the isotropic region k ^  kp, the

angular-dependent energy spectrum  which we define as E ( k , t )  — 2% |^(fc, t) / k ,  such
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that /  dk d4>f(2Tr)E(k,t) = E{i)  is the to tal energy, is nearly isotropic: E ( k , t )  % 

E (k , t ) .  Here the  ^-term  by construction has a small effect and one can hope th a t the 

perturbation theory in j3  ̂m ay be developed resulting in the leading-order Kolmogorov 

energy spectrum

E x i k )  = Ck ^^ k~^ (4.24)

and 0(/3^)-corrections to it. Following Rhines [63], one can also assume that in the 

range fc fc/s, the universal turbulence properties do not depend on param eters e, i/ 

but are determ ined by the inverse local eddy size k and the param eter /3 alone. The 

only dimensionally correct combination for the energy spectrum  leads to the Rhines 

energy spectrum

E j i ( k ) ^  Cr J3H~^. (4.25)

Now the second formula in (4.23) for kp may be obtained from the m atching condition 

of (4.24) with (4.25) at Jb =  kp. We will use formulas (4.23) w ith the understanding 

that they give only order of m agnitude estim ates for kp.

There is yet another viscosity-free argument leading to  the length scale determined 

by /3. The effects of turbulence and waves become comparable when eddy turnover 

time of isotropic 2D turbulence is equal to the Rossby wave period; then a transitional 

wave num ber kt(d>) can be defined

kt(<^) = kp cos^/= 0, kp = (ySVe)'^". (4.26)

Contour (4.26) was dubbed “the dumb-bell shape” by Vallis and M altrud [86]. Ac­

cording to [63] and [86], a.s k —* kp, the inverse energy cascade term inates, and the 

energy piles up at the boundary of the dumb-bell shape, which then acts as an im­

penetrable wall for turbulence energy. This would m ean tha t the  nonlinear transfer 

becomes ineffective, and tha t the flows inside the dumb-bell shape should be governed 

by linear dynamics. However, since the dumb-bell shape excludes the axis kj, =  0, 

the inverse cascade can continue in a small vicinity of fci — 0; the resulting struc­

tures correspond to zonal flows. Rhines [63], Vallis and M altrud [86], and Holloway
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[29] note th a t the spectral anisotropy induced by the /3-term can be associated with 

the mechanism of generation of zonal flows. The existence of zonal structures was 

a robust feature of simulations by Rhines [63], Vallis and M altrud [86] and P anetta  

[60].
A numerical solution of (4.1) was performed with the hyperviscosity substituting 

the normal viscosity, tha t is with the change i /A (  —> i/g ( — 1  ̂ ( —1)^+^ A~^(,

where p,g > 0 are integers. The specific choice of p =  7, ç =  6 was prim arily dictated 

by the sufficiently sharp energy removal from both small and large wavenumbers. The 

basic assumption behind this is tha t the  infra-red and long-time statistical properties 

do not depend on the structure of the ultra-violet dissipation range. To exclude the 

nonlocal effects of the infra-red viscosity, the DNS are considered only until the flow 

reaches the largest scales where the infra-red viscosity is im portant. Equation (4.1) 

was numerically solved using the fully de-aliased pseudospectral Fourier m ethod in a 

box {x, y}  G [0, 2ir] x [0, 2tt] with doubly periodic boundary conditions and zero initial 

data. The spatial resolution used was 512^ including de-aliased modes. The time- 

discretization was the same as in [9]. Discrete approxim ation for the white-noise force 

with property (4.22) was: = A f  ak /y /S i  for k G [kf — 2, kf  -f 2] and zero other­

wise, where cr*. is the Gaussian random  num ber with unit variance, St is the tim e step. 

For this particular resolution the forcing wavenumber k f  — 102 was found optim al. 

For a given kj  we have performed a series of DNS with several different kp G [0,150], 

which covers the interval of the unforced modes. But our principal interest here is in 

studying the strongly anisotropic region k ^  kp, thus leading to the choice kp ^  k f .  

Below we will present the results of the longest run corresponding to kp =  140 which 

was performed until the largest scales were saturated and the processes leading to  

the creation of condensate state  [74, 75] appeared. For completeness we shall give 

all the param eter values for this run: St — 1., — 20., i/g — 1. x 10“ ®̂, A f  = 0.1,

and P =  0.3. the integration tim e was approxim ately equal to 175Tt„, where Ttu is 

the largest eddy turn-over tim e, defined as Ttu = 27r/y^2 E[t). For comparison, the 

beginning of the condensation tim e for the corresponding isotropic DNS on this reso­

lution is approximately 5rt„. After the condensation features started to appear, the
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run was interrupted. Such a long integration tim e may be explained by the following 

idealized estim ate. If there is no energy dissipation at the large scales then using 

(4.24) and (4.25), k ^ t )  =  {^C k I^Ÿ""  and kp{t) =  (CR^V(4ê))'^^
give the minimal excited wavenumber depending on tim e for the Kolmogorov and 

Rhines spectrum respectively. From the exam ination of these formulas it follows tha t 

to go from ki = 100 to  =  10 it will take 2154 tim es longer for the Rhines spectrum 

than for the Kolmogorov one.
The measurements of the averaged spectral characteristics are presented in Figs, 

4.1 —4.7. The total energy and enstrophy evolution is presented in Fig. 4.1. One can 

see tha t the energy of the k = 7 and higher modes start to saturate at t % 100 Xtu. 

To display the anisotropy in the resulting spectrum , the local angle averages of the 

energy spectrum over the angle ±7t/12 around (f> = 0 and <̂ =  tt/2  are presented 

in Fig. 4.2 for the two well-separated moments of time. One can observe tha t the 

Rhines spectrum (4.25) in the tt/2-direction and the Kolmogorov spectrum  (4.24) in 

the 4> — 0-direction are established already after the tim e 7 Ttu- Note tha t, contrary to 

the conclusion of [86], it is obvious from Figs. 4.1, 4.2 that there is no impenetrable 

barrier for the energy in the wavenumber space aX k ^  kp in any direction <f>. Energy 

keeps going to  larger and larger scales as tim e grows. Cascade in the directions 

other than  0 =  7t/2 is simply much slower than  in the 7r/2-direction. Figs. 4.3,4.4 

representing the time-averaged energy spectrum  compensated by k^^^ and A® before 

saturation illustrate the fact tha t (4.25) is observed only in the x/2-direction. Due to 

obvious symmetries with respect to  the changes <f> —> —(j) and <f) —> tt — <f> we consider 

region <f> G [0, x/2] only. The approximate values of Kolmogorov and Rhines constants 

following from these Figs are C k  ~  3 and Ca % 0.5, but due to  the large fluctuations 

the accuracy of the C r  calculation is obviously quite low. The smearing observed 

in the x/2-direction may be due to  the finite resolution effect but a careful study 

of the resolution refinement is complicated by a very long integration tim e required 

to obtain (4.25) in DNS. In any case, it is clear tha t the actual anisotropic energy 

spectrum is more complicated than the one observed in [86] and contains directions 

with the Rhines energy spectrum  which to the best of our knowledge has never been
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observed until now. The difficulties in the measurements include a long integration 

tim e and different scaling laws in different directions.

