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Notation

We let
• K be a discrete valuation field

• OK its valuation ring, henselian
• k the residue field of characteristic p > 0

• π a uniformizer
• K a separable closure, with residue field k
• GK = Gal(K/K)

• v : K
× → Q the valuation map normalized by v(π) = 1.
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Logarithmic ramification filtration

When k is perfect, we have the classical ramification theory.

For general k, Abbes and Saito (∼ 2000) defined the
logarithmic ramification filtration (GrK,log)r∈Q≥0

of GK . For
r ∈ Q≥0, put

Gr+K,log = ∪s>rGsK,log.

G0
K,log = IK the inertia subgroup of GK and

G0+
K,log = PK ⊂ IK the wild inertia subgroup.

If K ′/K is a finite extension, then Ger
K′,log ⊂ Gr

K,log. It is an
equality when K ′/K is tame.
When k is perfect, (Gr

K,log)r∈Q≥0
coincide with the classical

upper ramification filtration.
Graded quotient

GrrlogGK = Gr
K,log/G

r+
K,log (r > 0)

is abelian and killed by p.
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The refined Swan conductor

Theorem (Kato, Abbes-Saito, Saito)

Assume that k is of finite type over a perfect sub-field k0. For
every r > 0, there is an injective homomorphism, the refined Swan
conductor

rsw : Hom(GrrlogGK ,Fp)→ Homk(m
r
K
/mr+

K
,Ω1

k(log)⊗k k).

For r ∈ Q, mr
K

(resp. mr+
K

) is the set of elements x of K satisfying
v(x) ≥ r (resp. v(x) > r). The k-vector space of logarithmic
differential 1-forms is

Ω1
k(log) = (Ω1

k/k0
⊕ (k ⊗Z K

×))/(da− a⊗ a, a ∈ O×K).
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The Swan conductor

Let Λ be a finite field of char. ` 6= p, L ⊂ K a finite Galois ext. of
K of group G and ρ : G→ AutΛ(M) a finite dim. cont. rep.

M has a unique slope decomposition into GK-stable sub-mod.

M =
⊕
r∈Q≥0

M (r)

M (0) = MPK , (M (r))G
r
K,log = 0 and (M (r))G

r+
K,log = M (r) (r > 0) .

Definition

The (logarithmic) Swan conductor of M is

swG(M) =
∑
r∈Q≥0

r · dimΛM
(r).

swG(M) = 0⇔MPK = M .
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The characteristic cycle

Let ψ : Fp → Λ× be a nontrivial character. For r > 0, M (r) 6= 0
has a central character decomposition

M (r) =
⊕
χ

M (r)
χ

indexed by a finite number of characters χ : GrrlogGK → Λ×.

Each

χ factors as GrrlogGK
χ−→ Fp

ψ−→ Λ×.

Definition

The Characteristic cycle of M is

CCψ(M) =
⊗
r∈Q>0

⊗
χ

(rsw(χ)(πr))⊗(dimΛM
(r)
χ ) ∈ (Ω1

k(log)⊗kk)⊗m

where m = dimΛM/M (0).
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Theorem (H. Hu, 2015)

If L/K is of type (II), i.e. OL/OK is monogenic with purely
inseparable residue extension, then

CCψ(M) ∈ (Ω1
k)
m.
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Lisse sheaf on unit disc

Assume that K is complete and k is algebraically closed.

Let D = {x ∈ K | v(x) ≥ 0} be the closed rigid unit disc and
F a lisse sheaf of Λ-modules on D. By de Jong,

F ←→ [f : X → D + Λ− rep. ρF of G = Aut(X/D)].
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We consider the Cartesian diagram (t ∈ Q≥0)

X(t) X

D(t) D,

� f

D(t) = {x ∈ K | v(x) ≥ t}.
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X
(t)
K′ X(t) X

D
(t)
K′ D(t) D,

f

D(t) = {x ∈ K | v(x) ≥ t}, D(t)
K′ = Spf(O◦(D(t)

K′)), X
(t)
K′ = Spf(O◦(X(t)

K′)).
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We consider the Cartesian diagram (t ∈ Q≥0)

q(t) X
(t)
K′ X(t) X

p(t) D
(t)
K′ D(t) D,

f

D(t) = {x ∈ K | v(x) ≥ t}, D(t)
K′ = Spf(O◦(D(t)

K′)), X
(t)
K′ = Spf(O◦(X(t)

K′)).

