KNOTS AND PRIMES CHARMAINE SIA LeEcTurte 3 (Jury 9, 2012)

1. COVERING SPACES

In the previous lecture, we saw how one could obtain a presentation of the knot group from a knot projection.
However, this is not the best way to study the knot group topologically, as the presentation obtained depends on
the choice of knot projection. A more topological way of studying the knot group is provided by covering spaces.

Covering spaces enable one to study fundamental groups via their action on topological spaces, similarly to
how group representations enable one to study abstract groups through their action on vector spaces. As we shall
see, the fundamental group 7;(X) of a space X can be thought of as a Galois (automorphism) group Gal(X/X),
where X is the universal covering space of X. This perspective gives rise to a fundamental analogy between
topological and arithmetic fundamental/Galois groups in arithmetic topology.

1.1. Unramified coverings. We recall the basic definitions and results regarding covering spaces. In what fol-
lows, we shall assume that the base space X is a connected topological manifold. (This will allow us to ignore
technicalities about local path-connectedness and semi-locally simply-connectedness, which one can tell from the
names will cause headaches.)

Definition 1.1. Let X be a space. A continuous map h : Y — X is called an (unramified) covering if for any x € X,
there is an open neighborhood U of x such that h~!(U) is a disjoint union of open sets in Y, each of which is
mapped homeomorphically onto U by h. (Note that we do not require h~!(U,) to be non-empty, so h need not be

surjective.) The set of automorphisms Y =, Y over X forms a group, called the group of covering transformations
of h: Y — X, denoted by Aut(Y /X).

Example 1.2 (Coverings of S!).
e h,:S!' — S h(z) = 2", where n is a positive integer and we view z as a complex number with |z| = 1.
(Figure 1a shows n =3.)
e ho :R! — S h(t) =(cos2nt,sin2mt). (Figure 1b.)
In fact, the covering hy, : R! — S* actually covers the coverings h, : S! — S!, as shown in Figure lc. As we
shall see later, R! is the universal covering space of S!, that is, it is a covering of any other (connected) covering
space of S! (which turn out to be the finite coverings h,,).
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(A) h, :S - S!? (B) hy, : R > St (c) h,, is a subcovering of h.,
FIGURE 1. Coverings of S*

Example 1.3. We consider a higher-dimensional example. Let Y be the closed orientable surface of genus 11, the
“11-hole torus,” as in Figure 2. This has 5-fold rotational symmetry generated by a rotation of angle 27/5, and
hence an action of the cyclic group Z/5Z. The quotient space X =Y /(Z/5Z) is a surface of genus 3, obtained
from one of the five subsurfaces by identifying two boundary circles C; and C;,;. Thus we have a covering
space M;; — Ms, where M, denotes the closed orientable surface of genus g. This example clearly generalizes
by replacing the 2 holes in each “arm” of M;; by m holes and the 5-fold symmetry by n-fold symmetry to give
covering spaces M,,,,.1 — M,,41-
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FiGure 2. Covering of the 3-hole torus by the 11-hole torus.

In what follows, we shall restrict our attention to connected covering spaces, since a general covering space is
just a disjoint union of connected ones.

Definition 1.4. A covering h : Y — X is called Galois or normal if for each x € X and each pair of lifts X', ¥’ of x,
there is a covering transformation taking ¥ to X’. For a Galois covering h : Y — X, we call Aut(Y /X) the Galois
group of Y over X and denote it by Gal(Y /X).

Intuitively, a Galois covering is one with maximal symmetry, in analogy with Galois extensions, which as
splitting fields of polynomials, can be considered “maximally symmetric.”

Recall that the main theorem of Galois theory gives a bijective correspondence between intermediate field
extensions and subgroups of the Galois group. There is a similar version of the main theorem for coverings,
which relates connected coverings of a given space X and subgroups of m;(X).

Theorem 1.5. The induced map h, : 7,(Y,y) — ©,(X, x) is injective, and there is a bijection

{connected coverings h : Y — X}/isom. 5 {subgroups of m,(X, x)}/conj.
(h:Y = X)— h(m,(Y, y)) (y €h ' (x))

with the property that h: Y — X is a Galois covering if and only if h,(m,(Y,y)) is a normal subgroup of m,(X, x).
In this case Gal(Y /X) = n1(X, x)/h.(71(Y, y)).

The covering h : X — X (up to isomorphism over X) which corresponds to the identity subgroup of 7t;(X, x)
is called the universal covering of X; it is a covering space of any other covering space of X. Since the map
h, : (Y, y) — m,(X,x) is injective, r;(X) = 1, i.e. the universal covering is simply-connected, and Gal(X /X) =
71(X). The two most important types of covering spaces we shall consider are the universal covering space and
the cyclic covering spaces.

Example 1.6. We return to Example 1.2, the coverings of S!. We have seen that R! — S is a covering. Since
R! is simply-connected, this tells us that this is in fact the universal covering of R! — S!. Indeed, Gal(R!/S!) =
7 = 1,(S'), with a generator 7 of Gal(R!/S!) acting by a shift of the helix. Moreover, since the only quotient
groups of Z are the finite cyclic groups Z/nZ and we have found coverings h,, : S — S! with exactly these Galois
groups, this tells us that these are the only coverings of S.