Fig. 4.5 shows the anisotropic energy transfer TB(k|A;c) defined by analogy to 

that in [9]. Here, wavenumber kc was set kc — 50, and TB(k|A:c) describes energy 

transfer from all modes with k > kc io a mode with a given wave num ber k, fc < kc- 

Consistently with the isotropic case, TB(k|fcc) develops the  cusp at A: —> kc. At A: —» 0, 

strong anisotropy prevails, and most of the energy is funneled into the sectors adjacent 

to (f) = ± x /2 . A small but finite Ar* allows for a  weak x-dependency of the  flow field 

m aintaining a nonzero nonlinearity which, in tu rn , sustains the anisotropic transfer. 

Flows with small kx correspond to  nearly one-dimensional, zonal structures, or jets. 

Such structures are clearly seen in an instantaneous snapshot of the vorticity field 

in the physical space at < =  115rtu shown in Fig. 4.5; they have also been a robust 

feature of simulations [86, 60].

An instantaneous realization of the vorticity field corresponding to t =  115.0 

is shown in Fig. 4.6. In agreement with the previous studies [86, 60, 85], the flow is 

composed of nearly one-dimensional zonal (in east-west direction) structures or jets 

[1]. These structures are not ideally one-dimensional but with some turbulent wave­

like perturbations superimposed on them , illustrating the fact th a t this zonal flow 

is stable. These deviations from one-dimensionality create a nonzero nonlinearity 

thereby sustaining the flow of energy towards large scales. Main features of the 

flow can be seen from Fig. 4.7 where the zonally-averaged horizontal component of 

velocity U{y,t)  is shown at various moments of tim e during the run. It is obvious 

that the already anisotropic flow at f — 58.5Tt«, having the profile almost symmetric 

with respect to  the change y —y at t =  175.0 develops into a  noticeably 

non-symmetric profile, which corresponds to sharp and narrow east-flowing jets and 

smooth and wide west-flowing jets. Although profile U{y,t)  is tim e-dependent, y- 

directional motion of jets is rather slow compared with the motion of fluid particles 

inside the jets. Under this condition, the generalization of the Rayleigh inviscid 

stability theorem  for the case of ^  ^  0 [1] locally in tim e states tha t if there are 

no inflection points in the U{y, t )  — Py^/2 ,  then the flow is stable. In the second
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column of Fig. 4.7, the second derivative U y y { y , t )  is presented showing tha t the 

Rayleigh stability condition U y y { y , t )  — P  ^  0  does hold true. Moreover, with time, 

large negative peaks in the  U y y { y ,  t )  develop leaving such a flow linearly stable at later 

times. Until the large-scale drag effect remains small, the num ber of jets diminishes 

in tim e consistently with what was observed in other geophysical simulations [60, 85].

In conclusion, it is useful to highlight the im portance of nonlinearity in the 

barotropic vorticity equation on the  /3-plane. Although the  /3-term does not enter 

the energy and enstrophy equation explicitly, it has a profound effect on the en­

ergy spectrum  and spectral transfer. This effect is solely due to  the nonlinearity of 

equation (4.1) that enables complex interaction between Rossby waves phases and 

vorticity modes amplitudes. As a result, the dumb-bell shape (4.26) does not become 

an impenetrable barrier for turbulence energy. Furtherm ore, inside the dumb-bell 

shape, where the /3-effect is expected to  prevail, the energy spectrum  is determ ined 

by presumably irrelevant param eter e. On the other hand, in the small sectors around 

<f> — ± x /2  outside the dumb-bell shape the jS-effect is supposed to be small while the 

mechanism of anisotropic inverse transfer funnels energy into zonal jets. It was found 

th a t the zonal jets do form, but their spectrum  is determ ined by the presumably 

irrelevant param eter p.
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Figure 4.1: The evolution of to ta l energy E{t)  (left axis) and enstrophy ü{t)  (right 

axis). Also shown is E[t)  with the energy of 1,2, • ■ ■ >8 modes subtracted.
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Figure 4.2: Energy spectra for <̂ =  0 (dotted line) and <̂ =  tt/ 2 (solid line) averaged 

in tim e and over small surrounding sector ±7t/ 12 for t/Tt„ =  7 and 100. Straight lines 
have exact slopes —5 and —5/3.
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Figure 4.3: The compensated energy spectrum  Cr  — E ( k , t ) p   ̂ at t = 81.9 for 

k < kf .
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Figure 4.4: The compensated energy spectrum  Cr  = E(k,t)e~^' '^ k^f^ at t =  81.9 
for k < kf.
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Figure 4.5: Spectral energy transfer, Tg(k|A;c), for =  50 at f — 115.0r^u.
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Figure 4.6: Instantaneous vorticity field <) at < =  115.0
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Figure 4.7: Zonally-averaged horizontal velocity profile U{y, t )  (first column) and its 

second derivative Uyy{y^t) (second column) at t =  58.5T(„, t — 81.9Tt„, t — 115.0rt„, 

and t = 175.4 Ttu (from the top to the bottom ).



Chapter 5 

Large Eddy Simulation (LES) of 

Two-Dimensional Isotropic 

Turbulence

Although the m athem atical modeling of quasi-2D flows has im portant practical ap­

plications, particularly in the atmospheric and oceanic sciences, it has not received 

as much attention in the literature as the modeling of the 3D flows. Partly, this can 

be explained by the fact tha t the quasi-2D problems are less computationally intense 

than  their 3D counterparts. Thus there exists a hope th a t in the near future, practi­

cally im portant quasi-2D problems can be solved using Direct Numerical Simulation 

