A Local Trace Formula for the Local Gan-Gross-Prasad Conjecture for Special Orthogonal Groups

Zhilin Luo

University of Minnesota

Automorphic forms and arithmetic, Columbia university December 11, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\mathrm{SO}_2(\mathbb{R}) \hookrightarrow \mathrm{SO}_3(\mathbb{R})$ compact.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $SO_2(\mathbb{R}) \hookrightarrow SO_3(\mathbb{R})$ compact. $m(\pi) = \dim \operatorname{Hom}_{SO_2(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}(SO_3(\mathbb{R})).$ • By Frobenius reciprocity,

$$m(\pi) = \dim \operatorname{Hom}_{\operatorname{SO}_3(\mathbb{R})}(\pi, \operatorname{Ind}_{\operatorname{SO}_2(\mathbb{R})}^{\operatorname{SO}_3(\mathbb{R})}(\mathbb{C})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $SO_2(\mathbb{R}) \hookrightarrow SO_3(\mathbb{R})$ compact. $m(\pi) = \dim \operatorname{Hom}_{\operatorname{SO}_2(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}(\operatorname{SO}_3(\mathbb{R})).$ By Frobenius reciprocity, $m(\pi) = \dim \operatorname{Hom}_{\operatorname{SO}_3(\mathbb{R})}(\pi, \operatorname{Ind}_{\operatorname{SO}_2(\mathbb{R})}^{\operatorname{SO}_3(\mathbb{R})}(\mathbb{C})).$ $\operatorname{Ind}_{\operatorname{SO}_2(\mathbb{R})}^{\operatorname{SO}_3(\mathbb{R})}(\mathbb{C}) \simeq L^2(S^2).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$SO_{2}(\mathbb{R}) \hookrightarrow SO_{3}(\mathbb{R}) \quad \text{compact.}$$

$$m(\pi) = \dim \operatorname{Hom}_{SO_{2}(\mathbb{R})}(\pi, \mathbb{C}), \quad \pi \in \operatorname{Irr}(SO_{3}(\mathbb{R})).$$
By Frobenius reciprocity,
$$m(\pi) = \dim \operatorname{Hom}_{SO_{3}(\mathbb{R})}(\pi, \operatorname{Ind}_{SO_{2}(\mathbb{R})}^{SO_{3}(\mathbb{R})}(\mathbb{C})).$$

$$\operatorname{Ind}_{SO_{2}(\mathbb{R})}^{SO_{3}(\mathbb{R})}(\mathbb{C}) \simeq L^{2}(S^{2}).$$

$$L^{2}(S^{2}) \curvearrowleft SO_{3}(\mathbb{R}) \quad \text{spectral decomposition.}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

By the theory of spherical harmonics,

$$L^2(S^2)\simeq \widehat{\bigoplus}_{I=0}^{\infty}H_I,$$

 H_l =spherical harmonics of deg. I, dim = 2l + 1, H_l is an irr. rep. of SO₃(\mathbb{R}).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

By the theory of spherical harmonics,

$$L^2(S^2)\simeq \widehat{\bigoplus}_{I=0}^{\infty}H_I,$$

 H_l =spherical harmonics of deg. I, dim = 2l + 1, H_l is an irr. rep. of SO₃(\mathbb{R}).

 $\dim \operatorname{Hom}_{\operatorname{SO}_3(\mathbb{R})}(\pi, L^2(S^2)) = 1, \quad \text{for any } \pi \in \operatorname{Irr}(\operatorname{SO}_3(\mathbb{R})).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

By the theory of spherical harmonics,

$$L^2(S^2)\simeq \widehat{\bigoplus}_{I=0}^{\infty}H_I,$$

 H_l =spherical harmonics of deg. I, dim = 2l + 1, H_l is an irr. rep. of SO₃(\mathbb{R}).

 $\dim \operatorname{Hom}_{\operatorname{SO}_3(\mathbb{R})}(\pi, L^2(S^2)) = 1, \quad \text{for any } \pi \in \operatorname{Irr}(\operatorname{SO}_3(\mathbb{R})).$

$$m(\pi) = \frac{\int_{\mathrm{SO}_2(\mathbb{R})} \Theta_{\pi}(h) dh}{\mathrm{vol}(\mathrm{SO}_2(\mathbb{R}), dh)},$$

by Schur's orthogonality.

► F local field of char. zero.

- ► F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.
- $W^{\perp} = \langle v_0 \rangle \oplus Z$ split of odd dim.

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.
- $W^{\perp} = \langle v_0 \rangle \oplus Z$ split of odd dim.
- N = unipotent radical of the parabolic subgroup of SO(V) stabilizing the full isotropic flag determined by W[⊥].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.
- $W^{\perp} = \langle v_0 \rangle \oplus Z$ split of odd dim.
- N = unipotent radical of the parabolic subgroup of SO(V) stabilizing the full isotropic flag determined by W[⊥].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\blacktriangleright \ G = \mathrm{SO}(W) \times \mathrm{SO}(V).$$

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.
- $W^{\perp} = \langle v_0 \rangle \oplus Z$ split of odd dim.
- N = unipotent radical of the parabolic subgroup of SO(V) stabilizing the full isotropic flag determined by W[⊥].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\blacktriangleright \ G = \mathrm{SO}(W) \times \mathrm{SO}(V).$$

• $H = SO(W) \ltimes N \hookrightarrow G$, with $\Delta : SO(W) \hookrightarrow G$.

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.
- $W^{\perp} = \langle v_0 \rangle \oplus Z$ split of odd dim.
- N = unipotent radical of the parabolic subgroup of SO(V) stabilizing the full isotropic flag determined by W[⊥].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\blacktriangleright \ G = \mathrm{SO}(W) \times \mathrm{SO}(V).$$

- $H = SO(W) \ltimes N \hookrightarrow G$, with $\Delta : SO(W) \hookrightarrow G$.
- $\xi = a$ generic character of N extending to H.

- F local field of char. zero.
- $W \hookrightarrow V$ quadratic spaces /F.
- $W^{\perp} = \langle v_0 \rangle \oplus Z$ split of odd dim.
- N = unipotent radical of the parabolic subgroup of SO(V) stabilizing the full isotropic flag determined by W[⊥].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\blacktriangleright \ G = \mathrm{SO}(W) \times \mathrm{SO}(V).$$

- $H = SO(W) \ltimes N \hookrightarrow G$, with $\Delta : SO(W) \hookrightarrow G$.
- $\xi = a$ generic character of N extending to H.
- (G, H, ξ) is called a **Gan-Gross-Prasad** triple.

Multiplicity one

Set

$$m(\pi) = \dim \operatorname{Hom}_{H(F)}(\pi,\xi_F), \quad \pi \in \operatorname{Irr}(G(F))$$

Theorem. $m(\pi) \leq 1.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Multiplicity one

Set

$$m(\pi) = \dim \operatorname{Hom}_{H(F)}(\pi, \xi_F), \quad \pi \in \operatorname{Irr}(G(F))$$

Theorem.

$$m(\pi) \leq 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For F p-adic, proved by A. Aizenbud-D. Gourevitch-S. Rallis-G. Schiffmann for r = 0, and W. Gan-B.Gross-D.Prasad reducing the general case to r = 0.