Theorem 1.5 tells us that instead of using the Wirtinger presentation, one can also study a knot group Gy =
111(Xx) by studying the covering spaces of the knot exterior X;. While the universal covering space of a knot
exterior depends on the particular knot, there is a uniform procedure for constructing the cyclic coverings of a
knot exterior. The idea is to reverse the reasoning in Example 1.3: instead of taking one of several copies of
a manifold with boundary and gluing the boundaries together, we want to slice the base space open and glue
several copies of the resulting space together along the boundaries appropriately.

How can we slice the knot complement in a natural way? If K is the unknot, then there is an obvious way
to slice the knot complement such that the knot figures prominently: we slice along the intersection of the knot
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complement with the disk bounded by the unknot. Is it possible to do this for a general knot K? The answer is in
the affirmative: Seifert showed in 1934 that for every knot or link, there exists an compact oriented connected
surface, called a Seifert surface, whose boundary is that knot or link.

Example 1.7.

FIGURE 3. Mobius band with three half-twists, with boundary a trefoil. Note that the Mobius
band is not considered to be a Seifert surface for the trefoil as it is not orientable.

Exercise 1.8. Figure 4 shows a Seifert surface for a knot, since this surface is compact, oriented and connected.
What knot is this a Seifert surface of? What type of surface is this? (Hint: use Euler characteristic and the
classification theorem for surfaces by genus, orientability and number of boundary components.)

FIGURE 4

Example 1.9 (Infinite cyclic covering). Let K C S° be a knot. From a Wirtinger presentation for Gy, one sees that
X1, ..., X, are mutually conjugate. Hence the abelianization Gy /[G, Gx] is an infinite cyclic group generated
by the class of a meridian a of K. Let ¢, : Gy — Z be the surjective homomorphism sending a to 1, and let
he : X, — Xx be the covering corresponding to ker(),,) in Theorem 1.5. The covering space X, is independent
of the choice of a and is called the infinite cyclic covering of X. It is constructed as follows. Let X be a Seifert
surface of K. Let Y be the space obtained by cutting X along X, N %, and let ©* and %~ be the two surfaces
homeomorphic to X N % obtained from the cut, as in Figure 5.

FIGURE 5. Copies &t and ¥~ of X, N Xy obtained by cutting along Xy N .

Let Y; (i € Z) be copies of Y. The space X, is obtained from the disjoint union of all the Y;’s by identifying
= with %, (i € Z), as in Figure 6, and a generator 7 of Gal(X,,/Xy) is given by the shift sending Y; to Y;
(i€e2).

Example 1.10 (Finite cyclic covering). For each n € N, let ¢, : Gx — Z/nZ be the composite of 1, with the
surjection Z — Z/nZ, and let h,, : X,, — Xy be the covering corresponding to ker(v,,). Then Gal(X, /X) = Z/nZ.
The covering spaces X,, are constructed similarly to X, except that we now take n copies Yy, ..., Y,_; of Y, and
identify ¥ | with £ instead, as in Figure 7. A generator 7 of Gal(X,/X) corresponding to 1 mod nZ is given
by the shift sending Y; to Y;,; (i € Z/nZ).
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FIGURE 7. Space X, obtained from the disjoint union of Y, ..., Y,_; by identifying £ with
=, (i €Z/nZ)

1.2. Ramified coverings. Above, we considered (unramified) coverings of the knot exterior X;,. However, we
may wish to consider a covering of the entire space S* extending the above coverings. This is accomplished by
ramified or branched coverings.

Let M and N be n-manifolds (n > 2) and let f : N — M be a continuous map. Define Sy := {y € N |
f is not a homeomorphism in a neighborhood of y} and S,; := f(Sy).

Definition 1.11. The map f : N — M is called a covering ramified over S, if the following conditions are satisfied:
(D flws, : N\ Sy = M\ Sy is an (unramified) covering, and
(2) for any y € Sy, there exist neighborhoods V of y and U of f(y), and homeomorphisms ¢ : V =
D*xD"2?and v : U Z, D2 x D"2, such that (g, xidpn—2)op =1po f for some positive integer e = e(y),
where g,(z) :=z¢ forz € D> = {z € C | |z| < 1}. (That is, f acts locally like the eth-power map.)
One can “complete” an unramified covering to obtain a ramified covering, as follows.

Example 1.12 (Fox completion). Consider the n-fold cyclic covering h, : X,, — Xy from Example 1.10. The
restriction h, |y : 80X, — 0Xy is an n-fold covering of tori and na is a meridian of 9X,. Attach V = D? x st
to X, by gluing dV and 90X, in such a way that a meridian of dV coincides with na. Denote by M, the closed
3-manifold obtained in this manner.

FiGure 8. Fox completion M,, of X,

Define f, : M,, — S° by f, lx, :=h, and f,|y := f, x idg1. Then f, is a covering ramified over K, which we call
the Fox completion of h, : X,, — Xg.
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