(DNS) in which all scales are resolved [45]. In addition, despite the specific peculiar­

ities of quasi-2D flows related to the energy and vorticity dynamics, their sub-grid 

scale (SGS) representation has not received sufficient attention so far. There have 

been attem pts to param eterize the SGS processes in quasi-2D flows similarly to those 

in 3D flows using Laplacian or biharmonic dissipation, the most advanced method 

being the anticipated potential vorticity m ethod [64]. However, such methods can 

only perform well in the vorticity dissipation subrange when energy is injected on 

relatively large scales. Being applied in the energy transfer subrange, they will lead 

to energy dissipation, contradicting basic energy and vorticity transfer dynamics of 

quasi-2D turbulence. Moreover, Large Eddy Simulation (LES) of quasi-2D flows in

123
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the energy transfer subrange has never been attem pted, despite the fact tha t such 

flows would bear strong analogy to large scale oceanic and atmospheric circulation 

and tha t DNS of such flows cannot be expected in the foreseeable future. Thus, 

there exists a need to improve our understanding of the SGS processes in the en­

ergy transfer subrange of quasi 2D flows and to successfully simulate such flows when 

their energy sources reside in the SGS region. These both issues are addressed in the 

present Chapter. In the next Section, the basic difficulties of the SGS representation 

of the quasi-2D flows in the energy transfer subrange are discussed. Then, the fol­

lowing Section elaborates on the notion of the two-parametric viscosity and explains 

how this viscosity resolves the conflict between inverse transfer of energy and direct 

transfer of enstrophy. In Section 5.3, advantages and deficiencies of various imple­

m entations of the two-parametric viscosity for LES of 2D turbulence in the energy 

subrange are described. In Section 5.4, simplified SGS representations for LES of 2D 

turbulence are considered and the notion of the Stabilized Negative Viscosity (SNV) 

is introduced. Finally, Section 5.5 discusses the results of performed LES. M aterial 

presented in this Chapter is included in [83].

5.1 Basic Problems of the Sub-Grid Scale (SGS) 

Representation of Quasi-2D Flows in the En­

ergy Transfer Subrange

Confined to  two dimensions, turbulent flows become non-vortex-stretching and un­

dergo dram atic structural changes [40]. The most profound modifications take place 

in the dynamics of energy and vorticity transfer. It is well known tha t in isotropic 

homogeneous 3D turbulence, the direct energy cascade from large to  small scales 

facilitates efficient energy dissipation by molecular viscosity. This process is accom­

panied by and closely related to the production of enstrophy (mean square vorticity) 

through vortex stretching mechanism. Since in 2D flows vortex stretching cannot 

occur, the enstrophy then is conserved. Thus, 2D inviscid fluids possess two nontriv­
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ial integrals of motion: the energy and the enstrophy. The enstrophy conservation 

prevents cascade of energy from large to small scales because such cascade would 

increase enstrophy [36, 38, 40].

Mathematically, this im portant feature is illustrated by the Fj0rtoft theorem [45]. 

However, the direct cascade of enstrophy from large to small scales is possible. It 

results in molecular dissipation of large scale vorticity at small scales. Drawing anal­

ogy to eddy viscosity in 3D flows, one can infer that small scale processes in 2D flows 

generate an effective, or eddy viscosity for the vorticity of large scales. However, in­

troducing an eddy viscosity concept in 2D flows seems to be intrinsically inconsistent 

and self-defeating because the dissipation of enstrophy will be accompanied by the 

dissipation of energy, which is physically incorrect. This controversy calls for modifi­

cation of the eddy viscosity concept for quasi-2D flows; the issue in the focus of the 
present Section.

More detailed consideration of the transport processes in 2D turbulence reveals 

that they depend on the wave numbers of the energy injection, kj.  For k < kf ,  the 

energy cascades up scales (inverse cascade), while the enstrophy flux is zero. For 

k > kf ,  the energy flux is zero, but there exists the direct enstrophy flux [38]. If LES 

of a quasi-2D flow is thought of, the proper SGS param eterization should depend on 

the wave number of the energy source, kf,  i.e., whether kf  belongs in the resolved 

(or explicit) or unresolved (or SGS) region. In the former case, a simple hyperviscous 

SGS representation may suffice, because it should only account for the enstrophy 

dissipation due to the direct cascade. However, if the forcing is located in the sub- 

grid scales, then the hyperviscous SGS representation would lead to erroneous results 

since it will constitute energy dissipation in non-energy-dissipating flows. To sustain 

such flows, one would need to  introduce a large scale energy source in the energy 

cascade subrange. A possible solution to this problem would be to replace an SGS 

forcing by a forcing located in the explicit region near kc, where kc is the cutoff wave 

number corresponding to  the grid resolution. However, this solution is not only quite 

cumbersome but it also significantly distorts the explicit scales near kc. In addition, 

this approach is difficult for implementation in the physical space, particularly for
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bounded systems and/or systems with spatially nonuniform energy sources.

Another solution would be to  introduce a negative eddy viscosity, first extensively 

discussed by [80], as an SGS param eterization of the unresolved energy source. Studies 

of flows with negative viscosity were conducted in [25, 26] for 2D- and in [70, 96] for 

3D case. Although such an SGS representation could address the issue of the inverse 

energy cascade, it would not satisfy the constraint of the zero enstrophy flux. In 

addition, equations of motion with negative viscosity produce ill-posed problems. It 

appears therefore that addressing the issue of SGS representation for quasi-2D flows in 

self-consistent and comprehensive way would require full consideration of energy and 

enstrophy dynamics and should be based upon the corresponding transport equations. 

Such an approach was first outlined by Kraichnan [39] who introduced the notion of 

two-parametric viscosity. This approach and its implications will be elaborated in 

the next Section.

5.2 Two-Parametric Viscosity as SGS Represen­

tation of Quasi-2D Flows

In Chapter 3 we have dem onstrated tha t for the two-dimensional incompressible tu r­

bulent flows described by the vorticity equation (3.1), the two-parametric eddy vis­

cosity may be introduced via (3.64)-(3.66) and derived from the RG results.

The introduction of the classical eddy viscosity concept for LES with equation 

(3.1) implies that there is a distinct scale separation between the resolvable and 

SGS modes. Indeed, only if such a separation exists, the eddy viscosity would be 

fc-independent and a function of the cutoff wave number kc only. However, the as­

sumption of scale separation fails in all turbulent flows, particularly in 2D flows, such 

that, strictly speaking, an SGS representation should depend on two param eters, k 

and kc. Such two-parametric viscosity, denoted by v{k\kc),  was first introduced by 

Kraichnan (1976). It describes the energy exchange between given resolved vorticity 

mode with the wave number k and all SGS modes with k > kc-

In Chapter 3 we have also compared v{k\kc) calculated from the DNS data  with
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those evaluated by Kraichnan (1976) using his Test Field Model (TFM ) and obtained 

from the Renormalization Group (RG) theory (see Appendix B). The results of this 

comparison were presented in Figs. 3.4 and 3.5. Let us recall th a t Fig. 3.4 presents 

the DNS-inferred normalized two-parametric viscosity,

^  i $ w i -
along with the TFM- and RG-based analytical predictions. The results are in very 

good agreement with each other over the entire energy transfer range, up to  the wave 

numbers close to  kc, where the DNS data saturates, while the TFM  and RG curves 

exhibit sharp cusp. This theoretical cusp is due to the fact that as A: —> fcc, more and 

more elongated triads with either p or g kc become involved in the energy exchange 

between the mode k and the sub-grid scale modes. The contribution from these triads 

to the energy exchange near kc is very significant and results in the cusp behavior. 

