A Local Trace Formula for the Local
 Gan-Gross-Prasad Conjecture for Special Orthogonal Groups

Zhilin Luo

University of Minnesota

Automorphic forms and arithmetic, Columbia university
December 11, 2020

Spherical harmonics

$$
\mathrm{SO}_{2}(\mathbb{R}) \hookrightarrow \mathrm{SO}_{3}(\mathbb{R}) \quad \text { compact. }
$$

Spherical harmonics

$$
\mathrm{SO}_{2}(\mathbb{R}) \hookrightarrow \mathrm{SO}_{3}(\mathbb{R}) \quad \text { compact. }
$$

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{2}(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}\left(\mathrm{SO}_{3}(\mathbb{R})\right)
$$

Spherical harmonics

$$
\mathrm{SO}_{2}(\mathbb{R}) \hookrightarrow \mathrm{SO}_{3}(\mathbb{R}) \quad \text { compact. }
$$

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{2}(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}\left(\mathrm{SO}_{3}(\mathbb{R})\right)
$$

- By Frobenius reciprocity,

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{3}(\mathbb{R})}\left(\pi, \operatorname{Ind}_{\mathrm{SO}_{2}(\mathbb{R})}^{\mathrm{SO}_{3}(\mathbb{R})}(\mathbb{C})\right)
$$

Spherical harmonics

$$
\mathrm{SO}_{2}(\mathbb{R}) \hookrightarrow \mathrm{SO}_{3}(\mathbb{R}) \quad \text { compact. }
$$

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{2}(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}\left(\mathrm{SO}_{3}(\mathbb{R})\right)
$$

- By Frobenius reciprocity,

$$
\begin{aligned}
m(\pi)= & \operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{3}(\mathbb{R})}\left(\pi, \operatorname{Ind}_{\mathrm{SO}_{2}(\mathbb{R})}^{\mathrm{SO}}(\mathbb{C})\right) \\
& \operatorname{Ind}_{\mathrm{SO}_{2}(\mathbb{R})}^{\mathrm{SO}_{3}(\mathbb{R})}(\mathbb{C}) \simeq L^{2}\left(S^{2}\right)
\end{aligned}
$$

Spherical harmonics

$$
\mathrm{SO}_{2}(\mathbb{R}) \hookrightarrow \mathrm{SO}_{3}(\mathbb{R}) \quad \text { compact. }
$$

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{2}(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}\left(\mathrm{SO}_{3}(\mathbb{R})\right)
$$

- By Frobenius reciprocity,

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{3}(\mathbb{R})}\left(\pi, \operatorname{Ind}_{\mathrm{SO}_{2}(\mathbb{R})}^{\mathrm{SO}_{3}(\mathbb{R})}(\mathbb{C})\right)
$$

$$
\operatorname{Ind}_{\mathrm{SO}_{2}(\mathbb{R})}^{\mathrm{SO}_{3}(\mathbb{R})}(\mathbb{C}) \simeq L^{2}\left(S^{2}\right)
$$

$L^{2}\left(S^{2}\right) \curvearrowleft \mathrm{SO}_{3}(\mathbb{R}) \quad$ spectral decomposition.

Spherical harmonics

- By the theory of spherical harmonics,

$$
L^{2}\left(S^{2}\right) \simeq \widehat{\bigoplus}_{l=0}^{\infty} H_{l}
$$

$H_{l}=$ spherical harmonics of deg. $l, \quad \operatorname{dim}=2 I+1$, H_{l} is an irr. rep. of $\mathrm{SO}_{3}(\mathbb{R})$.

Spherical harmonics

- By the theory of spherical harmonics,

$$
L^{2}\left(S^{2}\right) \simeq \widehat{\bigoplus}_{l=0}^{\infty} H_{l}
$$

$H_{l}=$ spherical harmonics of deg. $l, \quad \operatorname{dim}=2 I+1$, H_{l} is an irr. rep. of $\mathrm{SO}_{3}(\mathbb{R})$.
$\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{3}(\mathbb{R})}\left(\pi, L^{2}\left(S^{2}\right)\right)=1, \quad$ for any $\pi \in \operatorname{Irr}\left(\mathrm{SO}_{3}(\mathbb{R})\right)$.

Spherical harmonics

- By the theory of spherical harmonics,

$$
L^{2}\left(S^{2}\right) \simeq \widehat{\bigoplus}_{l=0}^{\infty} H_{l}
$$

$H_{l}=$ spherical harmonics of deg. $I, \quad \operatorname{dim}=2 I+1$, H_{l} is an irr. rep. of $\mathrm{SO}_{3}(\mathbb{R})$.
$\operatorname{dim} \operatorname{Hom}_{\mathrm{SO}_{3}(\mathbb{R})}\left(\pi, L^{2}\left(S^{2}\right)\right)=1, \quad$ for any $\pi \in \operatorname{Irr}\left(\mathrm{SO}_{3}(\mathbb{R})\right)$.

$$
m(\pi)=\frac{\int_{\mathrm{SO}_{2}(\mathbb{R})} \Theta_{\pi}(h) d h}{\operatorname{vol}\left(\mathrm{SO}_{2}(\mathbb{R}), d h\right)}, \quad \text { by Schur's orthogonality. }
$$

Set up

- F local field of char. zero.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.
- $W^{\perp}=\left\langle v_{0}\right\rangle \oplus Z$ split of odd dim.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.
- $W^{\perp}=\left\langle v_{0}\right\rangle \oplus Z$ split of odd dim.
- $N=$ unipotent radical of the parabolic subgroup of $\mathrm{SO}(V)$ stabilizing the full isotropic flag determined by W^{\perp}.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.
- $W^{\perp}=\left\langle v_{0}\right\rangle \oplus Z$ split of odd dim.
- $N=$ unipotent radical of the parabolic subgroup of $\mathrm{SO}(V)$ stabilizing the full isotropic flag determined by W^{\perp}.
- $G=\mathrm{SO}(W) \times \mathrm{SO}(V)$.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.
- $W^{\perp}=\left\langle v_{0}\right\rangle \oplus Z$ split of odd dim.
- $N=$ unipotent radical of the parabolic subgroup of $\mathrm{SO}(V)$ stabilizing the full isotropic flag determined by W^{\perp}.
- $G=\mathrm{SO}(W) \times \mathrm{SO}(V)$.
- $H=\mathrm{SO}(W) \ltimes N \hookrightarrow G$, with $\Delta: \mathrm{SO}(W) \hookrightarrow G$.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.
- $W^{\perp}=\left\langle v_{0}\right\rangle \oplus Z$ split of odd dim.
- $N=$ unipotent radical of the parabolic subgroup of $\mathrm{SO}(V)$ stabilizing the full isotropic flag determined by W^{\perp}.
- $G=\mathrm{SO}(W) \times \mathrm{SO}(V)$.
- $H=\mathrm{SO}(W) \ltimes N \hookrightarrow G$, with $\Delta: \mathrm{SO}(W) \hookrightarrow G$.
- $\xi=$ a generic character of N extending to H.

Set up

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces $/ F$.
- $W^{\perp}=\left\langle v_{0}\right\rangle \oplus Z$ split of odd dim.
- $N=$ unipotent radical of the parabolic subgroup of $\mathrm{SO}(V)$ stabilizing the full isotropic flag determined by W^{\perp}.
- $G=\mathrm{SO}(W) \times \mathrm{SO}(V)$.
- $H=\mathrm{SO}(W) \ltimes N \hookrightarrow G$, with $\Delta: \mathrm{SO}(W) \hookrightarrow G$.
- $\xi=$ a generic character of N extending to H.
- (G, H, ξ) is called a Gan-Gross-Prasad triple.

Multiplicity one

- Set

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{H(F)}\left(\pi, \xi_{F}\right), \quad \pi \in \operatorname{Irr}(G(F))
$$

Theorem.

$$
m(\pi) \leq 1
$$

Multiplicity one

- Set

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{H(F)}\left(\pi, \xi_{F}\right), \quad \pi \in \operatorname{Irr}(G(F))
$$

Theorem.

$$
m(\pi) \leq 1
$$

- For F p-adic, proved by A. Aizenbud-D. Gourevitch-S. Rallis-G. Schiffmann for $r=0$, and W. Gan-B.Gross-D.Prasad reducing the general case to $r=0$.

Multiplicity one

- Set

$$
m(\pi)=\operatorname{dim} \operatorname{Hom}_{H(F)}\left(\pi, \xi_{F}\right), \quad \pi \in \operatorname{Irr}(G(F))
$$

Theorem.

$$
m(\pi) \leq 1
$$

- For F p-adic, proved by A. Aizenbud-D. Gourevitch-S. Rallis-G. Schiffmann for $r=0$, and W. Gan-B.Gross-D.Prasad reducing the general case to $r=0$.
- For F Archimedean, proved by B. Sun-C. Zhu for $r=0$, and D. Jiang-Sun-Zhu reducing the general case to $r=0$.