Multiplicity one

Set

$$m(\pi) = \dim \operatorname{Hom}_{H(F)}(\pi, \xi_F), \quad \pi \in \operatorname{Irr}(G(F))$$

Theorem.

$$m(\pi) \leq 1.$$

- For F p-adic, proved by A. Aizenbud-D. Gourevitch-S. Rallis-G. Schiffmann for r = 0, and W. Gan-B.Gross-D.Prasad reducing the general case to r = 0.
- For F Archimedean, proved by B. Sun-C. Zhu for r = 0, and D. Jiang-Sun-Zhu reducing the general case to r = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The local Gan-Gross-Prasad conjecture suggests that m(π) has more stable behavior by considering the local Vogan packet attached to (G, H, ξ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The local Gan-Gross-Prasad conjecture suggests that m(π) has more stable behavior by considering the local Vogan packet attached to (G, H, ξ).
- ► To introduce local Vogan packets, consider pure inner forms of SO(W), parametrized by H¹(F, SO(W)) ≃ H¹(F, H)

- The local Gan-Gross-Prasad conjecture suggests that m(π) has more stable behavior by considering the local Vogan packet attached to (G, H, ξ).
- ► To introduce local Vogan packets, consider pure inner forms of SO(W), parametrized by H¹(F, SO(W)) ≃ H¹(F, H)

For $\alpha \in H^1(F, H)$, there exists

$$(W_{\alpha}, V_{\alpha} = W_{\alpha} \oplus W^{\perp})$$

dim $W_{\alpha} = \dim W$, disc $W_{\alpha} = \operatorname{disc} W$, with a GGP triple

 $(G_{\alpha}, H_{\alpha}, \xi_{\alpha}).$

Moreover

 ${}^{L}G_{\alpha}\simeq {}^{L}G.$

Conjecture.(Gan-Gross-Prasad) For any generic *L*-parameter $\varphi : \mathcal{W}_F \to {}^LG$ with *L*-packet $\Pi^G(\varphi)$,

$$\sum_{\alpha \in H^1(F,H)} \sum_{\pi \in \Pi^{\mathcal{G}_{\alpha}}(\varphi)} m(\pi) = 1.$$

Moreover, the non-vanishing of $m(\pi)$ is detected by representations of the component group A_{φ} attached to φ , which is related to the sign of the relevant local symplectic root numbers.

> φ is $\begin{cases} \text{generic,} & L(s, \varphi, \text{Ad}) \text{ is holomorphic at } s = 1 \\ \text{tempered,} & \text{Im}(\varphi) \text{ is bounded} \end{cases}$

Local Gan-Gross-Prasad conjecture: *p*-adic

 J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger (generic) proved the conjecture completely when F is p-adic (Assuming LLC for non quasi-split SO and quasi-split SO_{2n}).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local Gan-Gross-Prasad conjecture: *p*-adic

- J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger (generic) proved the conjecture completely when F is p-adic (Assuming LLC for non quasi-split SO and quasi-split SO_{2n}).
- The local GGP conjecture speculates parallel behaviors for unitary groups. R. Beuzart-Plessis (tempered) and Gan-A. Ichino (generic) proved the conjecture when F is p-adic.

Local Gan-Gross-Prasad conjecture: *p*-adic

- J.-L. Waldspurger (tempered) and C. Moeglin-Waldspurger (generic) proved the conjecture completely when F is p-adic (Assuming LLC for non quasi-split SO and quasi-split SO_{2n}).
- The local GGP conjecture speculates parallel behaviors for unitary groups. R. Beuzart-Plessis (tempered) and Gan-A. Ichino (generic) proved the conjecture when F is p-adic.

There are parallel conjectures for skew-hermitian unitary groups and symplectic-metaplectic groups. Gan-Ichino proved the conjecture for skew-hermitian unitary groups, and H. Atobe for symplectic-metaplectic groups, via theta correspondence when F is p-adic.

Local Gan-Gross-Prasad conjecture: Archimedean

For unitary groups, when F = R, Beuzart-Plessis proved the multiplicity part of the conjecture for φ tempered.

H. He proved the conjecture for discrete series representations.

H. Xue proved the conjecture for φ tempered.

Local Gan-Gross-Prasad conjecture: Archimedean

- For unitary groups, when F = R, Beuzart-Plessis proved the multiplicity part of the conjecture for φ tempered.
 - H. He proved the conjecture for discrete series representations.

- H. Xue proved the conjecture for φ tempered.
- ▶ For special orthogonal groups, when F = C,
 J. Möllers proved the conjecture for SO(n) × SO(n + 1).

The theorem

In the special orthogonal groups setting, we prove the following theorem.

Theorem (L.)

For any tempered L-parameter $\varphi: \mathcal{W}_{\mathsf{F}} \to {}^{\mathsf{L}}\mathsf{G}$,

$$\sum_{\alpha \in H^1(F,H)} \sum_{\pi \in \Pi^{G_\alpha}(\varphi)} m(\pi) = 1.$$

▶ We follow the approach of Waldspurger and Beuzart-Plessis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For π ∈ Temp(G(F)), by Frobenius reciprocity for unitary representations,

 $\operatorname{Hom}_{H(F)}(\pi,\xi_F)\simeq \operatorname{Hom}_{G(F)}(\pi,\operatorname{Ind}_{H}^{G}\xi_F)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\operatorname{Ind}_{H}^{G}\xi = L^{2}(H(F) \setminus G(F), \xi_{F}).$

For π ∈ Temp(G(F)), by Frobenius reciprocity for unitary representations,

```
\operatorname{Hom}_{H(F)}(\pi,\xi_F)\simeq \operatorname{Hom}_{G(F)}(\pi,\operatorname{Ind}_{H}^{G}\xi_F)
```

```
where \operatorname{Ind}_{H}^{G}\xi = L^{2}(H(F) \setminus G(F), \xi_{F}).
```

 $L^{2}(H(F)\setminus G(F),\xi_{F}) \curvearrowleft G(F)$ spectral decomposition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Following Arthur,

 $L^{2}(H(F)\setminus G(F),\xi) \curvearrowleft C^{\infty}_{c}(G(F))$ via convolution.

Following Arthur,

 $L^{2}(H(F)\backslash G(F),\xi) \curvearrowleft C^{\infty}_{c}(G(F)) \text{ via convolution.}$ $\blacktriangleright \text{ For } f \in C^{\infty}_{c}(G(F)), x \in G(F), \varphi \in L^{2}(H(F)\backslash G(F),\xi_{F}),$ $(R(f)\varphi)(x) = \int_{G(F)} f(g)\varphi(xg)dg = \int_{H(F)\backslash G(F)} K_{f}(x,y)\varphi(y)dy$

where

$$K_f(x,y) = \int_{H(F)} f(x^{-1}hy)\xi_F(h)dh, \quad x,y \in G(F).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Following Arthur,

 $L^{2}(H(F)\backslash G(F),\xi) \curvearrowleft C^{\infty}_{c}(G(F)) \text{ via convolution.}$ $\blacktriangleright \text{ For } f \in C^{\infty}_{c}(G(F)), x \in G(F), \varphi \in L^{2}(H(F)\backslash G(F),\xi_{F}),$ $(R(f)\varphi)(x) = \int_{G(F)} f(g)\varphi(xg)dg = \int_{H(F)\backslash G(F)} K_{f}(x,y)\varphi(y)dy$

where

$$K_f(x,y) = \int_{H(F)} f(x^{-1}hy)\xi_F(h)dh, \quad x,y \in G(F).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• R(f) has an integral kernel $K_f(x, y)$.

