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Number Rings and Etale Coverings

Recall Fermat’s theorem: an odd prime p is of the form p = x2 + y2 if and only if p ≡ 1
(mod 4). We proved this using the point of view of finite field arithmetic and quadratic
residues. Now we are going to shift our view once again (is this called capricious, flighty,
mercurial, or fickle?) and see how it can do us a favor. Using the imaginary number i =

√
−1,

we know that in this case p can be decomposed into the product p = (x+ yi)(x− yi), where

x± yi ∈ Z[i] = {a+ bi : a, b ∈ Z}

are Gaussian integers.
Notice that the Gaussian integer ring Z[i], like Z, is a unique factorization domain

(UFD), i.e., every element in Z[i] can be uniquely decomposed into the product of prime
elements. More precisely, if a ∈ Z[i] and there are two decompositions a =

∏n
i=1 αi and

a =
∏m

j=1 α
′
i, then n = m, and after a possible permutation, we have (αi) = (α′

i), namely αi

and α′
i are the same up to a unit.

Now the above classical result of Fermat can be reformulated as the basic rule of prime
decomposition in the bigger ring Z[i] (rather than the usual integer ring Z) as follows.

Proposition 1. Let p be a prime number.

1. If p ≡ 1 (mod 4), then p = αᾱ, where α, ᾱ ∈ Z[i] are prime elements, ᾱ is the conjugate
of α and (α) ̸= (ᾱ).

2. If p ≡ 3 (mod 4), then p is a prime element.

3. If p = 2, then 2 = (1 + i)2 × (−i), where 1 + i is a prime element and −i is a unit.

Proof. 1. By Fermat’s theorem, we can find integers x, y ∈ Z such that p = x2 + y2. Set
α = x + yi, then it suffices to show that x + yi is a prime element. Define the norm
map

N : Z[i] → Z+, a+ bi 7→ (a+ bi)(a− bi) = a2 + b2,

then N is clearly multiplicative. Assume x + yi = α1α2, then taking norms gives p =
N(x + yi) = N(α1)N(α2). Hence one of the N(αi)’s is equal to 1, so it must be a unit
and x+ yi is a prime element.

2. Suppose p = α1α2 is not a prime element, then taking norms gives that N(α1) = N(α2) =
p. This contradicts that p is not of the form x2 + y2 by Fermat’s theorem.

3. It follows from the fact that N(1 + i) = 2 is a prime number.

Exercise. Show that (α) ̸= (ᾱ) in the first case to complete the proof.

So the arithmetic problem of the sum of two squares is essentially equivalent to finding
the prime decomposition of p in the ring Z[i]. This elegant point of view helps us to vastly
and systematically generalize the arithmetic objects we study.

Definition 1. A number field K is a finite extension of the field Q of rational numbers.
The elements of K are called algebraic numbers. The number ring (or ring of integers)
OK of K is the integral closure of Z in K. In concretely terms, OK consists of algebraic
integers, namely roots of monic polynomials in Z[x].
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Example 1. The simplest number field other than Q is the K = Q(i), an imaginary quadratic
extension of Q. Let us compute the number ring ofK = Q(i). Suppose x = a+bi with a, b ∈ Q.
Then x ∈ OK if and only if x satisfies a quadratic monic equation X2 − sX + t = 0 with
s, t ∈ Z. We know that 2a = s and a2 + b2 = t. So s2 + 4b2 = 4t. Set n = 2b, then n is an
integer and s2 + n2 = 4t. Therefore s and n are multiples of 2. We conclude that a, b ∈ Z, so
OK = Z[i], which is exactly the Gaussian integer ring.

Example 2. An important class of number fields are the cyclotomic fields K = Q(ζn),
generated by a primitive nth root of unity ζn. It has Galois group (Z/nZ)×. It can be shown
in general that OK = Z[ζn]. In particular, taking n = 4 gives us again the Gaussian integer
ring.

Exercise. Determine the ring of integers of the field K = Q(
√
−7).

Remark. The cyclotomic fields were studied by Kummer in order to attack the Fermat’s last
theorem (Fermat, our old friend). Kummer factorized the equation zn = xn + yn as

zn = (x+ y)(x+ ζny) · · · (x+ ζn−1
n y).

To match the factors, he was forced to consider the prime decomposition in the ring Z[ζn].
However, a crucial caveat is that Z[ζn] is not always a UFD, so the rule of unique decomposition
into prime elements is not always possible.

Fortunately, Kummer considered a generalized notion of “ideals” and the decomposition
of ideals into prime ideals is still available for all number rings. We state this version of the
fundamental theorem of the arithmetic of number rings without proof.

Theorem 1. Let OK be a number ring and a be a nontrivial ideal of OK . Then a can be
uniquely (up to permutation) decomposed into a product of prime ideals

a = pe11 · pe22 · · · pemm , ei ≥ 1.