Local Gan-Gross-Prasad conjecture

- The local Gan-Gross-Prasad conjecture suggests that $m(\pi)$ has more stable behavior by considering the local Vogan packet attached to (G, H, ξ).

Local Gan-Gross-Prasad conjecture

- The local Gan-Gross-Prasad conjecture suggests that $m(\pi)$ has more stable behavior by considering the local Vogan packet attached to (G, H, ξ).
- To introduce local Vogan packets, consider pure inner forms of $\mathrm{SO}(W)$, parametrized by $H^{1}(F, \mathrm{SO}(W)) \simeq H^{1}(F, H)$

Local Gan-Gross-Prasad conjecture

- The local Gan-Gross-Prasad conjecture suggests that $m(\pi)$ has more stable behavior by considering the local Vogan packet attached to (G, H, ξ).
- To introduce local Vogan packets, consider pure inner forms of $\mathrm{SO}(W)$, parametrized by $H^{1}(F, \mathrm{SO}(W)) \simeq H^{1}(F, H)$
- For $\alpha \in H^{1}(F, H)$, there exists

$$
\left(W_{\alpha}, V_{\alpha}=W_{\alpha} \oplus W^{\perp}\right)
$$

$\operatorname{dim} W_{\alpha}=\operatorname{dim} W, \operatorname{disc} W_{\alpha}=\operatorname{disc} W$,
with a GGP triple

$$
\left(G_{\alpha}, H_{\alpha}, \xi_{\alpha}\right)
$$

Moreover

$$
{ }^{L} G_{\alpha} \simeq{ }^{L} G .
$$

Local Gan-Gross-Prasad conjecture

Conjecture.(Gan-Gross-Prasad)
For any generic L-parameter $\varphi: \mathcal{W}_{F} \rightarrow{ }^{L} G$ with L-packet $\Pi^{G}(\varphi)$,

$$
\sum_{\alpha \in H^{1}(F, H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi)=1
$$

Moreover, the non-vanishing of $m(\pi)$ is detected by representations of the component group A_{φ} attached to φ, which is related to the sign of the relevant local symplectic root numbers.

$$
\varphi \text { is }\left\{\begin{array}{cc}
\text { generic, } & L(s, \varphi, \operatorname{Ad}) \text { is holomorphic at } s=1 \\
\text { tempered, } & \operatorname{Im}(\varphi) \text { is bounded }
\end{array}\right.
$$

Local Gan-Gross-Prasad conjecture: p-adic

- J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger (generic) proved the conjecture completely when F is p-adic (Assuming LLC for non quasi-split SO and quasi-split $\mathrm{SO}_{2 n}$).

Local Gan-Gross-Prasad conjecture: p-adic

- J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger (generic) proved the conjecture completely when F is p-adic (Assuming LLC for non quasi-split SO and quasi-split $\mathrm{SO}_{2 n}$).
- The local GGP conjecture speculates parallel behaviors for unitary groups. R. Beuzart-Plessis (tempered) and Gan-A. Ichino (generic) proved the conjecture when F is p-adic.

Local Gan-Gross-Prasad conjecture: p-adic

- J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger (generic) proved the conjecture completely when F is p-adic (Assuming LLC for non quasi-split SO and quasi-split $\mathrm{SO}_{2 n}$).
- The local GGP conjecture speculates parallel behaviors for unitary groups. R. Beuzart-Plessis (tempered) and Gan-A. Ichino (generic) proved the conjecture when F is p-adic.
- There are parallel conjectures for skew-hermitian unitary groups and symplectic-metaplectic groups. Gan-Ichino proved the conjecture for skew-hermitian unitary groups, and H. Atobe for symplectic-metaplectic groups, via theta correspondence when F is p-adic.

Local Gan-Gross-Prasad conjecture: Archimedean

- For unitary groups, when $F=\mathbb{R}$,

Beuzart-Plessis proved the multiplicity part of the conjecture for φ tempered.
H. He proved the conjecture for discrete series representations.
H. Xue proved the conjecture for φ tempered.

Local Gan-Gross-Prasad conjecture: Archimedean

- For unitary groups, when $F=\mathbb{R}$, Beuzart-Plessis proved the multiplicity part of the conjecture for φ tempered.
H. He proved the conjecture for discrete series representations.
H. Xue proved the conjecture for φ tempered.
- For special orthogonal groups, when $F=\mathbb{C}$,
J. Möllers proved the conjecture for $\mathrm{SO}(n) \times \mathrm{SO}(n+1)$.

The theorem

In the special orthogonal groups setting, we prove the following theorem.

Theorem (L.)
For any tempered L-parameter $\varphi: \mathcal{W}_{F} \rightarrow{ }^{L} G$,

$$
\sum_{\alpha \in H^{1}(F, H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi)=1
$$

- We follow the approach of Waldspurger and Beuzart-Plessis.

Local trace formula

- For $\pi \in \operatorname{Temp}(G(F))$, by Frobenius reciprocity for unitary representations,

$$
\operatorname{Hom}_{H(F)}\left(\pi, \xi_{F}\right) \simeq \operatorname{Hom}_{G(F)}\left(\pi, \operatorname{Ind}_{H}^{G} \xi_{F}\right)
$$

where $\operatorname{Ind}_{H}^{G} \xi=L^{2}\left(H(F) \backslash G(F), \xi_{F}\right)$.

Local trace formula

- For $\pi \in \operatorname{Temp}(G(F))$, by Frobenius reciprocity for unitary representations,

$$
\operatorname{Hom}_{H(F)}\left(\pi, \xi_{F}\right) \simeq \operatorname{Hom}_{G(F)}\left(\pi, \operatorname{Ind}_{H}^{G} \xi_{F}\right)
$$

where $\operatorname{Ind}_{H}^{G} \xi=L^{2}\left(H(F) \backslash G(F), \xi_{F}\right)$.
$L^{2}\left(H(F) \backslash G(F), \xi_{F}\right) \curvearrowleft G(F) \quad$ spectral decomposition.

Local trace formula

- Following Arthur,

$$
L^{2}(H(F) \backslash G(F), \xi) \curvearrowleft \mathcal{C}_{c}^{\infty}(G(F)) \quad \text { via convolution. }
$$

Local trace formula

- Following Arthur,

$$
L^{2}(H(F) \backslash G(F), \xi) \curvearrowleft \mathcal{C}_{c}^{\infty}(G(F)) \quad \text { via convolution. }
$$

- For $f \in \mathcal{C}_{c}^{\infty}(G(F)), x \in G(F), \varphi \in L^{2}\left(H(F) \backslash G(F), \xi_{F}\right)$,
$(R(f) \varphi)(x)=\int_{G(F)} f(g) \varphi(x g) d g=\int_{H(F) \backslash G(F)} K_{f}(x, y) \varphi(y) d y$
where

$$
K_{f}(x, y)=\int_{H(F)} f\left(x^{-1} h y\right) \xi_{F}(h) d h, \quad x, y \in G(F)
$$

Local trace formula

- Following Arthur,

$$
L^{2}(H(F) \backslash G(F), \xi) \curvearrowleft \mathcal{C}_{c}^{\infty}(G(F)) \quad \text { via convolution. }
$$

- For $f \in \mathcal{C}_{c}^{\infty}(G(F)), x \in G(F), \varphi \in L^{2}\left(H(F) \backslash G(F), \xi_{F}\right)$,

$$
(R(f) \varphi)(x)=\int_{G(F)} f(g) \varphi(x g) d g=\int_{H(F) \backslash G(F)} K_{f}(x, y) \varphi(y) d y
$$

where

$$
K_{f}(x, y)=\int_{H(F)} f\left(x^{-1} h y\right) \xi_{F}(h) d h, \quad x, y \in G(F)
$$

- $R(f)$ has an integral kernel $K_{f}(x, y)$.

Local trace formula

- Formally,

$$
\operatorname{Tr}(R(f)) \sim \int_{H(F) \backslash G(F)} K(x, x) d x
$$

Local trace formula

- Formally,

$$
\operatorname{Tr}(R(f)) \sim \int_{H(F) \backslash G(F)} K(x, x) d x
$$

- In general, RHS is not absolutely convergent.

Local trace formula

- Formally,

$$
\operatorname{Tr}(R(f)) \sim \int_{H(F) \backslash G(F)} K(x, x) d x
$$

- In general, RHS is not absolutely convergent.
- Work with strongly cuspidal functions.

Local trace formula

- Formally,

$$
\operatorname{Tr}(R(f)) \sim \int_{H(F) \backslash G(F)} K(x, x) d x
$$

- In general, RHS is not absolutely convergent.
- Work with strongly cuspidal functions.
- $f \in \mathcal{C}_{c}^{\infty}(G(F))$ is called strongly cuspidal if

$$
\int_{U(F)} f(m u) d u=0, \quad m \in M(F)
$$

for any proper parabolic subgroup $P=M U$ of G.