► Formally,

 $\operatorname{Tr}(R(f)) \sim \int_{H(F)\setminus G(F)} K(x,x) dx.$
Formally,
$$\operatorname{Tr}(R(f)) \sim \int_{H(F) \setminus G(F)} K(x, x) dx.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

In general, RHS is not absolutely convergent.

Formally,

$$\operatorname{Tr}(R(f)) \sim \int_{H(F) \setminus G(F)} K(x, x) dx.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In general, RHS is not absolutely convergent.

► Work with *strongly cuspidal* functions.

Formally,

$$\operatorname{Tr}(R(f)) \sim \int_{H(F)\setminus G(F)} K(x,x) dx.$$

In general, RHS is not absolutely convergent.

► Work with *strongly cuspidal* functions.

• $f \in \mathcal{C}^{\infty}_{c}(G(F))$ is called strongly cuspidal if

$$\int_{U(F)} f(mu) du = 0, \quad m \in M(F)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any proper parabolic subgroup P = MU of G.

Formally,

$$\operatorname{Tr}(R(f)) \sim \int_{H(F)\setminus G(F)} K(x,x) dx.$$

In general, RHS is not absolutely convergent.

Work with strongly cuspidal functions.

• $f \in \mathcal{C}^{\infty}_{c}(G(F))$ is called strongly cuspidal if

$$\int_{U(F)} f(mu) du = 0, \quad m \in M(F)$$

for any proper parabolic subgroup P = MU of G.

 Similarly, define strongly cuspidal functions in the Harish-Chandra Schwartz space C(G(F)) of G(F), denoted as C_{scusp}(G(F)).

Theorem (L.) For $f \in C_{scusp}(G(F))$,

$$J(f) = \int_{H(F)\setminus G(F)} K_f(x,x) dx$$

is absolutely convergent.

Establish spectral and geometric expansions for J(f) through comparing with Arthur's local trace formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (L.) For $f \in C_{scusp}(G(F))$, set

$$J_{\rm spec}(f) = \int_{\mathcal{X}(G(F))} D(\pi) \theta_f(\pi) m(\pi) d\pi.$$

Then $J_{spec}(f)$ is absolutely convergent, and

$$J(f) = J_{\text{spec}}(f).$$

► $\mathcal{X}(G(F)) := \{(M, \sigma) | \sigma \in T_{ell}(M(F))\}/conj.$, where $T_{ell}(M(F)) = elliptic representations introduced by Arthur.$

Theorem (L.) For $f \in C_{scusp}(G(F))$, set

$$J_{\rm spec}(f) = \int_{\mathcal{X}(G(F))} D(\pi) \theta_f(\pi) m(\pi) d\pi.$$

Then $J_{\text{spec}}(f)$ is absolutely convergent, and

$$J(f) = J_{\text{spec}}(f).$$

- ► $\mathcal{X}(G(F)) := \{(M, \sigma) | \sigma \in T_{ell}(M(F))\}/conj.$, where $T_{ell}(M(F)) = elliptic representations introduced by Arthur.$
- For π attached to (M, σ) , $\theta_f(\pi) = (-1)^{a_G a_M} J_M^G(\sigma, f)$, where $J_M^G(\sigma, f)$ is the weighted character defined by Arthur.

• Introduce $\mathcal{L}_{\pi} : \operatorname{End}(\pi)^{\infty} \to \mathbb{C}$ with

$$\mathcal{L}_{\pi} \neq 0 \Leftrightarrow m(\pi) \neq 0, \quad \pi \in \operatorname{Temp}(\mathcal{G}(F)).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

▶ Introduce
$$\mathcal{L}_{\pi} : \operatorname{End}(\pi)^{\infty} \to \mathbb{C}$$
 with

$$\mathcal{L}_{\pi} \neq 0 \Leftrightarrow m(\pi) \neq 0, \quad \pi \in \operatorname{Temp}(G(F)).$$

For $\pi \in \text{Temp}(G(F))$, set

$$\mathcal{L}_{\pi}(T) = \int_{H(F)}^{*} \operatorname{Tr}(\pi(h^{-1})T)\xi_{F}(h)dh, \quad T \in \operatorname{End}(\pi)^{\infty}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In general, the integral is not absolutely convergent, need regularization. (Waldspurger, Lapid-Mao, Sakellaridis-Venkatesh, Beuzart-Plessis).

Insert *L_π* into the Plancherel formula on *G*(*F*). More precisely,

$$egin{aligned} \mathcal{K}(f,x) &= \int_{\mathcal{H}(F)} f(x^{-1}hx) dh \ &= \int_{\mathcal{X}_{ ext{temp}}(G(F))} \mathcal{L}_{\pi}(\pi(x)\pi(f)\pi(x^{-1})) d\pi. \end{aligned}$$

Insert L_π into the Plancherel formula on G(F). More precisely,

$$egin{aligned} \mathcal{K}(f,x) &= \int_{\mathcal{H}(F)} f(x^{-1}hx) dh \ &= \int_{\mathcal{X}_{ ext{temp}}(G(F))} \mathcal{L}_{\pi}(\pi(x)\pi(f)\pi(x^{-1})) d\pi. \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

By continuity, assume f ∈ C_{scusp}(G(F)) has compactly supported Plancherel transform.

Insert L_π into the Plancherel formula on G(F). More precisely,

$$egin{aligned} \mathcal{K}(f,x) &= \int_{\mathcal{H}(F)} f(x^{-1}hx) dh \ &= \int_{\mathcal{X}_{ ext{temp}}(G(F))} \mathcal{L}_{\pi}(\pi(x)\pi(f)\pi(x^{-1})) d\pi. \end{aligned}$$

- By continuity, assume f ∈ C_{scusp}(G(F)) has compactly supported Plancherel transform.
- ▶ By compactness, choose $f' \in C(G(F))$ such that

$$\overline{\mathcal{L}_{\pi}(\pi(\overline{f'}))} = m(\pi)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for any $\pi \in \mathcal{X}_{temp}(G(F))$ with $\pi(f) \neq 0$.

 Compare the resulting formula with the spectral side of Arthur's local trace formula.