Example 3. In Z[
√
−5]. The element 6 has two decompositions 6 = 2·3 = (1+

√
−5)(1−

√
−5)

where none of 2, 3, 1+
√
−5, 1−

√
−5 can be further decomposed. The problem occurring here

is exactly that none of them generate prime ideals. The prime decomposition promised by the
previous theorem is given by

(6) = (2, 1 +
√
−5) · (2, 1−

√
−5) · (3, 1 +

√
−5) · (3, 1−

√
−5).

As we have seen, in order to study the problem concerning rational numbers and integers,
we need to work in a new world of extensions of Q and Z, the number fields and number rings.
It is amusing to compare this to the topological setting: in order to study the topology of
a space, one way is to work with its unramified covering spaces instead. We now carry this
key idea further, leading to the notion of finite etale coverings and etale fundamental
groups in this algebraic setting.

space X scheme SpecA
unramified covering finite etale covering
fundamental group etale fundamental group

Let us look at several examples to motivate.
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Example 4. One can define the fundamental group using loops. Though SpecA can be
endowed with a topology (Zariski topology), but it is too coarse to contain any loop in the
usual sense. Alternatively, we will define the etale fundamental group as the automorphism
group of its “universal covering”.

Example 5. However, another difference in the algebraic setting is that we cannot always
expect the existence of the (usually infinite) universal covering. For example, the universal
covering R1 → S1 is given by a transcendental function t 7→ eit, which does not make sense in
the algebraic world. So we are going to step back and find an object which approximates all
the finite etale coverings best.

Example 6. Remember the ring Z corresponds to a space (an affine scheme) SpecZ, which
can be geometrically represented by a line. A maximal ideal (p) corresponds to a closed point
SpecFp ↪→ SpecZ. Unlike SpecC[t], where all the residue fields are the same field C, the
points on SpecZ have different residue fields Fp, which are not algebraically closed. In other
words, there are many finite extensions of Fp (one for each degree n). So we have many
finite “covering spaces”, although each of these covering spaces is also a point geometrically.
Intuitively, we will draw a slightly bigger point to stand for those finite extensions SpecFpn .
From this point of view, the space SpecFp is not “simply connected” because it has nontrivial
finite covering spaces. It is now very natural to define the “fundamental group” of SpecFp as
the automorphism group Gal(Fp/Fp), viewing SpecFp as the “universal covering” since Fp is
the union of all finite extensions of Fp.

Example 7. The inclusion Z ↪→ Z[i] gives a map π : SpecZ[i] → SpecZ. The fiber of a prime
(p) ∈ SpecZ is given by SpecZ[i]⊗Z Fp = SpecZ[i]/(pZ[i]). From the prime decomposition in
Z[i] we have the following situation:

(5) (1 + 2i)(1− 2i) Z[i]/(5) ∼= Z[i]/(1 + 2i)× Z[i]/(1− 2i) ∼= F5 × F5 two points
(3) (3) Z[i]/(3) ∼= F9 one bigger point
(2) (1 + i)2 Z[i]/(2) ∼= F2[i] = {0, 1, i, 1 + i} one double point

This matches the geometry:

1. For primes p ≡ 1 (mod 4), (p) = p1p2. The p1 and p2 correspond to two points lying
above (p) ∈ SpecZ.

2. For primes p ≡ 3 (mod 4), (p) = p remains prime, which corresponds to a slightly bigger
point lying above (p) ∈ SpecZ.

3. For p = 2, (2) = (1 + i)2 is a power of prime, which corresponds to a double point
geometrically. In this case the tensor product is no longer a field (1 + i is a nilpotent).

(2) (3) (5)

· · ·

(7) (11) · · ·

SpecZ

SpecZ[i]

(p)

(1 + i)2

(3)
(1 + 2i)

(1 − 2i)

(7) (11)
p1

p2

· · ·

· · ·

So only the last case the geometrical picture is not an unramified covering: two points are
somehow collapsing together. This is characterized by the fact that Z[i] ⊗Z Fp is not a field
extension of Fp.
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With the above said, it is not at all absurd to introduce the following definition, with the
mind that “etale” is intended to mean an unramified covering in the algebraic setting.

Definition 2. Let k be a field. An k-algebra is called finite etale if it is a finite product of
finite separable extension of k.

Definition 3. A map SpecB → SpecA (or equivalently, a ring homomorphism A → B)
is called a finite etale map if B is a finitely generated flat A-module and for any prime
p ∈ SpecA, B ⊗A κ(p) is a finite etale κ(p)-algebra, where κ(p) = Frac(A/p) is the residue
field of p. In this case we say that B is a finite etale A-algebra or SpecB is a finite etale
covering of SpecA.

Next time we will define the etale fundamental group in terms of finite etale coverings and
make more concrete sense with examples.
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