Local trace formula

- Formally,

$$
\operatorname{Tr}(R(f)) \sim \int_{H(F) \backslash G(F)} K(x, x) d x
$$

- In general, RHS is not absolutely convergent.
- Work with strongly cuspidal functions.
- $f \in \mathcal{C}_{c}^{\infty}(G(F))$ is called strongly cuspidal if

$$
\int_{U(F)} f(m u) d u=0, \quad m \in M(F)
$$

for any proper parabolic subgroup $P=M U$ of G.

- Similarly, define strongly cuspidal functions in the Harish-Chandra Schwartz space $\mathcal{C}(G(F))$ of $G(F)$, denoted as $\mathcal{C}_{\text {scusp }}(G(F))$.

Local trace formula

Theorem (L.)
For $f \in \mathcal{C}_{\text {scusp }}(G(F))$,

$$
J(f)=\int_{H(F) \backslash G(F)} K_{f}(x, x) d x
$$

is absolutely convergent.

- Establish spectral and geometric expansions for $J(f)$ through comparing with Arthur's local trace formula.

Spectral expansion

Theorem (L.)
For $f \in \mathcal{C}_{\text {scusp }}(G(F))$, set

$$
J_{\mathrm{spec}}(f)=\int_{\mathcal{X}(G(F))} D(\pi) \theta_{f}(\pi) m(\pi) d \pi .
$$

Then $J_{\text {spec }}(f)$ is absolutely convergent, and

$$
J(f)=J_{\text {spec }}(f) .
$$

- $\mathcal{X}(G(F)):=\left\{(M, \sigma) \mid \quad \sigma \in T_{\text {ell }}(M(F))\right\} /$ conj., where $T_{\text {ell }}(M(F))=$ elliptic representations introduced by Arthur.

Spectral expansion

Theorem (L.)
For $f \in \mathcal{C}_{\text {scusp }}(G(F))$, set

$$
J_{\mathrm{spec}}(f)=\int_{\mathcal{X}(G(F))} D(\pi) \theta_{f}(\pi) m(\pi) d \pi .
$$

Then $J_{\text {spec }}(f)$ is absolutely convergent, and

$$
J(f)=J_{\text {spec }}(f) .
$$

- $\mathcal{X}(G(F)):=\left\{(M, \sigma) \mid \quad \sigma \in T_{\text {ell }}(M(F))\right\} /$ conj., where $T_{\text {ell }}(M(F))=$ elliptic representations introduced by Arthur.
- For π attached to $(M, \sigma), \theta_{f}(\pi)=(-1)^{a_{G}-a_{M}} J_{M}^{G}(\sigma, f)$, where $J_{M}^{G}(\sigma, f)$ is the weighted character defined by Arthur.

Spectral expansion

- Introduce $\mathcal{L}_{\pi}: \operatorname{End}(\pi)^{\infty} \rightarrow \mathbb{C}$ with

$$
\mathcal{L}_{\pi} \neq 0 \Leftrightarrow m(\pi) \neq 0, \quad \pi \in \operatorname{Temp}(G(F))
$$

Spectral expansion

- Introduce $\mathcal{L}_{\pi}: \operatorname{End}(\pi)^{\infty} \rightarrow \mathbb{C}$ with

$$
\mathcal{L}_{\pi} \neq 0 \Leftrightarrow m(\pi) \neq 0, \quad \pi \in \operatorname{Temp}(G(F))
$$

- For $\pi \in \operatorname{Temp}(G(F))$, set

$$
\mathcal{L}_{\pi}(T)=\int_{H(F)}^{*} \operatorname{Tr}\left(\pi\left(h^{-1}\right) T\right) \xi_{F}(h) d h, \quad T \in \operatorname{End}(\pi)^{\infty}
$$

In general, the integral is not absolutely convergent, need regularization. (Waldspurger, Lapid-Mao, Sakellaridis-Venkatesh, Beuzart-Plessis).

Spectral expansion

- Insert \mathcal{L}_{π} into the Plancherel formula on $G(F)$. More precisely,

$$
\begin{aligned}
K(f, x) & =\int_{H(F)} f\left(x^{-1} h x\right) d h \\
& =\int_{\mathcal{X}_{\text {temp }}(G(F))} \mathcal{L}_{\pi}\left(\pi(x) \pi(f) \pi\left(x^{-1}\right)\right) d \pi
\end{aligned}
$$

Spectral expansion

- Insert \mathcal{L}_{π} into the Plancherel formula on $G(F)$. More precisely,

$$
\begin{aligned}
K(f, x) & =\int_{H(F)} f\left(x^{-1} h x\right) d h \\
& =\int_{\mathcal{X}_{\text {temp }}(G(F))} \mathcal{L}_{\pi}\left(\pi(x) \pi(f) \pi\left(x^{-1}\right)\right) d \pi
\end{aligned}
$$

- By continuity, assume $f \in \mathcal{C}_{\text {scusp }}(G(F))$ has compactly supported Plancherel transform.

Spectral expansion

- Insert \mathcal{L}_{π} into the Plancherel formula on $G(F)$. More precisely,

$$
\begin{aligned}
K(f, x) & =\int_{H(F)} f\left(x^{-1} h x\right) d h \\
& =\int_{\mathcal{X}_{\mathrm{temp}}(G(F))} \mathcal{L}_{\pi}\left(\pi(x) \pi(f) \pi\left(x^{-1}\right)\right) d \pi
\end{aligned}
$$

- By continuity, assume $f \in \mathcal{C}_{\text {scusp }}(G(F))$ has compactly supported Plancherel transform.
- By compactness, choose $f^{\prime} \in \mathcal{C}(G(F))$ such that

$$
\overline{\mathcal{L}_{\pi}\left(\pi\left(\overline{f^{\prime}}\right)\right)}=m(\pi)
$$

for any $\pi \in \mathcal{X}_{\text {temp }}(G(F))$ with $\pi(f) \neq 0$.

Spectral expansion

- Compare the resulting formula with the spectral side of Arthur's local trace formula.

Spectral expansion

- Compare the resulting formula with the spectral side of Arthur's local trace formula.

$$
\begin{aligned}
K(f, x) & =\int_{\mathcal{X}_{\text {temp }}(G(F))} \mathcal{L}_{\pi}\left(\pi(x) \pi(f) \pi\left(x^{-1}\right)\right) \overline{\mathcal{L}_{\pi}\left(\pi\left(\overline{f^{\prime}}\right)\right)} d \pi \\
& =\int_{H(F)} \xi_{F}(h) d h \int_{H(F)} \xi_{F}\left(h^{\prime}\right) d h^{\prime} \int_{G(F)} f\left(x^{-1} h g h^{\prime} x\right) f^{\prime}(g) d g
\end{aligned}
$$

Spectral expansion

- Compare the resulting formula with the spectral side of Arthur's local trace formula.

$$
\begin{aligned}
K(f, x) & =\int_{\mathcal{X}_{\text {temp }}(G(F))} \mathcal{L}_{\pi}\left(\pi(x) \pi(f) \pi\left(x^{-1}\right)\right) \overline{\mathcal{L}_{\pi}\left(\pi\left(\overline{f^{\prime}}\right)\right)} d \pi \\
& =\int_{H(F)} \xi_{F}(h) d h \int_{H(F)} \xi_{F}\left(h^{\prime}\right) d h^{\prime} \int_{G(F)} f\left(x^{-1} h g h^{\prime} x\right) f^{\prime}(g) d g
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
& J(f)=\int_{H(F) \backslash G(F)} d x \int_{H(F)} \xi(h) d h \\
& \quad \int_{H(F)} \xi\left(h^{\prime}\right) d h^{\prime} \int_{G(F)} f\left(x^{-1} h g h^{\prime} x\right) f^{\prime}(g) d g
\end{aligned}
$$

Spectral expansion: comparasion with Arthur's trace formula

- After introducing truncation, showing the integral order can be switched, and changing variables

$$
J(f)=\int_{H(F)} \xi(h) d h \int_{G(F)} d g^{\prime} \int_{G(F)} f\left(g^{\prime-1} h g g^{\prime}\right) f^{\prime}(g) d g
$$

Spectral expansion: comparasion with Arthur's trace formula

- After introducing truncation, showing the integral order can be switched, and changing variables

$$
J(f)=\int_{H(F)} \xi(h) d h \int_{G(F)} d g^{\prime} \int_{G(F)} f\left(g^{\prime-1} h g g^{\prime}\right) f^{\prime}(g) d g
$$

- The inner integral $\int_{G(F)} \int_{G(F)}$ is exactly Arthur's local trace formula. Express in turns of spectral expansion of $J^{A}\left(f, f^{\prime}\right)$.