However, in finite box DNS with large-scale energy removal, the energy of small wave 

number modes is reduced and i/{k\kc) is expected to  saturate near kc. Indeed, when 

the RG-based u{k\kc) was re-calculated based upon the DNS energy spectrum , the 

unnormalized DNS- and RG-based two-parametric viscosities were found to be in very 

good agreement for all wave numbers, as was shown in Fig. 3.5.

Figs 3.4 and 3.5 show that for the large scale modes, for which fc *C fcc and 

scale separation exists, the effect of the SGS modes is represented by a negative and 

constant viscosity, such that these modes gain energy from their SGS counterparts by 

means of the inverse transfer. On the other hand, i/(k\kc) > 0 for k —> kc such tha t 
the modes close to kc lose their energy to the SGS modes. The difference between 

the large scale gain and the small scale loss produces constant energy flux ê, the 

rate of the energy input due to  the forcing /  in equation (3.1) and equation (5.8) 

below. If the enstrophy balance is considered, recall tha t the enstrophy transfer is 

most efficient at small scales, such th a t the resulting balance for the resolvable scales 

turns out to be zero (see [38], and (5.13) below), i.e. the enstrophy is conserved. 

This explains how the two-parametric viscosity resolves the controversy of the inverse 

cascade of energy and conservation of enstrophy in the energy subrange of 2D flows. 

It appears therefore that the only physically correct way to represent SGS processes
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in 2D turbulence would be through the two-parametric viscosity. Such an approach 

has become quite popular in simulations of 3D flows, see [14] and review [23] but has 

not yet been fully explored for LES of quasi-2D flows. The implementation of the 

two-parametric viscosity for LES of 2D turbulent flows, the arising problems, their 

solutions and results are described in the following Sections.

5.3 Implementation of the Two-Parametric Eddy 

Viscosity for LES of 2D Turbulence

To test the two-parametric viscosity-based SGS param eterization in the energy trans­

fer subrange, a series of LES of 2D turbulence in Fourier space was designed. These 

LES were based upon equation (3.1) in which all the sub-grid scale processes including 

the forcing were represented by the two-parametric viscosity v[k\kc),

^C(k) [  p  X k . dp
d t +  ■ P ) ( 2 ^  =  0 < k < K .  (5.2)

It is im portant to reiterate tha t in LES of 2D turbulence in the energy subrange, the 

source of energy resides on the unresolved scales, such that equation (5.2) appears 

unforced. However, as was explained earlier, the negative part of u { k \ k c )  serves as 

the only energy source for the  resolved modes. In the course of the present LES it 

was found that numerical results critically depend on the way v { k \ k c )  is introduced 

into the solver. Thus, a series of simulations was designed with the purposes of 

understanding the nature of the problems associated with the implementation of the 

two-parametric viscosity and of identifying the most viable and robust ways to use 

this viscosity in LES of 2D flows.

D escription  of num erical m eth od . The numerical solver used in the present 

calculations was based upon Fourier-Galerkin pseudo-spectral formulation [57] the 

same as the one utilized in Chapter 3. The present LES employed 162^ resolution 

including aliased modes; the cutoff wave number was set at k^ =  50, which is about 

half of the resolution used in DNS of Chapter 3, see also [9]. The initial flow field
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was set to zero everywhere except for a narrow band of wave numbers in the middle 

part of the spectrum where it was assigned random Gaussian distribution. The DNS 

inferred value of ë was about 5.19 x 10“^°; the same ë was used in LES. The time-step 

in LES was set to St — 0.5 satisfying both convective and viscous necessary conditions 

for linear stability. Based upon the size of the largest energy containing eddy with 

the wave number femin, 27r/tmin, and the total energy of the steady-state E(t) ,  the 

maximum large scale eddy turnover tim e defined as Ttu = 27r/(kj„;„\ /2E)  was about 

Ttu — 3600 for LES of cases 1 and 2 below, where k -̂,„ = 1, and Ttu — 900 for cases 
3,4 ,5 , and 6 for which Â̂nün =  4.

C ase 1. Flow in d e p e n d e n t i/{k\kc)^ W ith i/[k\kc) known and flow independent, 

equation (5.2) can be solved directly. According to Fig. 3.4, v{k\kc) can be obtained 

from DNS or from some statistical theory of turbulence. Thus, in the first LES 

numerical solver for equation (5.2) utilized u{^k\kc] derived from the renormalization 

group (RG) theory of turbulence (see Appendix B for the details). As shown in the 
Appendix B,

u{k\kc) =  0.327ë"/^6-''/^Æ(A:/A:,), (5.3)

where N(k/kc)  is given by (5.1), and since ë is a constant, u{k\kc) is a function 

of k and kc only. It was assumed that thus defined u(k\kc) would be capable of 

supporting inverse energy cascade with constant SGS energy input ë. To verify this 

assumption, one needs to  examine the evolution of to tal energy and enstrophy of 

the resolved modes, E{t)  and D(t), respectively. By definition, E{t)  ~  E (k , t )dk ,  

where E{k , t )  = (4% t)"^(^(k, t)^ (—k, t)) is the spectral energy density, and f2(t) — 

/o ' ^{k , t )dk .  The basic requirement to LES would be tha t E{t)  and D(t) of LES 

have the same behavior as those derived from (3.1) for which the evolution laws are 

E(<) oc et and f2(t) =  const, due to the conservation of the inviscid integrals for 

E[t)  and D(t) (recall that in the energy subrange of 2D turbulence the rate  of the 

enstrophy flux g = 0). Figs 5.1(a,b) show that in the first LES, both E{t)  and Tl{t) 

exhibit nonlinear growth indicating tha t not only the rate  of the energy transfer to 

the resolvable scales ë/,, ^  const, but also the rate of the enstrophy transfer rji^̂  ^  0.
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Fig. 5.2 shows that instantaneous spectrum  E(^k,t') also reveals tendency to growing 

up with tim e without stabilizing around any universal distribution. At some point of 

its evolution, E(k,  t) passed through the Kolmogorov law

E{k)  = CK-ë^ k~"^, (5.4)

where Ck  % 6 is the Kolmogorov constant, and ë was close to its prescribed DNS 

value. However, at larger times the Kolmogorov scaling (5.4) was lost, while eu» kept 

growing. The roots of the problem are revealed when one calculates the rate  of the 

energy input into all resolved modes, ë^,. The energy equation derived from the 
definition of spectral energy density and (5.2) yields

et« (0  =  -  - 2 ^  '  u{k\kc)E{k, t)k^dk.  (5.5)

Since in the first series of LES, v{k\kc) depends on k and k^ only, and E{k , t )  is 

a dynamic variable that depends on the evolution of the flow field, ëk .(t) also turns 

out to be tim e dependent. This is not only in direct conflict with the requirement 

tha t ë(„ =  ë =  const, but also leads to a positive feedback between the energy input 

and total energy of the system, which results in numerical instability. To correct this 

problem, one must ensure th a t ëj^j =  const. This can be achieved by allowing u{k\kc) 

to become tim e dependent and related to resolved variables. The philosophy of using 

actual flow field characteristics to determine energy input and dissipation would be 
analogous to a standard practice of 3D LES.

Inspection of equation (5.5) reveals that ë j„(t) is proportional to  the total enst­

rophy of the resolvable field, such tha t stipulating ë,,. -  const would require v{k\kc) 

to become tim e dependent and inversely proportional to D(t) (the tim e dependency 

of u{k\kc) will be implied in the following discussion but suppressed in notations). 

To find the explicit dependency of v[k\kc) on Q{t), let us assume tha t î (fc|A;c) can be 
represented by

i^{k\kc) = F(Q)N(k/kc) ,  (5.6)

where f  ( ) is some function of U{t )  and N{k/kc)  is still determined by (5 .1 ). Accord-
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Figure 5.1: The evolution of the total energy E{t)  (a) and total enstrophy fi(t) in 

Case 1 LES. Fig. 5.1(a) also shows the evolution of Ë( t)  with the energy of the 1st, 
2nd, 3rd, 4th, 5th, 6th and 7th modes removed.
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Figure 5.2: The evolution of the instantaneous energy spectrum  for i/xtu -  {0.56, 

1.11,1.67,2.78} in Case 1 LES. The solid line shows the Kolmogorov —5/3  slope.
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ing to Fig. 3.4, N[k/kc)  can be split into negative and positive terms,

N{k/kc)  = - I  + ei>{kfkc), (f){k/k^)>0,  0 < k / k ^ < l .  (5 .7)

One can now calculate integral in (5.5) using equations (5.6) and (5.7)

^Us = 2F{IÎ) f  E{k, t )k^dk  — 2F{Q) f  c^{k/kc)E{k,t)k^dk
Jo Jq

-  2F(ÏÏ)Ô (f) -  2F(Ô ) <l>{klk,)E{k, t)k'^dk. (5.8)

Integration of (5.8) for the Kolmogorov spectrum  with <f>{k/kc) evaluated from the 
RG theory (see Appendix B) yields

ê/„ ~  0 .8 F (n )n (t) . (5.9)

Equation (5.9) shows tha t to satisfy the requirement — c =  const, one has to 
impose

=  Ô M iT y  (5.10)

such that the two-parametric viscosity (5.6) becomes

=  “ ô i s é w  +  (5 -“ )

The first term  in the right hand side of (5.11) accounts for the SGS energy input 

while the second term  represents the high wave num ber dissipation as k kc. As 

was argued earlier, to ensure lus =  const, the  energy source term  must be time 

dependent and inversely proportional to Q(i). Thus, the negative feedback between 

energy input and enstrophy of the resolved modes is the mechanism that stabilizes 

numerical process. Note that the SGS formulation based upon (5.11) complicates 

equation (5.2) because its right hand side now depends on the functional of the 

solution, f}(i). However, on the one hand, it is clear from the presented analysis that 

LES of 2D turbulence based upon (5.2) is impossible if u{k\kc') depends on k and 

kc only. On the other, the SGS representation (5.11), though complicated, is in line 

with the eddy viscosity approach, in which the eddy viscosity coefficient is usually 

solution-dependent, see, for example, in [71, 73, 72, 93, 91].
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Case 2. Flow dependent v{k\k^) w ith  no large scale drag. The SGS formu­

lation (5.11) was used in the second LES and considerable improvement over Case 

1 was observed. Figs 5.3(a,b) show th a t up to the  simulated tim e t = 3rt„, F (t)  

grows linearly, while fî(t) attains a constant value. Fig. 5.4 shows that during the 

same time, E{k , t )  quickly approaches steady-state Kolmogorov distribution (5.4). 

However, for t > 3rtu the flow field undergoes irreversible modifications ; the behavior 

of E{t)  and fi(i) changes, while E{k , t )  begins to deviate from the Kolmogorov law. 

All these changes reflect the basic problem of the present LES tha t simulates the 

behavior of an infinite system in a finite com putational box [74, 75]. In this box, the 

smallest wave number modes become energy saturated at t ~  3t(„, and, if the energy 

of these modes is not removed, they begin to alter the behavior of the entire flow field. 

Therefore, to extend LES beyond t ~  3Ttu, one needs to prevent the accumulation of 

energy at the lowest modes, which was accomplished in LES of Case 3 Note however 

that by the tim e t ~  3t(u the inverse cascade swept through all the resolved modes 

such that they became energy saturated and attained the steady state. Therefore, one 

should expect that in LES with t >  3t(u both E(i)  and f2(t) remain nearly constant.

Case 3. Flow dependent v i ^ k \ k c )  w ith  large scale drag. The simplest way to 

withdraw energy from the lowest modes would be simply to set to zero the amplitudes 

of those modes. However, such a “chopping” alone is known to produce unsatisfactory 

results [7]. Therefore, in addition to the chopping, one needs to introduce a mechanism 

that would account for the energy exchange between the resolved modes and the low 

wave number modes excluded in LES. Such a mechanism, the large scale drag, was 

introduced in this study in direct analogy to the two-parametric viscosity and we will 
not dwell on its description here.

The large scale drag was implemented in the th ird  LES, whereas the amplitudes 

of all modes with k < tmin =  4 were set to zero. As was explained in Chapter 3 

and shown in Fig. 3.5, such a chopping results in flattening of the cusp in N{k!kc)  

as k > kc, such tha t this function had to be recalculated which in turn  led to 

modification of the coefficient in (5.9) from 0.8 to 0.87. The results of the third LES
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Figure 5.3: Same as Fig. 5.1 but for Case 2 LES.
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Figure 5.4. Same as Fig. 5.2 but for Case 2 LES. Note that after i/rju  % 2 all 

instantaneous profiles E(fc, t) become close to Kolmogorov law (5.4).
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Figure 5.5: Same as Fig. 5.1 but for Case 3 LES. Because the amplitudes of the first 

four modes are set to zero, only the evolution of E{t)  with the energy of the 4th, 5th, 
6th and 7th modes removed is shown.
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Figure 5.6: Same as Fig. 5.4 but for Case 3 LES. Note tha t the Kolmogorov scaling 

is attained after % 2, only the time-averaged spectrum is shown due to existence 
of the steady-state.
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Figure 5.7: The energy flux IIg(A;) for Case 3 LES.
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are shown in Figs. 5.5(a,b), 5.6 and 5.7. One can see tha t this simulation could 

virtually be extended indefinitely, with E{t)  and ÏT(i) slightly oscillating around their 

steady state  values (the source of these oscillations is probably the self-adjustment 

of the numerical scheme to the mismatch between the small scale energy forcing 

and large scale withdrawal). The instantaneous energy spectrum, Fig. 5.6, exhibits 

steady and nearly perfect Kolmogorov scaling. Since the large scale drag enables one 

to  dramatically increase the integration tim e in LES, it will be retained in all further 

simulations. Note however that these simulations will pertain to steady state rather 

than tim e developing flows. Figure 5.7 shows that the energy flux, Il£;(A:), is nearly 

constant for A: > 15 and equal to —5 x 10“ °̂ approximately, in good agreement with 
the corresponding DNS results (see Fig. 3 in [9]).