Compare the resulting formula with the spectral side of Arthur's local trace formula.

$$\begin{split} \mathcal{K}(f,x) &= \int_{\mathcal{X}_{\text{temp}}(G(F))} \mathcal{L}_{\pi}(\pi(x)\pi(f)\pi(x^{-1}))\overline{\mathcal{L}_{\pi}(\pi(\overline{f'}))} d\pi. \\ &= \int_{\mathcal{H}(F)} \xi_F(h) dh \int_{\mathcal{H}(F)} \xi_F(h') dh' \int_{G(F)} f(x^{-1}hgh'x) f'(g) dg. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Compare the resulting formula with the spectral side of Arthur's local trace formula.

$$\begin{split} \mathcal{K}(f,x) &= \int_{\mathcal{X}_{\text{temp}}(G(F))} \mathcal{L}_{\pi}(\pi(x)\pi(f)\pi(x^{-1}))\overline{\mathcal{L}_{\pi}(\pi(\overline{f'}))} d\pi. \\ &= \int_{\mathcal{H}(F)} \xi_F(h) dh \int_{\mathcal{H}(F)} \xi_F(h') dh' \int_{G(F)} f(x^{-1}hgh'x) f'(g) dg. \end{split}$$

Therefore

$$J(f) = \int_{H(F)\backslash G(F)} dx \int_{H(F)} \xi(h) dh$$
$$\int_{H(F)} \xi(h') dh' \int_{G(F)} f(x^{-1}hgh'x) f'(g) dg$$

Spectral expansion: comparasion with Arthur's trace formula

 After introducing truncation, showing the integral order can be switched, and changing variables

$$J(f) = \int_{H(F)} \xi(h) dh \int_{G(F)} dg' \int_{G(F)} f(g'^{-1}hgg') f'(g) dg.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spectral expansion: comparasion with Arthur's trace formula

 After introducing truncation, showing the integral order can be switched, and changing variables

$$J(f) = \int_{H(F)} \xi(h) dh \int_{G(F)} dg' \int_{G(F)} f(g'^{-1}hgg') f'(g) dg.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► The inner integral ∫_{G(F)} ∫_{G(F)} is exactly Arthur's local trace formula. Express in turns of spectral expansion of J^A(f, f').

Spectral expansion: comparasion with Arthur's trace formula

 After introducing truncation, showing the integral order can be switched, and changing variables

$$J(f) = \int_{H(F)} \xi(h) dh \int_{G(F)} dg' \int_{G(F)} f(g'^{-1}hgg') f'(g) dg.$$

The inner integral ∫_{G(F)} ∫_{G(F)} is exactly Arthur's local trace formula. Express in turns of spectral expansion of J^A(f, f').
 J(f) is equal to

$$egin{aligned} &J(f) = \int_{\mathcal{X}(G(F))} D(\pi) heta_f(\pi) \overline{\mathcal{L}_{\pi}(\pi(\overline{f'}))} d\pi \ &= \int_{\mathcal{X}(G(F))} D(\pi) heta_f(\pi) m(\pi) d\pi, \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometric multiplicity formula

Theorem (L.)
For
$$\pi \in \text{Temp}(G(F))$$
,
 $m(\pi) = m_{\text{geom}}(\pi) = \int_{\Gamma(G,H)} c_{\pi}(x) D^{G}(x)^{1/2} \Delta(x)^{-1/2} dx.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▶ When *F* is *p*-adic it was proved by Waldspurger.

Geometric multiplicity formula: $\Gamma(G, H)$

$$\begin{split} \Gamma(G,H) &:= \bigcup_{T \in \mathcal{T}} T_{\mathrm{reg}}(F). \\ \mathcal{T} \text{ is a set of subtori of } \mathrm{SO}(W). \end{split}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Geometric multiplicity formula: $\Gamma(G, H)$

$$\begin{split} \Gamma(G,H) &:= \bigcup_{T \in \mathcal{T}} T_{\mathrm{reg}}(F). \\ \mathcal{T} \text{ is a set of subtori of } \mathrm{SO}(W). \end{split}$$

 $T \in \mathcal{T}$ iff. T max. ell. in SO(W'') where $W'' \subset W$ non-degenerate and dim(W/W'') even.

Theorem (Harish-Chandra for *p*-adic, Barbasch-Vogan for Archimedean)

For $x \in G_{ss}$ and $X \in \omega \subset \mathfrak{g}_x$ a small neighborhood of 0, there exists constants $c_{\pi,\mathcal{O}}(x) \in \mathbb{C}$ such that

$$\lim_{X\to 0} D^{G}(xe^{X})^{1/2}\Theta_{\pi}(xe^{X}) = D^{G}(x)^{1/2}\sum_{\mathcal{O}\in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{X})} c_{\pi,\mathcal{O}}(x)\widehat{j}(\mathcal{O},X).$$

Here $\hat{j}(\mathcal{O}, X) = \mathcal{F}(J_{\mathcal{O}}(\cdot)).$

The definition of c_π, first appeared in the work of Waldspurger, is the main technical ingredient.

Theorem (Harish-Chandra for *p*-adic, Barbasch-Vogan for Archimedean)

For $x \in G_{ss}$ and $X \in \omega \subset \mathfrak{g}_x$ a small neighborhood of 0, there exists constants $c_{\pi,\mathcal{O}}(x) \in \mathbb{C}$ such that

$$\lim_{X\to 0} D^{\mathcal{G}}(xe^X)^{1/2}\Theta_{\pi}(xe^X) = D^{\mathcal{G}}(x)^{1/2}\sum_{\mathcal{O}\in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_x)} c_{\pi,\mathcal{O}}(x)\widehat{j}(\mathcal{O},X).$$

Here $\hat{j}(\mathcal{O}, X) = \mathcal{F}(J_{\mathcal{O}}(\cdot)).$

- The definition of c_π, first appeared in the work of Waldspurger, is the main technical ingredient.
- c_{π} is nonzero only when G_x is quasi-split. When it is the case, $c_{\pi} = c_{\pi,\mathcal{O}}$ for a particular $\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_x)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 For unitary groups, Nil_{reg}(g_x) can be permuted by scaling. The geometric multiplicity is independent of the orbit chosen. Therefore set

$$c_{\pi}(x) := rac{\sum_{\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})} c_{\pi,\mathcal{O}}}{|\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})|}.$$

 For unitary groups, Nil_{reg}(g_x) can be permuted by scaling. The geometric multiplicity is independent of the orbit chosen. Therefore set

$$c_{\pi}(x) := rac{\sum_{\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})} c_{\pi,\mathcal{O}}}{|\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})|}.$$

$$D^{G}(x)^{1/2}c_{\pi}(x) = \lim_{x' \in T_{\mathrm{qd},x}(F) \to x} \frac{D^{G}(x')\Theta_{\pi}(x')}{|W(G_{x}, T_{\mathrm{qd},x})|}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $T_{\mathrm{qd},x} \subset B_x \subset G_x$.

 For unitary groups, Nil_{reg}(g_x) can be permuted by scaling. The geometric multiplicity is independent of the orbit chosen. Therefore set

$$c_{\pi}(x) := rac{\sum_{\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})} c_{\pi,\mathcal{O}}}{|\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})|}$$

$$D^{G}(x)^{1/2}c_{\pi}(x) = \lim_{x' \in \mathcal{T}_{\mathrm{qd},x}(F) \to x} \frac{D^{G}(x')\Theta_{\pi}(x')}{|W(G_{x},\mathcal{T}_{\mathrm{qd},x})|}$$

where $T_{\mathrm{qd},x} \subset B_x \subset G_x$.

It is NOT the case for special orthogonal groups, really need to pick up a particular regular nilpotent orbit.

- ロ ト - 4 回 ト - 4 □

Nil_{reg}(so(V)) ≠ Ø iff. (V, q) is quasi-split.
 For dim V is odd or ≤ 2, |Nil_{reg}(so(V))| = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶
$$\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{so}(V)) \neq \emptyset$$
 iff. (V, q) is quasi-split.
For dim V is odd or ≤ 2 , $|\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{so}(V))| = 1$.

For dim V = 2m is even and ≥ 4 , set

$$\mathcal{N}^{V} = \begin{cases} F^{\times}/F^{\times 2}, & \text{split} \\ \operatorname{Im}(q_{\mathrm{an}})/F^{\times 2}, & \text{non-split.} \end{cases}$$

Then $\mathcal{N}^V \leftrightarrow \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{so}(V)).$

▶
$$\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{so}(V)) \neq \emptyset$$
 iff. (V, q) is quasi-split.
For dim V is odd or ≤ 2 , $|\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{so}(V))| = 1$.