Spectral expansion: comparasion with Arthur's trace formula

- After introducing truncation, showing the integral order can be switched, and changing variables

$$
J(f)=\int_{H(F)} \xi(h) d h \int_{G(F)} d g^{\prime} \int_{G(F)} f\left(g^{\prime-1} h g g^{\prime}\right) f^{\prime}(g) d g
$$

- The inner integral $\int_{G(F)} \int_{G(F)}$ is exactly Arthur's local trace formula. Express in turns of spectral expansion of $J^{A}\left(f, f^{\prime}\right)$.
- $J(f)$ is equal to

$$
\begin{aligned}
J(f) & =\int_{\mathcal{X}(G(F))} D(\pi) \theta_{f}(\pi) \overline{\mathcal{L}_{\pi}\left(\pi\left(\overline{f^{\prime}}\right)\right)} d \pi \\
& =\int_{\mathcal{X}(G(F))} D(\pi) \theta_{f}(\pi) m(\pi) d \pi
\end{aligned}
$$

Geometric multiplicity formula

Theorem (L.)
For $\pi \in \operatorname{Temp}(G(F))$,

$$
m(\pi)=m_{\mathrm{geom}}(\pi)=\int_{\Gamma(G, H)} c_{\pi}(x) D^{G}(x)^{1 / 2} \Delta(x)^{-1 / 2} d x .
$$

- When F is p-adic it was proved by Waldspurger.

Geometric multiplicity formula: $\Gamma(G, H)$

$$
\Gamma(G, H):=\bigcup_{T \in \mathcal{T}} T_{\mathrm{reg}}(F) .
$$

\mathcal{T} is a set of subtori of $\mathrm{SO}(W)$.

Geometric multiplicity formula: $\Gamma(G, H)$

$$
\Gamma(G, H):=\bigcup_{T \in \mathcal{T}} T_{\mathrm{reg}}(F) .
$$

\mathcal{T} is a set of subtori of $\mathrm{SO}(W)$.
$T \in \mathcal{T}$ iff. $\quad T$ max. ell. in $\mathrm{SO}\left(W^{\prime \prime}\right)$ where $W^{\prime \prime} \subset W$ non-degenerate and $\operatorname{dim}\left(W / W^{\prime \prime}\right)$ even.

Geometric multiplicity formula: definition of c_{π}

Theorem (Harish-Chandra for p-adic, Barbasch-Vogan for Archimedean)
For $x \in G_{\mathrm{ss}}$ and $X \in \omega \subset \mathfrak{g}_{x}$ a small neighborhood of 0 , there exists constants $c_{\pi, \mathcal{O}}(x) \in \mathbb{C}$ such that

$$
\lim _{X \rightarrow 0} D^{G}\left(x e^{X}\right)^{1 / 2} \Theta_{\pi}\left(x e^{X}\right)=D^{G}(x)^{1 / 2} \sum_{\mathcal{O} \in \operatorname{Nili}_{\text {reg }}\left(\mathfrak{g}_{x}\right)} c_{\pi, \mathcal{O}}(x) \widehat{j}(\mathcal{O}, X)
$$

Here $\widehat{j}(\mathcal{O}, X)=\mathcal{F}\left(J_{\mathcal{O}}(\cdot)\right)$.

- The definition of c_{π}, first appeared in the work of Waldspurger, is the main technical ingredient.

Geometric multiplicity formula: definition of c_{π}

Theorem (Harish-Chandra for p-adic, Barbasch-Vogan for Archimedean)
For $x \in G_{\mathrm{ss}}$ and $X \in \omega \subset \mathfrak{g}_{x}$ a small neighborhood of 0 , there exists constants $c_{\pi, \mathcal{O}}(x) \in \mathbb{C}$ such that

$$
\lim _{x \rightarrow 0} D^{G}\left(x e^{x}\right)^{1 / 2} \Theta_{\pi}\left(x e^{x}\right)=D^{G}(x)^{1 / 2} \sum_{\mathcal{O} \in \mathrm{Nil}_{\mathrm{Ieg}}\left(\mathfrak{g}_{x}\right)} c_{\pi, \mathcal{O}}(x) \widehat{j}(\mathcal{O}, X) .
$$

Here $\hat{j}(\mathcal{O}, X)=\mathcal{F}\left(J_{\mathcal{O}}(\cdot)\right)$.

- The definition of c_{π}, first appeared in the work of Waldspurger, is the main technical ingredient.
- c_{π} is nonzero only when G_{X} is quasi-split. When it is the case, $c_{\pi}=c_{\pi, \mathcal{O}}$ for a particular $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}\left(\mathfrak{g}_{x}\right)$.

Geometric multiplicity formula: definition of c_{π}

- For unitary groups, $\mathrm{Nil}_{\text {reg }}\left(\mathfrak{g}_{x}\right)$ can be permuted by scaling. The geometric multiplicity is independent of the orbit chosen. Therefore set

$$
c_{\pi}(x):=\frac{\sum_{\mathcal{O} \in \operatorname{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{\mathrm{x}}\right)} c_{\pi, \mathcal{O}}}{\left|\operatorname{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)\right|}
$$

Geometric multiplicity formula: definition of c_{π}

- For unitary groups, $\mathrm{Nil}_{\text {reg }}\left(\mathfrak{g}_{x}\right)$ can be permuted by scaling. The geometric multiplicity is independent of the orbit chosen. Therefore set

$$
c_{\pi}(x):=\frac{\sum_{\mathcal{O} \in \operatorname{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)} c_{\pi, \mathcal{O}}}{\left|\mathrm{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)\right|}
$$

- Benefit:

$$
D^{G}(x)^{1 / 2} c_{\pi}(x)=\lim _{x^{\prime} \in T_{\mathrm{qd}, x}(F) \rightarrow x} \frac{D^{G}\left(x^{\prime}\right) \Theta_{\pi}\left(x^{\prime}\right)}{\left|W\left(G_{x}, T_{\mathrm{qd}, x}\right)\right|}
$$

where $T_{\mathrm{qd}, x} \subset B_{x} \subset G_{x}$.

Geometric multiplicity formula: definition of c_{π}

- For unitary groups, $\mathrm{Nil}_{\text {reg }}\left(\mathfrak{g}_{x}\right)$ can be permuted by scaling. The geometric multiplicity is independent of the orbit chosen. Therefore set

$$
c_{\pi}(x):=\frac{\sum_{\mathcal{O} \in \operatorname{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)} c_{\pi, \mathcal{O}}}{\left|\mathrm{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)\right|}
$$

- Benefit:

$$
D^{G}(x)^{1 / 2} c_{\pi}(x)=\lim _{x^{\prime} \in T_{\mathrm{qd}, x}(F) \rightarrow x} \frac{D^{G}\left(x^{\prime}\right) \Theta_{\pi}\left(x^{\prime}\right)}{\left|W\left(G_{x}, T_{\mathrm{qd}, x}\right)\right|}
$$

where $T_{\mathrm{qd}, \mathrm{x}} \subset B_{x} \subset G_{x}$.

- It is NOT the case for special orthogonal groups, really need to pick up a particular regular nilpotent orbit.

Geometric multiplicity formula: definition of c_{π}

- $\operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V)) \neq \emptyset$ iff. (V, q) is quasi-split. For $\operatorname{dim} V$ is odd or $\leq 2,\left|\operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V))\right|=1$.

Geometric multiplicity formula: definition of c_{π}

- $\operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V)) \neq \emptyset$ iff. (V, q) is quasi-split. For $\operatorname{dim} V$ is odd or $\leq 2,\left|\operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V))\right|=1$.
- For $\operatorname{dim} V=2 m$ is even and ≥ 4, set

$$
\mathcal{N}^{V}=\left\{\begin{array}{cc}
F^{\times} / F^{\times 2}, & \text { split } \\
\operatorname{Im}\left(q_{\mathrm{an}}\right) / F^{\times 2}, & \text { non-split. }
\end{array}\right.
$$

Then $\mathcal{N}^{V} \leftrightarrow \operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V))$.

Geometric multiplicity formula: definition of c_{π}

- $\operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V)) \neq \emptyset$ iff. (V, q) is quasi-split. For $\operatorname{dim} V$ is odd or $\leq 2,\left|\operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V))\right|=1$.
- For $\operatorname{dim} V=2 m$ is even and ≥ 4, set

$$
\mathcal{N}^{V}=\left\{\begin{array}{cc}
F^{\times} / F^{\times 2}, & \text { split } \\
\operatorname{Im}\left(q_{\text {an }}\right) / F^{\times 2}, & \text { non-split. }
\end{array}\right.
$$

Then $\mathcal{N}^{V} \leftrightarrow \operatorname{Nil}_{\text {reg }}(\mathfrak{s o}(V))$.