Case 4. Flow d epend en t energy input w ith  flow in d ep en dent d issipation .
It would be tem pting to simplify (5.11) by relaxing the time-dependency in the dis­

sipation term . It is not clear a priori whether or not this time-dependency is critical, 

and to find out about it a fourth LES was conceived in which SGS representation 

(5.11) was modified by replacing ë/0.8 0 ( t)  in the dissipation term  by the RG de­

rived expression 0.327ë^/^A;-^/^. Figs 5.8(a,b) and 5.9 show that this simplified SGS 

scheme performs in a very robust way with no oscillations at all for a relatively long 

tim e, t ~  30rtu. Similarly to Case 3, there exists a  mismatch between the small scale 

forcing and large scale energy removal, but since the dissipation in Case 4 cannot 

self-adjust, the solution begins to deteriorate when this mismatch accumulates sig­

nificantly. Still, Case 4 LES could be extended to many more turnover times than 

the corresponding DNS, the result quite remarkable for its own sake. During this 

time, the  instantaneous energy spectrum , Fig 5.9, exhibits steady and nearly perfect 

Kolmogorov scaling almost indistinguishable from th a t in Fig. 5.6. Figure 5.10 shows 

tha t the compensated energy spectrum  gives Kolmogorov constant C k  ~  5, in good 

agreement with the RG derived value of 5.12, see Appendix B for details. As in Case 

3, the energy flux IIg(A:) shown in Figure 5.11 is almost constant for t  > 15 and is 
about —5 X 10“^°.
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Figure 5.9: Same as Fig. 5.6 but for Case 4 LES.
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Figure 5.10: The time-averaged compensated energy spectrum  Ck  for Case 4 LES.
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5.4. STABILIZED N E G A TIV E  V ISC O SITY  145

Although the SGS formulation (5.11) is relatively easy to implement in spectral 

LES, in practical applications, particularly in the physical space, it would be far 

more useful to approximate N{k/kc)  analytically. An additional benefit of such an 

approach would be a possibility to carry out further analytical studies of this SGS 

representation; the direction pursued in the next Section.

5.4 Stabilized Negative Viscosity (SNV) Formu­

lation

For practical implementation of SGS formulation (5.11) it is convenient to approxi­

m ate N{k/kc)  in (5.1) by a series in powers of k^. It was found that even the first 
two term s of this series,

N{k/kt:)  ~  - 1  +  a{k /kcY ,  (5.12)

where a  is a constant, are sufficient to perform successful LES of 2D turbulence. To 

find a  recall that representation (5.12) must ensure zero enstrophy transfer in the 
energy subrange,

= 2 u{k\k,)E{k,  t ) k U k  =  2F (fi) N{k /k , )E{k ,  t)k*dk -  0. (5.13)

Substituting (5.12) into (5.13) and assuming th a t E{k , t )  is Kolmogorovian, one finds 

that Q =  I such that (5.13) becomes

E{k , t )  k^ dk =

=  2 F ( n )  n (f)  -  y  F{Q)  (5.14)

where P{t)  =  E{k , t )  k* dk is the total palinstrophy of the resolved modes. For 

Kolmogorovian E{k, t ) ,  (5.14) can be integrated to yield P{t) = |D(f)A;^ and

  2 5  F

= 18 n w
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Equation (5.15) completes the two-term SGS param eterization for LES of 2D turbul­

ence in which the right hand side of (5.2) takes the form
2 '9 5  Fiy(klk,)k̂ C(k) =  —  ^ i +  g i ^(y k^C(k). (5.16)

18 Q ( t )

As in (5.11), the first term  in the right hand side of (5.16) accounts for the energy flux 

from the unresolved modes and the inverse cascade of this energy, while the second 

term  represents the energy dissipation near the cutoff. Using (5.16) and following 

the philosophy of Cases 3 and 4 LES, two more simulations were designed, with flow 

dependent and independent dissipation term  in (5.16).

Case 5. T w o-term  LES w ith  flow dep en d en t d issipation . Simulations

performed with the form ulation (5.16) slightly adjusted to account for the finiteness

of the computational domain are shown in Figs. 5.12(a,b) and 5.13. They exhibit 

very little difference compared to  the third LES that employed the full curve N [ k / k c )  

given by (5.1) and shown in Figs. 5.5(a,b) and 5.6. One infers therefore that (5.16) 

is a viable two term  SGS representation for LES of 2D turbulence; obviously, (5.16) 
is significantly simpler than (5.11).

Case 6. T w o-term  LES w ith  flow in d ep en dent d issipation . For practical 

purposes, it would be most appealing to use formulation (5.16) with the dissipation 

term  constant. A numerical experiment analogous to th a t of Case 4 LES was con­

ducted with the energy source in (5.16) not changed but in the dissipation term , D(i) 

was replaced by its value calculated for the Kolmogorov spectrum  (5.4). Such an 

approach yields the dissipation term  in (5.16) in the form

Afc^C(k), (5.17)

where A is a constant given by

A  = 0.5116^/^6-^°/^, (5.18)

which corresponds to Ck =5.8. The results of this case 5 LES are presented in Figs. 

5.14(a,b), 5.15 and 5.16; there is a very good agreement with the corresponding results
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Figure 5.12: Same as Fig. 5.5 but for Case 5 LES.
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obtained with the full curve N {k/kc)  up to t ~  40rtu after which, similarly to  Case 

4, the solution begins to deteriorate. The compensated energy spectrum  leads to the 

Kolmogorov constant Ck  ~  5.8, which is consistent with the derivation of (5.18). One 

can therefore infer tha t (5.16), (5.18) is probably the simplest SGS representation for 

LES of 2D turbulence possible.