For dim V = 2m is even and ≥ 4 , set

$$\mathcal{N}^{V} = egin{cases} F^{ imes}/F^{ imes 2}, & ext{split} \ \operatorname{Im}(q_{\mathrm{an}})/F^{ imes 2}, & ext{non-split}. \end{cases}$$

Then $\mathcal{N}^{V} \leftrightarrow \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{so}(V))$.

Therefore

$$\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}) \leftrightarrow egin{cases} \mathcal{N}^V, & \operatorname{dim} V ext{ is even } \geq 4, \ \mathcal{N}^W, & \operatorname{dim} W ext{ is even } \geq 4. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

 $\blacktriangleright \text{ Recall } V = W \oplus \langle v_0 \rangle \oplus Z.$

• Recall
$$V = W \oplus \langle v_0 \rangle \oplus Z$$
.

▶ Set $\nu_0 = q(\nu_0)$. When dim V is even ≥ 4 , $\nu_0 \in \mathcal{N}^V$; When dim W is even ≥ 4 , $-\nu_0 \in \mathcal{N}^W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Recall
$$V = W \oplus \langle v_0 \rangle \oplus Z$$
.

- ▶ Set $\nu_0 = q(\nu_0)$. When dim V is even ≥ 4, $\nu_0 \in \mathcal{N}^V$; When dim W is even ≥ 4, $-\nu_0 \in \mathcal{N}^W$.
- For $x \in T_{reg} \in T$, set V'_x (resp. W'_x) = ker(1 x) in V (resp. W).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Recall
$$V = W \oplus \langle v_0 \rangle \oplus Z$$
.

▶ Set $\nu_0 = q(\nu_0)$. When dim V is even ≥ 4, $\nu_0 \in \mathcal{N}^V$; When dim W is even ≥ 4, $-\nu_0 \in \mathcal{N}^W$.

For $x \in T_{reg} \in T$, set V'_x (resp. W'_x) = ker(1 - x) in V (resp. W).

Then

$$G_x = G'_x \times G''_x$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with $G'_x = \mathrm{SO}(V'_x) \times \mathrm{SO}(W'_x)$, $G''_x = T \times T$.

• Recall
$$V = W \oplus \langle v_0 \rangle \oplus Z$$
.

▶ Set $\nu_0 = q(\nu_0)$. When dim V is even ≥ 4, $\nu_0 \in \mathcal{N}^V$; When dim W is even ≥ 4, $-\nu_0 \in \mathcal{N}^W$.

For $x \in T_{reg} \in T$, set V'_x (resp. W'_x) = ker(1 - x) in V (resp. W).

Then

$$G_x = G'_x \times G''_x$$

with $G'_x = \mathrm{SO}(V'_x) \times \mathrm{SO}(W'_x)$, $G''_x = T \times T$.

• When G'_{x} is quasi-split, set

$$c_{\pi}(x) = egin{cases} c_{\pi,\mathcal{O}_{
u_0}}, & \dim V'_x \geq 4 ext{ even} \ c_{\pi,\mathcal{O}_{-
u_0}}, & \dim W'_x \geq 4 ext{ even} \ c_{\pi,\mathcal{O}_{ ext{reg}}}, & ext{ otherwise.} \end{cases}$$

The proof

The following properties are needed for φ a tempered *L*-parameter.

STAB For any $\alpha \in H^1(F, H)$,

$$\Theta_{lpha,arphi} = \sum_{\pi\in\Pi^{\mathcal{G}_{lpha}}(arphi)} \Theta_{\pi}.$$

is stable.

- TRANS For $\alpha \in H^1(F, H)$, $\Theta_{\alpha,\varphi}$ is the transfer of $e(G_\alpha)\Theta_{\varphi}$, where $e(G_\alpha) \in Br_2(F)$ is the Kottwitz sign. $Br_2(F) = \{\pm 1\}$ if $F \neq \mathbb{C}$.
- WHITT For G quasi-split and every $\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})$, there exists a unique representation in $\Pi^{G}(\varphi)$ admitting a Whittaker model of type \mathcal{O} .

The proof

For F Archimedean, LLC is known by R. Langlands, [STAB] and [TRANS] is known by D. Shelstad, and [WHITT] follows from B. Kostant and D. Vogan.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
- For F Archimedean, LLC is known by R. Langlands, [STAB] and [TRANS] is known by D. Shelstad, and [WHITT] follows from B. Kostant and D. Vogan.
- For F p-adic, LLC is known from Arthur for quasi-split special orthogonal groups (need refinment for SO_{2n}).

- For F Archimedean, LLC is known by R. Langlands, [STAB] and [TRANS] is known by D. Shelstad, and [WHITT] follows from B. Kostant and D. Vogan.
- For F p-adic, LLC is known from Arthur for quasi-split special orthogonal groups (need refinment for SO_{2n}).
- For non quasi-split special orthogonal groups it is expected to follow from the last chapter of Arthur's book.

 $\begin{array}{l} \mbox{Lemma (L.)} \\ \mbox{For any } \mathcal{O} \in {\rm Nil}_{\rm reg}(\mathfrak{g}_{\mathsf{x}}), \mbox{ define } \end{array}$

$$c_{arphi,\mathcal{O}}(x):=\sum_{\pi\in \mathsf{\Pi}^{\mathcal{G}}(arphi)}c_{\pi,\mathcal{O}}(x).$$

Then

$$c_{arphi,\mathcal{O}}(x)=c_{arphi,\mathcal{O}'}(x)$$

for any $\mathcal{O}, \mathcal{O}' \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g}_{x})$. In particular,

$$D^{G}(x)^{1/2} c_{\varphi, \mathcal{O}}(x) = |W(G_{x}, T_{\mathrm{qd}, x})|^{-1}$$
$$\lim_{x' \in \mathcal{T}_{\mathrm{qd}, x}(F) \to x} D^{G}(x') \sum_{\pi \in \Pi^{G}(\varphi)} \Theta_{\pi}(x').$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$\sum_{\alpha \in H^{1}(F,H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi) = \int_{\Gamma_{\mathrm{stab}}(G,H)} c_{\varphi}(x) \left\{ \sum_{\alpha \in H^{1}(F,H)} \sum_{y \in \Gamma(G_{\alpha},H_{\alpha}), y \sim_{\mathrm{stab}} x} e(G_{\alpha}) \right\} dx.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\sum_{\alpha \in H^{1}(F,H)} \sum_{\pi \in \Pi^{G_{\alpha}}(\varphi)} m(\pi) = \int_{\Gamma_{\mathrm{stab}}(G,H)} c_{\varphi}(x) \left\{ \sum_{\alpha \in H^{1}(F,H)} \sum_{y \in \Gamma(G_{\alpha},H_{\alpha}), y \sim_{\mathrm{stab}} x} e(G_{\alpha}) \right\} dx.$ $\sum_{\alpha \in H^{1}(F,H)} \sum_{y \in \Gamma(G_{\alpha},H_{\alpha}), y \sim_{\mathrm{stab}} x} e(G_{\alpha}) = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

unless x = 1.