- Therefore

$$
\operatorname{Nil}_{\text {reg }}(\mathfrak{g}) \leftrightarrow \begin{cases}\mathcal{N}^{V}, & \operatorname{dim} V \text { is even } \geq 4 \\ \mathcal{N}^{W}, & \operatorname{dim} W \text { is even } \geq 4\end{cases}
$$

Geometric multiplicity formula: definition of c_{π}

- Recall $V=W \oplus\left\langle v_{0}\right\rangle \oplus Z$.

Geometric multiplicity formula: definition of c_{π}

- Recall $V=W \oplus\left\langle v_{0}\right\rangle \oplus Z$.
- Set $\nu_{0}=q\left(v_{0}\right)$. When $\operatorname{dim} V$ is even $\geq 4, \nu_{0} \in \mathcal{N}^{V}$; When $\operatorname{dim} W$ is even $\geq 4,-\nu_{0} \in \mathcal{N}^{W}$.

Geometric multiplicity formula: definition of c_{π}

- Recall $V=W \oplus\left\langle v_{0}\right\rangle \oplus Z$.
- Set $\nu_{0}=q\left(v_{0}\right)$. When $\operatorname{dim} V$ is even $\geq 4, \nu_{0} \in \mathcal{N}^{V}$; When $\operatorname{dim} W$ is even $\geq 4,-\nu_{0} \in \mathcal{N}^{W}$.
- For $x \in T_{\text {reg }} \in \mathcal{T}$, set $V_{x}^{\prime}\left(\right.$ resp. $\left.W_{x}^{\prime}\right)=\operatorname{ker}(1-x)$ in V (resp. W).

Geometric multiplicity formula: definition of c_{π}

- Recall $V=W \oplus\left\langle v_{0}\right\rangle \oplus Z$.
- Set $\nu_{0}=q\left(v_{0}\right)$. When $\operatorname{dim} V$ is even $\geq 4, \nu_{0} \in \mathcal{N}^{V}$; When $\operatorname{dim} W$ is even $\geq 4,-\nu_{0} \in \mathcal{N}^{W}$.
- For $x \in T_{\text {reg }} \in \mathcal{T}$, set $V_{x}^{\prime}\left(\right.$ resp. $\left.W_{x}^{\prime}\right)=\operatorname{ker}(1-x)$ in V (resp. W).
- Then

$$
G_{x}=G_{x}^{\prime} \times G_{x}^{\prime \prime}
$$

with $G_{x}^{\prime}=\mathrm{SO}\left(V_{x}^{\prime}\right) \times \mathrm{SO}\left(W_{x}^{\prime}\right), G_{x}^{\prime \prime}=T \times T$.

Geometric multiplicity formula: definition of c_{π}

- Recall $V=W \oplus\left\langle v_{0}\right\rangle \oplus Z$.
- Set $\nu_{0}=q\left(v_{0}\right)$. When $\operatorname{dim} V$ is even $\geq 4, \nu_{0} \in \mathcal{N}^{V}$; When $\operatorname{dim} W$ is even $\geq 4,-\nu_{0} \in \mathcal{N}^{W}$.
- For $x \in T_{\text {reg }} \in \mathcal{T}$, set $V_{x}^{\prime}\left(\right.$ resp. $\left.W_{x}^{\prime}\right)=\operatorname{ker}(1-x)$ in V (resp. W).
- Then

$$
G_{x}=G_{x}^{\prime} \times G_{x}^{\prime \prime}
$$

with $G_{x}^{\prime}=\mathrm{SO}\left(V_{x}^{\prime}\right) \times \mathrm{SO}\left(W_{x}^{\prime}\right), G_{x}^{\prime \prime}=T \times T$.

- When G_{x}^{\prime} is quasi-split, set

$$
c_{\pi}(x)=\left\{\begin{array}{lc}
c_{\pi, \mathcal{O}_{\nu_{0}}}, & \operatorname{dim} V_{x}^{\prime} \geq 4 \text { even } \\
c_{\pi, \mathcal{O}_{-\nu_{0}}}, & \operatorname{dim} W_{x}^{\prime} \geq 4 \text { even } \\
c_{\pi, \mathcal{O}_{\mathrm{reg}}}, & \text { otherwise }
\end{array}\right.
$$

The proof

The following properties are needed for φ a tempered L-parameter.

STAB For any $\alpha \in H^{1}(F, H)$,

$$
\Theta_{\alpha, \varphi}=\sum_{\pi \in \Pi^{\sigma_{\alpha}}(\varphi)} \Theta_{\pi} .
$$

is stable.
TRANS For $\alpha \in H^{1}(F, H), \Theta_{\alpha, \varphi}$ is the transfer of $e\left(G_{\alpha}\right) \Theta_{\varphi}$, where $e\left(G_{\alpha}\right) \in B r_{2}(F)$ is the Kottwitz sign. $B r_{2}(F)=\{ \pm 1\}$ if $F \neq \mathbb{C}$.
WHITT For G quasi-split and every $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}(\mathfrak{g})$, there exists a unique representation in $\Pi^{G}(\varphi)$ admitting a Whittaker model of type \mathcal{O}.

The proof

- For F Archimedean, LLC is known by R. Langlands, [STAB] and [TRANS] is known by D. Shelstad, and [WHITT] follows from B. Kostant and D. Vogan.

The proof

- For F Archimedean, LLC is known by R. Langlands, [STAB] and [TRANS] is known by D. Shelstad, and [WHITT] follows from B. Kostant and D. Vogan.
- For F p-adic, LLC is known from Arthur for quasi-split special orthogonal groups (need refinment for $\mathrm{SO}_{2 n}$).

The proof

- For F Archimedean, LLC is known by R. Langlands, [STAB] and [TRANS] is known by D. Shelstad, and [WHITT] follows from B. Kostant and D. Vogan.
- For F p-adic, LLC is known from Arthur for quasi-split special orthogonal groups (need refinment for $\mathrm{SO}_{2 n}$).
- For non quasi-split special orthogonal groups it is expected to follow from the last chapter of Arthur's book.

The proof

Lemma (L.)

For any $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}\left(\mathfrak{g}_{x}\right)$, define

$$
c_{\varphi, \mathcal{O}}(x):=\sum_{\pi \in \Pi^{G}(\varphi)} c_{\pi, \mathcal{O}}(x) .
$$

Then

$$
c_{\varphi, \mathcal{O}}(x)=c_{\varphi, \mathcal{O}^{\prime}}(x)
$$

for any $\mathcal{O}, \mathcal{O}^{\prime} \in \operatorname{Nil}_{\text {reg }}\left(\mathfrak{g}_{x}\right)$.
In particular,

$$
\begin{aligned}
D^{G}(x)^{1 / 2} c_{\varphi, \mathcal{O}}(x)= & \left|W\left(G_{x}, T_{\mathrm{qd}, x}\right)\right|^{-1} \\
& \lim _{x^{\prime} \in T_{\mathrm{qd}, x}(F) \rightarrow x} D^{G}\left(x^{\prime}\right) \sum_{\pi \in \Pi^{G}(\varphi)} \Theta_{\pi}\left(x^{\prime}\right) .
\end{aligned}
$$

The proof

$$
\begin{aligned}
& \quad \sum_{\alpha \in H^{1}(F, H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi)= \\
& \int_{\Gamma_{\text {stab }}(G, H)} c_{\varphi}(x)\left\{\sum_{\alpha \in H^{1}(F, H)} \sum_{y \in \Gamma\left(G_{\alpha}, H_{\alpha}\right), y \sim_{\text {stab } x}} e\left(G_{\alpha}\right)\right\} d x .
\end{aligned}
$$

The proof

$$
\begin{aligned}
& \sum_{\alpha \in H^{1}(F, H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi)= \\
& \int_{\Gamma_{\text {stab }}(G, H)} c_{\varphi}(x)\left\{\sum_{\alpha \in H^{1}(F, H)} \sum_{y \in \Gamma\left(G_{\alpha}, H_{\alpha}\right), y \sim_{\text {stab }} x} e\left(G_{\alpha}\right)\right\} d x \\
& \sum_{\alpha \in H^{1}(F, H)} \sum_{y \in \Gamma\left(G_{\alpha}, H_{\alpha}\right), y \sim_{\text {stab }} x} e\left(G_{\alpha}\right)=0
\end{aligned}
$$

unless $x=1$.

The proof

$$
\begin{aligned}
& \sum_{\alpha \in H^{1}(F, H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi)= \\
& \int_{\Gamma_{\text {stab }}(G, H)} C_{\varphi}(x)\left\{\sum_{\alpha \in H^{1}(F, H)} e\left(G_{\alpha}\right)\right\} d x \\
& \sum_{\alpha \in \Gamma\left(G_{\alpha}, H_{\alpha}\right), y \sim_{s t a b} x} e(F, H)=0
\end{aligned}
$$

unless $x=1$.

$$
\sum_{\alpha \in H^{1}(F, H)} \sum_{\pi \in \Pi^{\sigma_{\alpha}}(\varphi)} m(\pi)=c_{\varphi}(1)=1 .
$$

where the last identity follows from F . Rodier when F is p-adic, and H . Matumoto when F is Archimedean.