Further advantages of the SGS representation (5.18) are revealed when LES of 

quasi-2D turbulence is sought in the physical space, where (5.16) combined with 

(5.18) leads to the following SGS representation

^  /  d \
- A , ™ 3 C ( x ), (5.19)

where

dx^ \  dxi )  dx^dxj

18 n (x ) ’
_  A  “

Ati = A  = 0.511 ë ' ^ =  const, (5.20)

and where f2(x) denotes the enstrophy averaged over a grid cell, and A is the grid reso­

lution (note that the Laplacian term  in (5.19) is written in the conservative form). Eq­

uation (5.19) thus includes two terms, the negative Laplacian and positive (in the sense 

of dissipation) biharmonic, and structurally resembles the Kuramoto-Sivashinsky eq­

uation widely known from combustion theory [69] and flows with chemical reactions 

[43, 42]. However, the SGS representation (5.19)-(5.21) combined with the explicit 

equation for the resolved scales produces far more complicated equation than the 

Kuramoto-Sivashinsky equation because generally its coefflcients are not constant 

but, as in the eddy viscosity approach, are functions of the flow. There have been 

previous attem pts to  use formulation similar to (5.19)-(5.21) but with constant co­

efficients (dubbed the Kuramoto-Sivashinsky-Navier-Stokes equation, see [25]) to 

perform LES of 2D turbulence. However, they were not overly successful even in 

reproducing the Kolmogorov spectrum, mostly because they used constant “eddy 

viscosity” coefficients. Since, on the one hand, SGS representation (5.19)-(5.21) in­

cludes a negative Laplacian viscosity term  and a positive, stabilizing, dissipation 

term , but, on the other hand, it is quite different from the Kuramoto-Sivashinsky 

equation in which “viscosity” coefficients are constant, it will be referred to  as the
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Figure 5.14: Same as Fig. 5.5 but for Case 6  LES.
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Stabilized Negative Viscosity (SNV) formulation. The SNV formulation is expected 

to be particularly useful in simulations of atmospheric and oceanic flows where large 

scale motions are quasi-two-dimensional by their nature while small scale forcing is 
significant [53].

5.5 Discussion of the LES Approach

LES of homogeneous and isotropic 2D turbulence in the energy transfer subrange and 

appropriate SGS representation have been the central subject of this Chapter. Con­

servation of energy and enstrophy in 2D turbulent flows leads to coexistence of two 

spectral transfer processes, upscale for energy and downscale for enstrophy. Conven­

tional eddy viscosity formulations are purely dissipative and fail to accommodate both 

transfers simultaneously. It was argued that proper SGS param eterization for LES 

of 2D flows is given by the two-parametric viscosity i/{k\kc) introduced by Kraichnan 

(1976) tha t accounts for the energy (or enstrophy) exchange between given resolved 

and all SGS modes and which includes negative and positive branches; the negative 

branch of '̂(fc|fcc) represents the unresolved, small scale forcing and inverse cascade 

of energy, while the positive one represents the dissipation. It was shown that the 

negative and positive parts of the two-parametric viscosity play vital role in ensuring 

that all conservation and spectral transfer laws of 2D turbulence are satisfied. Then, 

t/(k\kc) was used in LES of 2D turbulence in the energy transfer subrange where the 

negative part of i/{k\kc) was the only energy source. The sensitivity of numerical 

results to the way of implementation of y(fc|fcc) in numerical schemes was studied. It 

was found tha t if u{k\kf.) is specified as a flow independent param eter then a positive 

feedback is established between the forcing and the total energy of the system leading 

to numerical instability. Thus, another scheme was designed in which u{k\kc) was flow 

dependent but the rate of the energy input was kept constant. This LES exhibited a 

very stable behavior consistent with analytical theories and DNS; Kolmogorov scaling 

was evident and robust, and all conservation and spectral transfer laws were fulfilled. 

Then, a simplified SGS representation was advanced, in which only two terms were
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retained: one negative and proportional to k^, and one positive and proportional to 

k^. The viscosity coefficient in the negative term  served as the energy source and had 

to be flow dependent, to ensure tha t the energy input remains constant. However, 

since the k^ term  is mostly active at high wave number region near the cutoff wave 

number k^, and its main role is energy and enstrophy dissipation at k —> k ^  this 

term  did not need to be flow dependent and could essentially be kept constant and 

evaluated from analytical theories of 2D turbulence. Indeed, LES with constant and 

flow dependent k* terms gave very similar results.

The application of the two term  param eterization to  simulations in physical space 

results in the so called Stabilized Negative Viscosity (SNV) representation which 

includes negative Laplacian and positive biharmonic viscosities. Numerical imple­

m entation of the scheme with the constant biharmonic viscosity is obviously much 

simpler than  that with the flow dependent viscosity.

On the one hand, the negative viscosity term  is essential in SNV scheme; on the 

other, this scheme substantially differs from the Kuramoto-Sivashinsky equation with 

its constant viscosity because in SNV, the negative viscosity not only is not constant 

but is a nonlinear functional of the solution. In fact, the SNV representation is a 

peculiar case of the eddy viscosity approach; one normally expects that if all scales of 

a turbulent flow are resolved then eddy viscosity would become equal to the molecular 

viscosity which is true in 3D turbulence. In 2D turbulence, however, resolution of all 

scales must be accompanied by restoration of the explicit small scale forcing which 

would result in disappearance of both negative Laplacian and positive biharmonic 

viscosities and appearance of a single positive molecular viscosity.

It is believed that the SNV representation should be especially useful in quasi- 

2D flows in which considerable amount of energy resides on the unresolved scales. 

Such flows are typical in geophysical fluid dynamics where, due to the topographic 

and other constraints, flows are quasi-2D and where the small scale forcing is the 

predom inant source of energy.



Appendix A 

Details of the Asymptotic 

Solution of the Finite-Step 

Recursive Relation of Chapter 2

Here we will present the leading-order asymptotic solution of difference equation:

Vn+i = f , for e > 0. (A .l)

First of all we concentrate on only power-law solutions, that is Un oc 6 ^ .  Seeking

the solution in the form: =  y/a  a„ one can find the solution for a„ in the

form: =  a* +  /„  such th a t > 0 as n —> oo. T hat leads to the following leading

asymptotic behavior for

- l ) " *  + / o  ( 4 f - ^  - 3 ) "  +  l . o . t | ,  ( A . 2 )

where l.o.t. denotes lower-order than the last term , /o is a constant which cannot 

be determined from this large n formula and this expression makes sense only if 

1 < f  < (4/3)^^'^ is satisfied, which is definitely true if e —» 0 is satisfied. For e =  3, 

for example, it gives 1 < 6 < 1.21, which lies outside of the interval of validity of 

(A.2): 5 > 2 (we remember that 8v vanishes if 1 < f  < 2). So, there is a hope 

to find this asymptotic behavior to be true only for those e which give a nonempty
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intersection of these two conditions. T hat puts the following restriction on e;

0 < e < Écrit =  2  ( 2  -  log 3/ log 2 ) % 0.83. (A.3)

Certainly after such a conclusion there arises a suspicion that asymptotic behavior 

(A.3) may not be unique for sufficiently large e. In fact it is possible to show that 

this is not true. Really, one can rewrite (A.2) in the form:
n-l ^2je

!/„ =  i/o +  X ] T T - (A .4)
j=o

Using anzatz =  A5^"p* for p > 0 one can show by exact summation of geometric 

progression th a t p =  1/4 is a unique exponent for all e. We would like to note that 

equation (A.4) may not be true for large enough e because of the infinite number of 

diagrams summation.