 $\sum \qquad \sum \qquad m(\pi) =$ $\alpha \in H^1(F,H) \ \pi \in \Pi^{G_\alpha}(\varphi)$ $\int_{\Gamma_{\mathrm{stab}}(G,H)} c_{\varphi}(x) \bigg\{ \sum_{\alpha \in H^{1}(F,H)} \sum_{y \in \Gamma(G_{\alpha},H_{\alpha}), y \sim_{\mathrm{stab}} x} e(G_{\alpha}) \bigg\} dx.$ $\sum \qquad \qquad \sum \qquad e(G_{\alpha}) = 0$ $\alpha \in H^1(F,H) \ v \in \Gamma(G_\alpha,H_\alpha), v \sim_{\text{stab}} x$ unless x = 1.

$$\sum_{\alpha \in H^1(F,H)} \sum_{\pi \in \Pi^{G_\alpha}(\varphi)} m(\pi) = c_{\varphi}(1) = 1.$$

where the last identity follows from F. Rodier when F is p-adic, and H. Matumoto when F is Archimedean.

Geometric expansion

Theorem (L.) For $f \in C_{scusp}(G(F))$, set

$$J_{\text{geom}}(f) = \int_{\Gamma(G,H)} c_f(x) D^G(x)^{1/2} \Delta(x)^{-1/2} dx.$$

Then $J_{\text{geom}}(f)$ is absolutely convergent, and

$$J(f) = J_{\text{geom}}(f).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Geometric expansion: definitions

Set

$$\theta_f(x) = (-1)^{a_G - a_{M(x)}} D^G(x)^{-1/2} J^G_{M(x)}(x, f).$$

(ロ)、(型)、(E)、(E)、 E) の(()

Then $\theta_f(x)$ is conjugation invariant.

Geometric expansion: definitions

Set

 $\theta_f(x) = (-1)^{a_G - a_{M(x)}} D^G(x)^{-1/2} J^G_{M(x)}(x, f).$

Then $\theta_f(x)$ is conjugation invariant.

It is a quasi-character, i.e.

$$\lim_{X\to 0} D^{\mathcal{G}}(xe^X)^{1/2}\theta_f(xe^X) = D^{\mathcal{G}}(x)^{1/2}\sum_{\mathcal{O}\in \mathrm{Nil}_{\mathrm{reg}}(\mathfrak{g}_X)} c_{\theta_f,\mathcal{O}}(x)\widehat{j}(\mathcal{O},X).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Geometric expansion: definitions

$$\theta_f(x) = (-1)^{a_G - a_{M(x)}} D^G(x)^{-1/2} J^G_{M(x)}(x, f).$$

Then $\theta_f(x)$ is conjugation invariant.

It is a quasi-character, i.e.

$$\lim_{X\to 0} D^{\mathcal{G}}(xe^X)^{1/2}\theta_f(xe^X) = D^{\mathcal{G}}(x)^{1/2}\sum_{\mathcal{O}\in \mathrm{Nil}_{\mathrm{reg}}(\mathfrak{g}_X)} c_{\theta_f,\mathcal{O}}(x)\widehat{j}(\mathcal{O},X).$$

Define

Set

$$c_f(x) = egin{cases} c_{ heta_f,\mathcal{O}_{
u_0}}, & \dim V'_x \geq 4 ext{ even} \ c_{ heta_f,\mathcal{O}_{-
u_0}}, & \dim W'_x \geq 4 ext{ even} \ c_{ heta_f,\mathcal{O}_{
m reg}}, & ext{ otherwise.} \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Geometric expansion: localization

By partition of unity,

$$ext{supp } heta_f \subset egin{cases} ext{neighborhood of } x
eq 1 \ ext{neighborhood of } x = 1 \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Geometric expansion: localization

By partition of unity,

$$\mathsf{supp} \ \theta_f \subset \begin{cases} \mathsf{neighborhood of } x \neq 1 \\ \mathsf{neighborhood of } x = 1 \end{cases}$$

• For
$$x \in \mathrm{SO}(W)_{\mathrm{ss}}$$
, when $x
eq 1$,

$$(G_x, H_x, \xi_x) = (G'_x, H'_x, \xi'_x) \times (G''_x, H''_x, 1).$$

 (G'_x, H'_x, ξ'_x) is a GGP triple of smaller dimension, and $(G''_x, H''_x, 1)$ is $\Delta : H''_x \hookrightarrow H''_x \times H''_x = G''_x$.

Geometric expansion: localization

By partition of unity,

$$\text{supp } \theta_f \subset \begin{cases} \text{neighborhood of } x \neq 1 \\ \text{neighborhood of } x = 1 \end{cases}$$

▶ For
$$x \in \mathrm{SO}(W)_{\mathrm{ss}}$$
, when $x \neq 1$,

$$(G_x, H_x, \xi_x) = (G'_x, H'_x, \xi'_x) \times (G''_x, H''_x, 1).$$

 (G'_x, H'_x, ξ'_x) is a GGP triple of smaller dimension, and $(G''_x, H''_x, 1)$ is $\Delta : H''_x \hookrightarrow H''_x \times H''_x = G''_x$.

Induction on dim G and Arthur's local trace formula.

For supp θ_f ⊂ neighborhood of x = 1, via exponential, descent to Lie algebra variants J^{Lie}_{geom}(f) and J^{Lie}(f).

- For supp θ_f ⊂ neighborhood of x = 1, via exponential, descent to Lie algebra variants J^{Lie}_{geom}(f) and J^{Lie}(f).
- J_{geom}(f) contains asymptotic of weighted orbital integrals near singular locus, but Arthur's local trace formula only has regular semi-simple locus. Cannot compare directly.

Perform a Fourier transform on h = LieH to resolve the possible singularities,

$$\mathcal{K}^{\mathrm{Lie}}(f,x) = \int_{\mathfrak{h}} f(gXg^{-1})\xi_{\mathcal{F}}(X)dX = \int_{\Xi+\mathfrak{h}^{\perp}} \widehat{f}(g^{-1}Xg)dX.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 Perform a Fourier transform on h = LieH to resolve the possible singularities,

$$\mathcal{K}^{\mathrm{Lie}}(f, x) = \int_{\mathfrak{h}} f(gXg^{-1})\xi_F(X)dX = \int_{\Xi+\mathfrak{h}^{\perp}} \widehat{f}(g^{-1}Xg)dX.$$
$$J^{\mathrm{Lie}}(f) = \int_{H(F)\setminus G(F)} dg \int_{\Xi+\mathfrak{h}^{\perp}} \widehat{f}(g^{-1}Xg)dX.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 After truncation and changing integration order, compare with Arthur's weighted orbital integrals.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 After truncation and changing integration order, compare with Arthur's weighted orbital integrals.

▶ For $f \in S_{scusp}(g(F))$,

$$J^{\mathrm{Lie}}(f) = \int_{\Gamma(\Xi+\mathfrak{h}^{\perp})} D^{G}(X)^{1/2} \theta_{\widehat{f}}(X) dX.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 After truncation and changing integration order, compare with Arthur's weighted orbital integrals.

▶ For $f \in S_{scusp}(\mathfrak{g}(F))$,

$$J^{\operatorname{Lie}}(f) = \int_{\Gamma(\Xi+\mathfrak{h}^{\perp})} D^{G}(X)^{1/2} \theta_{\widehat{f}}(X) dX.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Γ(Ξ + h[⊥]) = G(F)-conjugacy classes of regular semi-simple elements in Ξ + h[⊥].