The group G acts transitively on {q(t)}. The stabilizer Gq(t) is the
Galois group of a finite extension of type (II) of a discrete valuation
field with imperfect residue field.

ρF  ρq(t) : Gq(t) → AutΛ(Mq(t)).

 swG
q(t)

(Mq(t)) and CCψ(Mq(t)).
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Main theorem

Theorem

The function sw(F , ·) : Q≥0 → Q, t 7→ swG
q(t)

(Mq(t)) is
continuous and piecewise linear, with finitely many slopes which are
all integers.

Its right derivative is the locally constant function

ϕs(F , ·) : t 7→ − ord
p(t)(CCψ(Mq(t))) + dimΛ(Mq(t)/M

(0)

q(t)),

where M (0)

q(t) is the tame part of Mq(t) and ord
p(t) is the extension

to Ω1
κ(p(t))

of the normalized discrete valuation on the residue field

κ(p(t)), which is the field of fraction of O
D

(t)

s′ ,p
(t) .
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Remarks

(1) ϕs(F , t) is the dimension of the space of nearby cycles
Ψ0(F|D(t)) (Deligne-Kato formula).

(2) The function sw(F , ·) should be convex.
(3) The theorem should also hold when F has "horizontal

ramification".
(4) Analogous result by Ramero. Baldassarri, Pulita,

Poineau-Pulita, Kedlaya proved an analogue for p-adic
differential equations.
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The discriminant of a rigid morphism

X/K smooth affinoid space and f : X → D finite flat, étale
over an admissible open subset of D containing 0.

df (t) = |dO◦(X(t)

K′ )/O
◦(D

(t)

K′ )
|sup= |π|∂

α
f (t) (t ∈ Q≥0).

Weierstrass preparation theorem: an ivertible function on
A(ρ, ρ′) = {x ∈ K | ρ ≥ v(x) ≥ ρ′} (ρ, ρ′ ∈ Q) can be
written in the form

ξ 7→ cξd(1 + h(ξ)), with h(ξ) =
∑

i∈Z−{0}

hiξ
i,

where c ∈ K×, d ∈ Z (the order of the function) and h such
that |h(ξ)|sup < 1.
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When X = A(r/d, r′/d) (r ≥ r′ ≥ 0), and
f : A(r/d, r′/d)→ A(r, r′) ⊂ D finite étale of order d,
Lütkebohmert computes ∂αf explicitly and observes that it is
affine and is

d

dt
∂αf (t+) = σ − d+ 1, t ∈ [r′, r[∩Q,

where σ is the order of f ′.

More generally, by the semi-stable reduction theorem, ∂αf is
continuous and piecewise linear with finitely many slopes
(integers) given by

d

dt
∂αf (t+) = σi − d+ δf (i),

for some partition rn+1 = 0 < rn < · · · < r0 = +∞ et
t ∈ [ri, ri−1[.
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Ramification of Z2-valuation rings

q(t) x(t) X
(t)
K′

p(t) 0
(t)

D
(t)
K′ .

O
D

(t)

K′ ,0
(t) = A ⊂ Vt ⊂ Ap(t)  V h

t .

K. Kato: ramification theory for monogenic extensions of V h
t .

O
X

(t)

K′ ,x
(t) = B ⊂Wt ⊂ Bq(t)  V h

t →W h
t .

⇒ Ramification filtration of Gal(Lht /Kh
t ) ⊂ G indexed by the value

group of V h
t (isomorphic to Z2).

ãαf (t) : G = Aut(X/D)→ Q and s̃wβ
f (t) : G→ Z.
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The link

Proposition

Assume KX ' OX . