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More etale fundamental groups

Last time we computed the etale fundamental group of SpecFp to be Gal(Fp/Fp) = Ẑ.
The same arugment goes for the etale fundamental group of the spectrum of any field.

Example 1. In general, for a field F , the etale fundamental group of SpecF is the absolute
Galois group Gal(F s/F ), where F s is the separable closure of F (by the same argument).
The absolute Galois group of Q contains monstrous secrets about all number fields and thus
is of great interest to study in number theory. People are far from understanding the whole
absolute Galois group Gal(Q/Q) as of today.

Our next goal is to compute the etale fundamental group π1(SpecZ). The following alge-
braic fact allows us to consider only the etale coverings arising from number rings.

Theorem 1. Suppose SpecA is normal (i.e., A is an integrally closed domain). Let Ki be
a finite extension of Frac(A) and Bi be the integral closure of A in Ki. Then the universal
covering is X̃ = lim←−i

Xi, where Xi runs over the SpecBi such that SpecBi → SpecA is finite
etale.

Remark. Indeed, the same thing is true for an arbitrary normal scheme.

Now applying the theorem to the normal ring A = Z, to determine π1(SpecZ) it suffices
to find all the number rings OK that are finite etale over Z. From the point of view of prime
decomposition, this means in the decomposition of each prime

(p) =

m∏
i=1

peii

in OK , all the ei’s are equal to 1.

Definition 1. A prime p ∈ Z is called unramified in OK if all the ei’s are equal to 1, and
ramified otherwise. The ei is called the ramification index of pi.

So the Ki’s in the previous theorem are exactly the number fields unramified at each p.
If we define the maximal unramified extension Qur of Q as the union of all such K ′

is,
then π1(SpecZ) = Gal(Qur/Q). To compute Qur, the key input is to relate the ramification
behavior of primes to the numerical invariant of number rings — the discriminant.

Definition 2. Let K be a number field of degree n and {αj}nj=1 be a Z-basis of the number

ring OK . Then we define the (absolute) discriminant dK = (det(σi(αj))ij)
2, where σi runs

over the embeddings K ↪→ C. The discriminant is an integer independent of the choice of the
Z-basis.

We omit the proof of the following important theorem.

Theorem 2. A prime p is ramified in OK if and only if p | dK .

Example 2. Let K = Q(i). We know that {1, i} is a Z-basis of Z[i]. So

dK =

(
det

[
1 i
1 −i

])2

= (−2i)2 = −4.

The previous theorem tells us that only the prime 2 is ramified in Z[i], which coincides with
what we discovered before.
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Exercise. Let p be an odd prime. Determine which primes are ramified in the cyclotomic
field K = Q(ζp).

So showing that a number field K is unramified everywhere is equivalent to showing that
|dK | = 1. Are there any such number fields? Minkowski used his method of geometry of
numbers to bound |dk| from below.

Theorem 3 (Minkowski). Let K be a number field of degree n . Then

|dK |1/2 ≥
nn

n!

(π
4

)n/2
.

Corollary 1. If K is a number field other than Q, then |dK | > 1.

Proof. Minkowski’s theorem gives that |dK | ≥ an :=
(
nn

n!

)2 (π
4

)n
. The result then follows since

a2 = π2/4 > 1 and an+1 ≥ an.

Combining Theorem 2 with the previous corollary, we know that the only number ring
unramified everywhere over Z is Z itself (thus there is no nontrivial finite etale Z-algebra
except Zn). So the maximal unramified extension Qur = Q and we have

Corollary 2. π1(SpecZ) = 1.

We collect our computation so far as follows. If my (or Charmaine’s) word that SpecZ is
“3-dimensional” can be trusted, then it is natural to believe that SpecZ should behave like a
“simply connected 3-manifold”.

K : S1 ↪→ R3 SpecFp ↪→ SpecZ
π1(S

1) = Z π1(SpecFp) = Ẑ
π1(R3) = 1 π1(SpecZ) = 1

We can easily add a new row concerning the knot group GK = π1(R3 \ K). The knot
group corresponds to the unramified coverings of R3 \K, so the arithmetic counterpart should
correspond to the finite etale coverings of SpecZ\{p}, or equivalently SpecZ[1/p] (we can kill
the prime ideal (p) by inverting p).

Definition 3. We define the prime group to be the etale fundamental group

G{p} := π1(SpecZ \ {p}) = π1(SpecZ[1/p]).

Even though there are no nontrivial finite etale coverings of the whole space SpecZ, there
do exist finite coverings of SpecZ that are etale outside a prime p (e.g., our favorite example
SpecZ[i]→ SpecZ is etale outside 2), so the prime group may be nontrivial.

What is the right analogy for the tubular neighborhood VK of a knot K? This is not that
easily seen and leads to the beautiful idea of completion. It is already quite surprising that
we have gone so far away without even mentioning p-adic numbers.

Example 3. Consider the complex line A1 = SpecC[t]. The point {0} ↪→ A1 corresponds
to the quotient map C[t] → C[t]/(t) ∼= C. How do we describe a neighborhood of {0} alge-
braically? Notice that C[t]→ C[t]/(t) is nothing but the evaluation map f 7→ f(0), which only
gives the information about the point {0}. If we would like to remember the first derivative
of f , then the quotient map C[t] → C[t]/(t2) is better. Geometrically, the nilpotent element
t adds a bit of “fuzz” to the point along the t direction (we have seen a similar example
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Z[i]/(1 + i)2 before), so SpecC[t] stands for a double point (as the intersection of a parabola
y = t2 and the line y = 0). In general, the quotient map C[t] → C[t]/(tn+1) remembers all
derivatives of f up to order n and provides us an order n “fuzz” around the point. Of course
there is no reason to stop us at any specific n. So we can take the inverse limit of the inverse
system

· · · → C[t]/(tn)→ C[t]/(tn−1)→ · · · → C[t]/(t),

which is exactly the power series ring

lim←−
n

C[t]/(tn) = C[[t]].

We call C[[t]] the completion of C[t] at the prime ideal (t). It provides geometrically an
infinitesimal neighborhood of the point t = 0 to help us read the local information about that
point.

Example 4. We now mimic the completion process of C[t] at t = 0 to give an infinitesimal
neighborhood of SpecFp ↪→ SpecZ. We take the inverse limit of the inverse system

· · · → Z/(pn)→ Z/(pn−1)→ · · · → Z/(p),

and define
Zp := lim←−

n

Z/(pn).

As a group, Zp is profinite. Even more, since each of the finite group Z/(pn) is of p-power order,
Zp is a pro-p group and it is the pro-p completion of Z. Geometrically, SpecZp should be
thought of as an infinitesimal neighborhood of SpecFp encoding all the local information of
SpecZ at p.

K : S1 ↪→ R3 SpecFp ↪→ SpecZ
π1(S

1) = Z π1(SpecFp) = Ẑ
π1(R3) = 1 π1(SpecZ) = 1

GK = π1(R3 \K) G{p} = π1(SpecZ[1/p])
VK SpecZp

Definition 4. The elements of the ring Zp are called p-adic integers.

We do not know much about the p-adic integers but the following exercise can be tackled
right now.

Exercise. Show that Ẑ ∼=
∏

p Zp, where p runs over all primes numbers.

In the sequel we will investigate more basic properties of Zp, study the prime group G{p}
using class field theory, and reinterpret the Legendre symbol to draw the connection to linking
numbers at last.
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