Geometric expansion

Theorem (L.)
For $f \in \mathcal{C}_{\text {scusp }}(G(F))$, set

$$
J_{\text {geom }}(f)=\int_{\Gamma(G, H)} c_{f}(x) D^{G}(x)^{1 / 2} \Delta(x)^{-1 / 2} d x
$$

Then $J_{\text {geom }}(f)$ is absolutely convergent, and

$$
J(f)=J_{\text {geom }}(f) .
$$

Geometric expansion: definitions

- Set

$$
\theta_{f}(x)=(-1)^{a_{G}-a_{M(x)}} D^{G}(x)^{-1 / 2} J_{M(x)}^{G}(x, f)
$$

Then $\theta_{f}(x)$ is conjugation invariant.

Geometric expansion: definitions

- Set

$$
\theta_{f}(x)=(-1)^{a_{G}-a_{M(x)}} D^{G}(x)^{-1 / 2} J_{M(x)}^{G}(x, f) .
$$

Then $\theta_{f}(x)$ is conjugation invariant.

- It is a quasi-character, i.e.
$\lim _{x \rightarrow 0} D^{G}\left(x e^{X}\right)^{1 / 2} \theta_{f}\left(x e^{X}\right)=D^{G}(x)^{1 / 2} \sum_{\mathcal{O} \in \mathrm{Nilil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)} c_{\theta_{f}, \mathcal{O}}(x) \widehat{j}(\mathcal{O}, X)$.

Geometric expansion: definitions

- Set

$$
\theta_{f}(x)=(-1)^{a_{G}-a_{M(x)}} D^{G}(x)^{-1 / 2} J_{M(x)}^{G}(x, f) .
$$

Then $\theta_{f}(x)$ is conjugation invariant.

- It is a quasi-character, i.e.

$$
\lim _{x \rightarrow 0} D^{G}\left(x e^{X}\right)^{1 / 2} \theta_{f}\left(x e^{X}\right)=D^{G}(x)^{1 / 2} \sum_{\mathcal{O} \in \operatorname{Nil}_{\mathrm{reg}}\left(\mathfrak{g}_{x}\right)} c_{\theta_{f}, \mathcal{O}}(x) \widehat{j}(\mathcal{O}, X)
$$

- Define

$$
c_{f}(x)=\left\{\begin{array}{lc}
c_{\theta_{f}, \mathcal{O}_{\nu_{0}}}, & \operatorname{dim} V_{x}^{\prime} \geq 4 \text { even } \\
c_{\theta_{f}, \mathcal{O}_{-}}, & \operatorname{dim} W_{x}^{\prime} \geq 4 \text { even } \\
c_{\theta_{f}, \mathcal{O}_{\mathrm{reg}}}, & \text { otherwise }
\end{array}\right.
$$

Geometric expansion: localization

- By partition of unity,

$$
\text { supp } \theta_{f} \subset\left\{\begin{array}{l}
\text { neighborhood of } x \neq 1 \\
\text { neighborhood of } x=1
\end{array}\right.
$$

Geometric expansion: localization

- By partition of unity,

$$
\text { supp } \theta_{f} \subset\left\{\begin{array}{l}
\text { neighborhood of } x \neq 1 \\
\text { neighborhood of } x=1
\end{array}\right.
$$

- For $x \in \mathrm{SO}(W)_{\mathrm{ss}}$, when $x \neq 1$,

$$
\left(G_{x}, H_{x}, \xi_{x}\right)=\left(G_{x}^{\prime}, H_{x}^{\prime}, \xi_{x}^{\prime}\right) \times\left(G_{x}^{\prime \prime}, H_{x}^{\prime \prime}, 1\right)
$$

$\left(G_{x}^{\prime}, H_{x}^{\prime}, \xi_{x}^{\prime}\right)$ is a GGP triple of smaller dimension, and $\left(G_{x}^{\prime \prime}, H_{x}^{\prime \prime}, 1\right)$ is $\Delta: H_{x}^{\prime \prime} \hookrightarrow H_{x}^{\prime \prime} \times H_{x}^{\prime \prime}=G_{x}^{\prime \prime}$.

Geometric expansion: localization

- By partition of unity,

$$
\text { supp } \theta_{f} \subset\left\{\begin{array}{l}
\text { neighborhood of } x \neq 1 \\
\text { neighborhood of } x=1
\end{array}\right.
$$

- For $x \in \mathrm{SO}(W)_{\mathrm{ss}}$, when $x \neq 1$,

$$
\left(G_{x}, H_{x}, \xi_{x}\right)=\left(G_{x}^{\prime}, H_{x}^{\prime}, \xi_{x}^{\prime}\right) \times\left(G_{x}^{\prime \prime}, H_{x}^{\prime \prime}, 1\right)
$$

$\left(G_{x}^{\prime}, H_{x}^{\prime}, \xi_{x}^{\prime}\right)$ is a GGP triple of smaller dimension, and $\left(G_{x}^{\prime \prime}, H_{x}^{\prime \prime}, 1\right)$ is $\Delta: H_{x}^{\prime \prime} \hookrightarrow H_{x}^{\prime \prime} \times H_{x}^{\prime \prime}=G_{x}^{\prime \prime}$.

- Induction on $\operatorname{dim} G$ and Arthur's local trace formula.

Geometric expansion: Lie algebra variant

- For supp $\theta_{f} \subset$ neighborhood of $x=1$, via exponential, descent to Lie algebra variants $J_{\text {geom }}^{\mathrm{Lie}}(f)$ and $J^{\mathrm{Lie}}(f)$.

Geometric expansion: Lie algebra variant

- For supp $\theta_{f} \subset$ neighborhood of $x=1$, via exponential, descent to Lie algebra variants $J_{\text {geom }}^{\text {Lie }}(f)$ and $J^{\text {Lie }}(f)$.
- $J_{\text {geom }}(f)$ contains asymptotic of weighted orbital integrals near singular locus, but Arthur's local trace formula only has regular semi-simple locus. Cannot compare directly.

Geometric expansion: Lie algebra variant

- Perform a Fourier transform on $\mathfrak{h}=\mathrm{LieH}$ to resolve the possible singularities,

$$
K^{\mathrm{Lie}}(f, x)=\int_{\mathfrak{h}} f\left(g X g^{-1}\right) \xi_{F}(X) d X=\int_{\equiv+\mathfrak{h}^{\perp}} \widehat{f}\left(g^{-1} X g\right) d X
$$

Geometric expansion: Lie algebra variant

- Perform a Fourier transform on $\mathfrak{h}=\mathrm{LieH}$ to resolve the possible singularities,

$$
\begin{gathered}
K^{\mathrm{Lie}}(f, x)=\int_{\mathfrak{h}} f\left(g X g^{-1}\right) \xi_{F}(X) d X=\int_{\Xi+\mathfrak{h}^{\perp}} \widehat{f}\left(g^{-1} X g\right) d X . \\
J^{\mathrm{Lie}}(f)=\int_{H(F) \backslash G(F)} d g \int_{\Xi+\mathfrak{h}^{\perp}} \widehat{f}\left(g^{-1} X g\right) d X .
\end{gathered}
$$

Geometric expansion: Lie algebra variant

- After truncation and changing integration order, compare with Arthur's weighted orbital integrals.

Geometric expansion: Lie algebra variant

- After truncation and changing integration order, compare with Arthur's weighted orbital integrals.
- For $f \in \mathcal{S}_{\text {scusp }}(\mathfrak{g}(F))$,

$$
J^{\mathrm{Lie}}(f)=\int_{\Gamma\left(\equiv+\mathfrak{h}^{\perp}\right)} D^{G}(X)^{1 / 2} \theta_{\widehat{f}}(X) d X
$$

Geometric expansion: Lie algebra variant

- After truncation and changing integration order, compare with Arthur's weighted orbital integrals.
- For $f \in \mathcal{S}_{\text {scusp }}(\mathfrak{g}(F))$,

$$
J^{\mathrm{Lie}}(f)=\int_{\Gamma\left(\equiv+\mathfrak{h}^{\perp}\right)} D^{G}(X)^{1 / 2} \theta_{\widehat{f}}(X) d X
$$

- $\Gamma\left(\equiv+\mathfrak{h}^{\perp}\right)=G(F)$-conjugacy classes of regular semi-simple elements in $\overline{\text { }}+\mathfrak{h}^{\perp}$.

Geometric expansion: Lie algebra variant

- Take Fourier inversion back for $J^{\text {Lie }}(f)$.