• Take Fourier inversion back for $J^{\text{Lie}}(f)$.

- Take Fourier inversion back for $J^{\text{Lie}}(f)$.
- ▶ By Fourier transform for quasi-characters (Beuzart-Plessis),

$$heta_f = \int_{\Gamma(\mathfrak{g})} D^G(X)^{1/2} heta_{\widehat{f}}(X) \widehat{j}(X,\cdot) dX.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Take Fourier inversion back for $J^{\text{Lie}}(f)$.
- By Fourier transform for quasi-characters (Beuzart-Plessis),

$$\theta_f = \int_{\Gamma(\mathfrak{g})} D^G(X)^{1/2} \theta_{\widehat{f}}(X) \widehat{j}(X, \cdot) dX.$$

•
$$\hat{j}(X, \cdot) = \mathcal{F}(J(X, \cdot))$$
 and

$$\lim_{t \in F^{\times 2}, t \to 0} D^{G}(X, tY) \hat{j}(X, Y) = D^{G}(Y)^{1/2} \sum_{\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})} \Gamma_{\mathcal{O}}(X) \hat{j}(\mathcal{O}, Y).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Shalika when F is p-adic, Beuzart-Plessis when F Archimedean)

▶ Taking the regular germ, for any $\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})$,

$$c_{ heta_f,\mathcal{O}}(0) = \int_{\Gamma(\mathfrak{g})} D^G(X)^{1/2} heta_{\widehat{f}}(X) \Gamma_{\mathcal{O}}(X) dX.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ Taking the regular germ, for any $\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})$,

$$c_{ heta_f,\mathcal{O}}(0) = \int_{\Gamma(\mathfrak{g})} D^{\mathsf{G}}(X)^{1/2} heta_{\widehat{f}}(X) \Gamma_{\mathcal{O}}(X) dX.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Need explicit formula for $\Gamma_{\mathcal{O}}(X)$.

Theorem (L.)

For G a quasi-split reductive algebraic group, $X \in \mathfrak{g}^{rss}(F)$ and $\mathcal{O} \in \operatorname{Nil}_{reg}(\mathfrak{g})$, set $T_G = G_X$. Then

$$\Gamma_{\mathcal{O}}(X) = \begin{cases} 1, & \operatorname{inv}(X)\operatorname{inv}(T_G) = \operatorname{inv}_{T_G}(\mathcal{O}), \\ 0, & otherwise. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When F is p-adic the result was already proved by D. Shelstad.

Fix an *F*-splitting for *G*.

- ► Fix an *F*-splitting for *G*.
- The invariants $\operatorname{inv}(T_G)$, $\operatorname{inv}(X)$ and $\operatorname{inv}_{T_G}(\mathcal{O})$ all lie in $H^1(F, T_G)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Fix an *F*-splitting for *G*.
- The invariants $\operatorname{inv}(T_G)$, $\operatorname{inv}(X)$ and $\operatorname{inv}_{T_G}(\mathcal{O})$ all lie in $H^1(F, T_G)$.
- ▶ inv_{T_G}(O) measures the difference between O and the regular nilpotent determined by the fixed F-splitting.

- Fix an *F*-splitting for *G*.
- The invariants $\operatorname{inv}(T_G)$, $\operatorname{inv}(X)$ and $\operatorname{inv}_{T_G}(\mathcal{O})$ all lie in $H^1(F, T_G)$.
- ▶ inv_{T_G}(O) measures the difference between O and the regular nilpotent determined by the fixed F-splitting.

 inv(*T_G*) is connected with the Langlands-Shelstad transfer factor Δ_I.

- Fix an *F*-splitting for *G*.
- The invariants $\operatorname{inv}(T_G)$, $\operatorname{inv}(X)$ and $\operatorname{inv}_{T_G}(\mathcal{O})$ all lie in $H^1(F, T_G)$.
- ▶ inv_{T_G}(O) measures the difference between O and the regular nilpotent determined by the fixed F-splitting.
- inv(*T_G*) is connected with the Langlands-Shelstad transfer factor Δ_I.
- inv(X) is connected with the Langlands-Shelstad transfer factor Δ_{II}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem. Theorem (L.)

 $\Gamma_{\mathcal{O}}(X) = 1$ if and only if the G(F)-orbit of X and \mathcal{O} lie in the G(F)-orbit of a common Kostant's section.

► Kostant constructed a section for g → g // G ≃ t/W, whose image in g contains only regular elements, and meets every regular stable Ad(G)-orbit exactly once.

Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem. Theorem (L.)

 $\Gamma_{\mathcal{O}}(X) = 1$ if and only if the G(F)-orbit of X and \mathcal{O} lie in the G(F)-orbit of a common Kostant's section.

- ► Kostant constructed a section for g → g // G ≃ t/W, whose image in g contains only regular elements, and meets every regular stable Ad(G)-orbit exactly once.
- g^{reg} := {X ∈ g| dim Cent_g(X) = dim t}. Regular elements
 are not necessarily semi-simple, e.g. regular nilpotent
 elements.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relation with the Kostant's sections

Based on a result of Kottwitz, we also prove the following theorem. Theorem (L.)

 $\Gamma_{\mathcal{O}}(X) = 1$ if and only if the G(F)-orbit of X and \mathcal{O} lie in the G(F)-orbit of a common Kostant's section.

- ► Kostant constructed a section for g → g // G ≃ t/W, whose image in g contains only regular elements, and meets every regular stable Ad(G)-orbit exactly once.
- ▶ g^{reg} := {X ∈ g| dim Cent_g(X) = dim t}. Regular elements are not necessarily semi-simple, e.g. regular nilpotent elements.
- The restriction of g → t/W to an Ad(G)-orbit of a Kostant's section is a smooth submersion. The measures on the fibers are given by the relevant orbital integrals.

► { θ_f | $f \in S_{scusp}(\mathfrak{g}(F))$ } is dense in the space of quasi-characters on $\mathfrak{g}(F)$ when $F = \mathbb{R}$ or *p*-adic. Moreover, $\widehat{\theta}_f = \theta_{\widehat{f}}$ (Beuzart-Plessis).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶ { θ_f | $f \in S_{scusp}(\mathfrak{g}(F))$ } is dense in the space of quasi-characters on $\mathfrak{g}(F)$ when $F = \mathbb{R}$ or *p*-adic. Moreover, $\hat{\theta}_f = \theta_{\hat{f}}$ (Beuzart-Plessis).

So reduce to show for any quasi-character θ ,

$$J^{
m Lie}(heta) = J^{
m Lie}_{
m geom}(heta)$$

with

$$J^{\text{Lie}}(\theta) = \int_{\Gamma(\Xi+\mathfrak{h}^{\perp})} D^{G}(X)^{1/2} \widehat{\theta}(X) dX,$$

$$J^{\text{Lie}}_{\text{geom}}(\theta) = \int_{\Gamma^{\text{Lie}}(G,H)} c_{\theta}(X) D^{G}(X)^{1/2} \Delta(X)^{-1/2} dX.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
By homogeneity of J^{Lie}(\(\theta\)) and J^{Lie}_{geom}(\(\theta\)), i.e.
$$J^{Lie}_{geom}(\theta_{\lambda}) = |\lambda|^{\delta(G)/2} J^{Lie}_{geom}(\theta)$$

where $\theta_{\lambda}(X) = \theta(\lambda^{-1}X)$, we can show:

$$J^{\mathrm{Lie}}(\theta) - J^{\mathrm{Lie}}_{\mathrm{geom}}(\theta) = \sum_{\mathcal{O} \in \mathrm{Nil}_{\mathrm{reg}}(\mathfrak{g})} c_{\mathcal{O}} c_{\theta, \mathcal{O}}(0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for some constant $c_{\mathcal{O}} \in \mathbb{C}$.