Now substituting for a  — X D \ / F f  (27t A j)  one can get the following asymptotic 
behavior for eddy-viscosity:

Taking leading-order behavior if e ^  0 + of this expression gives:

K A ) o c ( A . 6 )
(^3v ^ 7 t e j  *

which does not depend neither on mode-elimination param eter 6 nor on bare viscosity 

Uq . Note again the limited to small e region of applicability of these results, given by 

formula (A.3).

Now consider the advection speed difference equation at large enough values 

of n  and in the limit e —» 0-f when (A .5) holds true. W ith the notation /3 = 

\ / A o  D q 3̂ \ / 3 7re^ ( 5 * ~ '  — 1 )  /  ( j r  (1 — e)^, it will become:

Cn+l =  Cn I 1 4-------—----- I . (A .7)

The exact solution of this equation may be obtained:

l _ ^ ( f - i )
Cn — Co +  /3 T- ^ . (A.8 )

1 - 5 ( 2 -!)
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If e < 2 the large-n asym ptotic behavior of this solution is a constant, which in the 

lowest order in e-expansion is cq, th a t is:

C ji  —  C q  -\~ O ^ 6 4   ̂ . (A.9)



Appendix B 

Technical Details Relevant for 

Chapter 5: Derivation of Flow 

Parameters Based on RG Theory

Subsequent results serve as a continuation of the RG theory developed in Chapter 

3, Section 3.1. Some of im portant formulas of the formalism reviewed in Section 3.1 

will be also recalled here.

In 3.1 it was argued (see also [16, 93]) the RG procedure of small scale elimination, 

when iterated indefinitely, converges to a fixed point solution whereas ({k)  is described 

by the Langevin equation:

C(k,w) =  G (k ,w )/(k ,w ), (B.l)

where G (k,w) =  [iw +  i/{k)k^]~^ is the renormalized propagator. The existence of 

the fixed point for RG procedure in 2D was demonstrated in Chapter 3 (for first 

reference, see [79]) for e <C 1 Although the feasibility of continuation of these results 

into the region of large e is still an open question, it is assumed here that the fixed 

point solution (5 .1 ) exists at e =  4.

As we have noted in Section 3.1, equation (5 .1 )  allows one to calculate the vor- 

ticity correlation function, f /(k ,w) =  (^(k ,t)^( —k , t)), as well as the kinetic energy
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spectrum,

m  = I  ^  U(.k,u:) = (B.2)

Although y(&), given by (3.34) describes renormalization of the bare viscosity 

I/o, it is not what is often comprehended as an eddy viscosity. This is merely a 

response function of the nonlinear dynamical system described by the renormalized 

(5 .1 ). As such, it allows for calculating vorticity correlation function and energy 

spectrum  but does not directly relate to enstrophy and energy transfer and dissipation. 

Furthermore, [i/(A:)A:̂ ]“  ̂ can be viewed as a characteristic tim e scale of information 

loss at given k caused by nonlinear scrambling of all other modes [13]. Therefore, 

i/(fc) has a meaning of an eddy damping param eter and is substantially one-point 
turbulence characteristic.

To analyze energy and enstrophy transfer, one needs to consider two-point char­

acteristics that account for interaction between a given explicit mode k < and all 

modes k > kc] kc is identified with the moving dissipation cutoff. For this purpose, as 

it was done in Chapter 3, the energy evolution equation should be derived at lowest 

nontrivial order of nonlinear coupling using fully renormalized propagator G{k). The 

resulting dynamical closure is similar to the Eddy-Damped, Quasi-Normal, Marko­

vian (EDQNM) approximation [58] where the lowest order RG analysis is invoked to 

obtain the eddy damping function. The energy equation then reads

{dt + 2i/k)E{k,t) = J  J^T{k ,p , q , t ) dpd q ,  (B.3)

where

T {k ,p ,q , t )  = -^&kpq{t){p^ — q^)
7T K

, . , . k^ — p

^ E{p)E{q)
p q

2

E (q)E (k) + — ^ E ( p ) E ( k ) sin a , (B.4)kq kp

and where Vk =  v{k)k'^, a  is an angle opposite to the vector k in the triangle k -f 

p  T q  =  0, and the integration domain A is defined by the triangular inequalities 

\k — p\ < q < k + p. The function y(&) given by (3.34) is used to compute the 

relaxation tim e 6kpq{t) =  (1 -  e(‘'*+*'p+‘'«)‘)/(i/*, -f -f i/,) in (5 .4).
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In Section 3.1 we defined the two-parametric, or effective, eddy viscosity at wave- 

number k in term s of the energy transfer from all sub-grid scale modes with k > kc 

to the given explicit mode k,

iy{k\kc) = -T{k\kc)/[2k'^E{k)], (B.5)

where:

T(k\kc) = J  J^T{k ,p ,q )dpdq , k < k ^  (B.6)

and where the integration is extended over all p and k such tha t p and/or q > kc-

Assuming tha t the limit t oo in (5 .10) is considered the time argument in T ( t ,  p, q) 

has been om itted. In tha t limit, d̂ pq =  (i^k +  t'p +

For k kc the two-parametric viscosity u{k\kc) can be calculated analytically
[39]. In this case, the triangular inequality becomes |p — g| < k q. Therefore, all 

the quantities tha t enter T (k ,p , q) can be expanded in powers of p — g. Then, the p 

integration can be performed resulting in

i / { k \k c ) = ^ J ^  dkqq-^[qE{q)]dq, k  ̂  kc- (B.7)

Substitution of (3.34) and (5 .2 ) into (5 .7 ) gives the asymptotic eddy viscosity 
for the largest scales:

For arbitrary k, u[k\kc) was calculated via numerical integration of (5 .4); the 

resulting normalized two-parametric viscosity N {k/kc),  see equation (5.1), was shown 

in Fig. 3.4. This function is negative for k kc and positive for k —> kc-

Noting that in the energy transfer subrange the energy injection rate ë is equal to 

the rate of energy transfer from all the sub-grid modes k > kc to all explicit modes 

k < kc, one can find the relation between the forcing amplitude Do and ë. Indeed, as 

follows from (5 .5 ) and (5 .6),

e =  - 2  '  u{k\kc)E{k)k^dk. (B.9)
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Substituting (5 .2 ) and (5 .8 ) into (5 .9 ) and performing numerical integration one
finds:

Do -  63 ë. (B.IO)

Using (5 .10) one can now calculate the Kolmogorov constant Ck  in (5 .8 ) and the 

numerical factor in (5 .8 ) which leads to:

5(&) =  CK ê"/"A :-'/\ C ^ f-5 .1 2 , (B .l l)

and

i/(0|fcc) =  -0 .327  (B.12)

These results have been used in equations (5.3) and (5.9) in Chapter 5.
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