Geometric expansion: Lie algebra variant

- Take Fourier inversion back for $J^{\text {Lie }}(f)$.
- By Fourier transform for quasi-characters (Beuzart-Plessis),

$$
\theta_{f}=\int_{\Gamma(\mathfrak{g})} D^{G}(X)^{1 / 2} \theta_{\widehat{f}}(X) \hat{j}(X, \cdot) d X
$$

Geometric expansion: Lie algebra variant

- Take Fourier inversion back for $J^{\text {Lie }}(f)$.
- By Fourier transform for quasi-characters (Beuzart-Plessis),

$$
\theta_{f}=\int_{\Gamma(\mathfrak{g})} D^{G}(X)^{1 / 2} \theta_{\widehat{f}}(X) \hat{j}(X, \cdot) d X
$$

- $\widehat{j}(X, \cdot)=\mathcal{F}(J(X, \cdot))$ and

$$
\lim _{t \in F^{\times 2}, t \rightarrow 0} D^{G}(X, t Y) \widehat{j}(X, Y)=D^{G}(Y)^{1 / 2} \sum_{\mathcal{O} \in \mathrm{Nilil}_{\mathrm{reg}}(\mathfrak{g})} \Gamma_{\mathcal{O}}(X) \widehat{j}(\mathcal{O}, Y)
$$

(Shalika when F is p-adic, Beuzart-Plessis when F Archimedean)

Geometric expansion: Lie algebra variant

- Taking the regular germ, for any $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}(\mathfrak{g})$,

$$
c_{\theta_{f}, \mathcal{O}}(0)=\int_{\Gamma(\mathfrak{g})} D^{G}(X)^{1 / 2} \theta_{\widehat{f}}(X) \Gamma_{\mathcal{O}}(X) d X
$$

Geometric expansion: Lie algebra variant

- Taking the regular germ, for any $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}(\mathfrak{g})$,

$$
c_{\theta_{f}, \mathcal{O}}(0)=\int_{\Gamma(\mathfrak{g})} D^{G}(X)^{1 / 2} \theta_{\widehat{f}}(X) \Gamma_{\mathcal{O}}(X) d X
$$

- Need explicit formula for $\Gamma_{\mathcal{O}}(X)$.

Regular germ formula

Theorem (L.)
For G a quasi-split reductive algebraic group, $X \in \mathfrak{g}^{\text {rss }}(F)$ and $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}(\mathfrak{g})$, set $T_{G}=G_{X}$. Then

$$
\Gamma_{\mathcal{O}}(X)=\left\{\begin{array}{lc}
1, & \operatorname{inv}(X) \operatorname{inv}\left(T_{G}\right)=\operatorname{inv}_{T_{G}}(\mathcal{O}) \\
0, & \text { otherwise }
\end{array}\right.
$$

When F is p-adic the result was already proved by D. Shelstad.

Regular germ formula

- Fix an F-splitting for G.

Regular germ formula

- Fix an F-splitting for G.
- The invariants $\operatorname{inv}\left(T_{G}\right), \operatorname{inv}(X)$ and $\operatorname{inv}_{T_{G}}(\mathcal{O})$ all lie in $H^{1}\left(F, T_{G}\right)$.

Regular germ formula

- Fix an F-splitting for G.
- The invariants $\operatorname{inv}\left(T_{G}\right), \operatorname{inv}(X)$ and $\operatorname{inv}_{T_{G}}(\mathcal{O})$ all lie in $H^{1}\left(F, T_{G}\right)$.
- $\operatorname{inv}_{T_{G}}(\mathcal{O})$ measures the difference between \mathcal{O} and the regular nilpotent determined by the fixed F-splitting.

Regular germ formula

- Fix an F-splitting for G.
- The invariants $\operatorname{inv}\left(T_{G}\right), \operatorname{inv}(X)$ and $\operatorname{inv}_{T_{G}}(\mathcal{O})$ all lie in $H^{1}\left(F, T_{G}\right)$.
- $\operatorname{inv}_{T_{G}}(\mathcal{O})$ measures the difference between \mathcal{O} and the regular nilpotent determined by the fixed F-splitting.
- $\operatorname{inv}\left(T_{G}\right)$ is connected with the Langlands-Shelstad transfer factor Δ_{I}.

Regular germ formula

- Fix an F-splitting for G.
- The invariants $\operatorname{inv}\left(T_{G}\right), \operatorname{inv}(X)$ and $\operatorname{inv}_{T_{G}}(\mathcal{O})$ all lie in $H^{1}\left(F, T_{G}\right)$.
- $\operatorname{inv}_{T_{G}}(\mathcal{O})$ measures the difference between \mathcal{O} and the regular nilpotent determined by the fixed F-splitting.
- $\operatorname{inv}\left(T_{G}\right)$ is connected with the Langlands-Shelstad transfer factor Δ_{I}.
- $\operatorname{inv}(X)$ is connected with the Langlands-Shelstad transfer factor Δ_{II}.

Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem.
Theorem (L.)
$\Gamma_{\mathcal{O}}(X)=1$ if and only if the $G(F)$-orbit of X and \mathcal{O} lie in the $G(F)$-orbit of a common Kostant's section.

- Kostant constructed a section for $\mathfrak{g} \rightarrow \mathfrak{g} / / G \simeq \mathfrak{t} / W$, whose image in \mathfrak{g} contains only regular elements, and meets every regular stable $\operatorname{Ad}(G)$-orbit exactly once.

Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem.
Theorem (L.)
$\Gamma_{\mathcal{O}}(X)=1$ if and only if the $G(F)$-orbit of X and \mathcal{O} lie in the $G(F)$-orbit of a common Kostant's section.

- Kostant constructed a section for $\mathfrak{g} \rightarrow \mathfrak{g} / / G \simeq \mathfrak{t} / W$, whose image in \mathfrak{g} contains only regular elements, and meets every regular stable $\operatorname{Ad}(G)$-orbit exactly once.
- $\mathfrak{g}^{\text {reg }}:=\left\{X \in \mathfrak{g} \mid \quad \operatorname{dim} \operatorname{Cent}_{\mathfrak{g}}(X)=\operatorname{dim} \mathfrak{t}\right\}$. Regular elements are not necessarily semi-simple, e.g. regular nilpotent elements.

Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem.
Theorem (L.)
$\Gamma_{\mathcal{O}}(X)=1$ if and only if the $G(F)$-orbit of X and \mathcal{O} lie in the $G(F)$-orbit of a common Kostant's section.

- Kostant constructed a section for $\mathfrak{g} \rightarrow \mathfrak{g} / / G \simeq \mathfrak{t} / W$, whose image in \mathfrak{g} contains only regular elements, and meets every regular stable $\operatorname{Ad}(G)$-orbit exactly once.
- $\mathfrak{g}^{\text {reg }}:=\left\{X \in \mathfrak{g} \mid \quad \operatorname{dim} \operatorname{Cent}_{\mathfrak{g}}(X)=\operatorname{dim} \mathfrak{t}\right\}$. Regular elements are not necessarily semi-simple, e.g. regular nilpotent elements.
- The restriction of $\mathfrak{g} \rightarrow \mathfrak{t} / W$ to an $\operatorname{Ad}(G)$-orbit of a Kostant's section is a smooth submersion. The measures on the fibers are given by the relevant orbital integrals.

Geometric expansion: Lie algebra variant

- $\left\{\theta_{f} \mid \quad f \in \mathcal{S}_{\text {scusp }}(\mathfrak{g}(F))\right\}$ is dense in the space of quasi-characters on $\mathfrak{g}(F)$ when $F=\mathbb{R}$ or p-adic. Moreover, $\widehat{\theta}_{f}=\theta_{\widehat{f}}$ (Beuzart-Plessis).

Geometric expansion: Lie algebra variant

- $\left\{\theta_{f} \mid \quad f \in \mathcal{S}_{\text {scusp }}(\mathfrak{g}(F))\right\}$ is dense in the space of quasi-characters on $\mathfrak{g}(F)$ when $F=\mathbb{R}$ or p-adic. Moreover, $\widehat{\theta}_{f}=\theta_{\hat{f}}$ (Beuzart-Plessis).
- So reduce to show for any quasi-character θ,

$$
J^{\mathrm{Lie}}(\theta)=J_{\text {geom }}^{\text {Lie }}(\theta)
$$

with

$$
\begin{aligned}
J^{\mathrm{Lie}}(\theta) & =\int_{\Gamma\left(\equiv+\mathfrak{h}^{\perp}\right)} D^{G}(X)^{1 / 2} \widehat{\theta}(X) d X \\
J_{\text {geom }}^{\mathrm{Lie}}(\theta) & =\int_{\Gamma^{\mathrm{Lie}}(G, H)} c_{\theta}(X) D^{G}(X)^{1 / 2} \Delta(X)^{-1 / 2} d X
\end{aligned}
$$

Geometric expansion: Lie algebra variant

- By homogeneity of $J^{\text {Lie }}(\theta)$ and $J_{\text {geom }}^{\text {Lie }}(\theta)$, i.e.

$$
J_{\text {geom }}^{\mathrm{Lie}}\left(\theta_{\lambda}\right)=|\lambda|^{\delta(G) / 2} J_{\text {geom }}^{\mathrm{Lie}}(\theta)
$$

where $\theta_{\lambda}(X)=\theta\left(\lambda^{-1} X\right)$, we can show:

$$
J^{\mathrm{Lie}}(\theta)-J_{\text {geom }}^{\text {Lie }}(\theta)=\sum_{\mathcal{O} \in \mathrm{Nil}_{\mathrm{reg}}(\mathfrak{g})} c_{\mathcal{O}} c_{\theta, \mathcal{O}}(0)
$$

for some constant $c_{\mathcal{O}} \in \mathbb{C}$.