• By homogeneity of
$$J^{\text{Lie}}(\theta)$$
 and $J^{\text{Lie}}_{\text{geom}}(\theta)$, i.e.
 $J^{\text{Lie}}_{\text{geom}}(\theta_{\lambda}) = |\lambda|^{\delta(G)/2} J^{\text{Lie}}_{\text{geom}}(\theta)$

where $\theta_{\lambda}(X) = \theta(\lambda^{-1}X)$, we can show:

$$J^{\mathrm{Lie}}(heta) - J^{\mathrm{Lie}}_{\mathrm{geom}}(heta) = \sum_{\mathcal{O} \in \mathrm{Nil}_{\mathrm{reg}}(\mathfrak{g})} c_{\mathcal{O}} c_{\theta, \mathcal{O}}(0)$$

for some constant $c_{\mathcal{O}} \in \mathbb{C}$.

$$c_{ heta,\mathcal{O}}(0) = \int_{\Gamma(\mathfrak{g})} D^{\mathcal{G}}(X)^{1/2}\widehat{ heta}(X) \Gamma_{\mathcal{O}}(X) dX.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• To prove that
$$c_{\mathcal{O}} = 0$$
, for $X \in \mathfrak{g}^{rss}(F)$ with
 $\mathfrak{t}_X^G \cap \Gamma(G, H) = \{0\},$

attach it with quasi-character $\theta_X = \hat{j}(X, \cdot)$ supported on \mathfrak{t}_X^G ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► To prove that
$$c_{\mathcal{O}} = 0$$
, for $X \in \mathfrak{g}^{rss}(F)$ with
 $\mathfrak{t}_X^G \cap \Gamma(G, H) = \{0\},$

attach it with quasi-character $\theta_X = \hat{j}(X, \cdot)$ supported on \mathfrak{t}_X^G , In particular, $c_{\theta_X, \mathcal{O}}(0) = \Gamma_{\mathcal{O}}(X)$, and

$$J_{\text{geom}}^{\text{Lie}}(\theta_X) = \begin{cases} \Gamma_{\mathcal{O}}(X), & |\text{Nil}_{\text{reg}}(\mathfrak{g})| = 1, \\ \Gamma_{\mathcal{O}_{\nu_0}}(X), & \text{dim } V \text{ even } \geq 4, \\ \Gamma_{\mathcal{O}_{-\nu_0}}(X), & \text{dim } W \text{ even } \geq 4. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► To prove that
$$c_{\mathcal{O}} = 0$$
, for $X \in \mathfrak{g}^{rss}(F)$ with
 $\mathfrak{t}_X^G \cap \Gamma(G, H) = \{0\},$

attach it with quasi-character $\theta_X = \hat{j}(X, \cdot)$ supported on \mathfrak{t}_X^G , In particular, $c_{\theta_X, \mathcal{O}}(0) = \Gamma_{\mathcal{O}}(X)$, and

$$J_{\text{geom}}^{\text{Lie}}(\theta_X) = \begin{cases} \mathsf{\Gamma}_{\mathcal{O}}(X), & |\text{Nil}_{\text{reg}}(\mathfrak{g})| = 1, \\ \mathsf{\Gamma}_{\mathcal{O}_{\nu_0}}(X), & \text{dim } V \text{ even } \geq 4, \\ \mathsf{\Gamma}_{\mathcal{O}_{-\nu_0}}(X), & \text{dim } W \text{ even } \geq 4. \end{cases}$$

Similarly,

$$J^{\text{Lie}}(\theta_X) = \begin{cases} c_{\theta_X,\mathcal{O}}(0) = \Gamma_{\mathcal{O}}(X), & X \in \Xi + \mathfrak{h}^{\perp}, \Gamma_{\mathcal{O}}(X) = 1, \\ 0, & \text{Otherwise}, \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ When $|Nil_{reg}(\mathfrak{g})| = 1$, for $X \in \mathfrak{t}_{qd}^{rss}$, $\Gamma_{\mathcal{O}}(X) = 1$ identically, and $X \in \Xi + \mathfrak{h}^{\perp}$, therefore

$$J_{ ext{geom}}^{ ext{Lie}}(heta_X) = J^{ ext{Lie}}(heta_X) = 1.$$

Hence $c_{\mathcal{O}} = 0$.

▶ When $|Nil_{reg}(\mathfrak{g})| = 1$, for $X \in \mathfrak{t}_{qd}^{rss}$, $\Gamma_{\mathcal{O}}(X) = 1$ identically, and $X \in \Xi + \mathfrak{h}^{\perp}$, therefore

$$J_{\text{geom}}^{\text{Lie}}(heta_X) = J^{\text{Lie}}(heta_X) = 1.$$

Hence $c_{\mathcal{O}} = 0$.

▶ In general, when dim V (resp. dim W) even ≥ 4, \mathcal{O}_{ν_0} (resp. $\mathcal{O}_{-\nu_0}$) is the unique regular nilpotent orbit \mathcal{O} in $\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})$, such that if $\Gamma_{\mathcal{O}}(X) = 1$, then $X \in \Xi + \mathfrak{h}^{\perp}$.

▶ When $|Nil_{reg}(\mathfrak{g})| = 1$, for $X \in \mathfrak{t}_{qd}^{rss}$, $\Gamma_{\mathcal{O}}(X) = 1$ identically, and $X \in \Xi + \mathfrak{h}^{\perp}$, therefore

$$J_{\text{geom}}^{\text{Lie}}(heta_X) = J^{\text{Lie}}(heta_X) = 1.$$

Hence $c_{\mathcal{O}} = 0$.

- ▶ In general, when dim V (resp. dim W) even ≥ 4, \mathcal{O}_{ν_0} (resp. $\mathcal{O}_{-\nu_0}$) is the unique regular nilpotent orbit \mathcal{O} in $\operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})$, such that if $\Gamma_{\mathcal{O}}(X) = 1$, then $X \in \Xi + \mathfrak{h}^{\perp}$.
- Therefore $c_{\mathcal{O}} = 0$ for any $\mathcal{O} \in \operatorname{Nil}_{\operatorname{reg}}(\mathfrak{g})$.

► To prove the above claim, we need explicit formula for $\Gamma_{\mathcal{O}}(X)$, and find relation between the formula and $X \in \Xi + \mathfrak{h}^{\perp}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► To prove the above claim, we need explicit formula for $\Gamma_{\mathcal{O}}(X)$, and find relation between the formula and $X \in \Xi + \mathfrak{h}^{\perp}$.

We compute the invariants ^{inv}(*T_G*)inv(*X*)/inv_{*T_G*(*O*)} explicitly for any *X* ∈ g^{rss} without eigenvalue 0, following the work of Waldspurger.

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