Geometric expansion: Lie algebra variant

- By homogeneity of $J^{\mathrm{Lie}}(\theta)$ and $J_{\text {geom }}^{\text {Lie }}(\theta)$, i.e.

$$
J_{\text {geom }}^{\text {Lie }}\left(\theta_{\lambda}\right)=|\lambda|^{\delta(G) / 2} J_{\text {geom }}^{\text {Lie }}(\theta)
$$

where $\theta_{\lambda}(X)=\theta\left(\lambda^{-1} X\right)$, we can show:

$$
J^{\mathrm{Lie}}(\theta)-J_{\text {geom }}^{\text {Lie }}(\theta)=\sum_{\mathcal{O} \in \mathrm{Nil}_{\mathrm{reg}}(\mathfrak{g})} c_{\mathcal{O}} c_{\theta, \mathcal{O}}(0)
$$

for some constant $c_{\mathcal{O}} \in \mathbb{C}$.

$$
c_{\theta, \mathcal{O}}(0)=\int_{\Gamma(\mathfrak{g})} D^{G}(X)^{1 / 2} \widehat{\theta}(X) \Gamma_{\mathcal{O}}(X) d X
$$

Geometric expansion: Lie algebra variant

- To prove that $c_{\mathcal{O}}=0$, for $X \in \mathfrak{g}^{\mathrm{rss}}(F)$ with

$$
\mathfrak{t}_{X}^{G} \cap \Gamma(G, H)=\{0\}
$$

attach it with quasi-character $\theta_{X}=\widehat{j}(X, \cdot)$ supported on \mathfrak{t}_{X}^{G},

Geometric expansion: Lie algebra variant

- To prove that $c_{\mathcal{O}}=0$, for $X \in \mathfrak{g}^{\mathrm{rss}}(F)$ with

$$
\mathfrak{t}_{X}^{G} \cap \Gamma(G, H)=\{0\}
$$

attach it with quasi-character $\theta_{X}=\widehat{j}(X, \cdot)$ supported on \mathfrak{t}_{X}^{G},

- In particular, $c_{\theta_{X}, \mathcal{O}}(0)=\Gamma_{\mathcal{O}}(X)$, and

$$
J_{\text {geom }}^{\text {Lie }}\left(\theta_{X}\right)=\left\{\begin{array}{lc}
\Gamma_{\mathcal{O}}(X), & \left|\operatorname{Nil}_{\text {reg }}(\mathfrak{g})\right|=1 \\
\Gamma_{\mathcal{O}_{\nu_{0}}}(X), & \operatorname{dim} V \text { even } \geq 4 \\
\Gamma_{\mathcal{O}_{-\nu_{0}}}(X), & \operatorname{dim} W \text { even } \geq 4
\end{array}\right.
$$

Geometric expansion: Lie algebra variant

- To prove that $c_{\mathcal{O}}=0$, for $X \in \mathfrak{g}^{\mathrm{rss}}(F)$ with

$$
\mathfrak{t}_{X}^{G} \cap \Gamma(G, H)=\{0\}
$$

attach it with quasi-character $\theta_{X}=\widehat{j}(X, \cdot)$ supported on \mathfrak{t}_{X}^{G},

- In particular, $c_{\theta_{X}, \mathcal{O}}(0)=\Gamma_{\mathcal{O}}(X)$, and

$$
J_{\text {geom }}^{\text {Lie }}\left(\theta_{X}\right)=\left\{\begin{array}{lc}
\Gamma_{\mathcal{O}}(X), & \left|\operatorname{Nil}_{\text {reg }}(\mathfrak{g})\right|=1 \\
\Gamma_{\mathcal{O}_{\nu_{0}}}(X), & \operatorname{dim} V \text { even } \geq 4 \\
\Gamma_{\mathcal{O}_{-\nu_{0}}}(X), & \operatorname{dim} W \text { even } \geq 4
\end{array}\right.
$$

- Similarly,

$$
J^{\text {Lie }}\left(\theta_{X}\right)=\left\{\begin{array}{cc}
c_{\theta_{X}, \mathcal{O}}(0)=\Gamma_{\mathcal{O}}(X), & X \in \equiv+\mathfrak{h}^{\perp}, \Gamma_{\mathcal{O}}(X)=1, \\
0, & \text { Otherwise },
\end{array}\right.
$$

Geometric expansion: Lie algebra variant

- When $\left|\operatorname{Nil}_{\text {reg }}(\mathfrak{g})\right|=1$, for $X \in{\underset{q}{q d}}_{\mathfrak{r}_{\text {rss }}}, \Gamma_{\mathcal{O}}(X)=1$ identically, and $X \in \equiv+\mathfrak{h}^{\perp}$, therefore

$$
J_{\text {geom }}^{\mathrm{Lie}}\left(\theta_{X}\right)=J^{\mathrm{Lie}}\left(\theta_{X}\right)=1
$$

Hence $c_{\mathcal{O}}=0$.

Geometric expansion: Lie algebra variant

- When $\left|\operatorname{Nil}_{\text {reg }}(\mathfrak{g})\right|=1$, for $X \in{\underset{q}{q d}}_{\mathfrak{r}_{\text {rss }}}, \Gamma_{\mathcal{O}}(X)=1$ identically, and $X \in \equiv+\mathfrak{h}^{\perp}$, therefore

$$
J_{\text {geom }}^{\mathrm{Lie}}\left(\theta_{X}\right)=J^{\mathrm{Lie}}\left(\theta_{X}\right)=1
$$

Hence $c_{\mathcal{O}}=0$.

- In general, when $\operatorname{dim} V$ (resp. $\operatorname{dim} W$) even $\geq 4, \mathcal{O}_{\nu_{0}}$ (resp. $\mathcal{O}_{-\nu_{0}}$) is the unique regular nilpotent orbit \mathcal{O} in $\operatorname{Nil}_{\text {reg }}(\mathfrak{g})$, such that if $\Gamma_{\mathcal{O}}(X)=1$, then $X \in \Xi+\mathfrak{h}^{\perp}$.

Geometric expansion: Lie algebra variant

- When $\left|\operatorname{Nil}_{\text {reg }}(\mathfrak{g})\right|=1$, for $X \in{\underset{q}{q d}}_{\mathfrak{r}_{\text {rss }}}, \Gamma_{\mathcal{O}}(X)=1$ identically, and $X \in \equiv+\mathfrak{h}^{\perp}$, therefore

$$
J_{\text {geom }}^{\mathrm{Lie}}\left(\theta_{X}\right)=J^{\mathrm{Lie}}\left(\theta_{X}\right)=1
$$

Hence $c_{\mathcal{O}}=0$.

- In general, when $\operatorname{dim} V$ (resp. $\operatorname{dim} W$) even $\geq 4, \mathcal{O}_{\nu_{0}}$ (resp. $\mathcal{O}_{-\nu_{0}}$) is the unique regular nilpotent orbit \mathcal{O} in $\operatorname{Nil}_{\text {reg }}(\mathfrak{g})$, such that if $\Gamma_{\mathcal{O}}(X)=1$, then $X \in \equiv+\mathfrak{h}^{\perp}$.
- Therefore $c_{\mathcal{O}}=0$ for any $\mathcal{O} \in \operatorname{Nil}_{\text {reg }}(\mathfrak{g})$.

Geometric expansion: Lie algebra variant

- To prove the above claim, we need explicit formula for $\Gamma_{\mathcal{O}}(X)$, and find relation between the formula and $X \in \Xi+\mathfrak{h}^{\perp}$.

Geometric expansion: Lie algebra variant

- To prove the above claim, we need explicit formula for $\Gamma_{\mathcal{O}}(X)$, and find relation between the formula and $X \in \Xi+\mathfrak{h}^{\perp}$.
- We compute the invariants $\frac{\operatorname{inv}\left(T_{G}\right) \operatorname{inv}(X)}{\operatorname{inv} T_{G}(\mathcal{O})}$ explicitly for any $X \in \mathfrak{g}^{\text {rss }}$ without eigenvalue 0 , following the work of Waldspurger.

Thank you!

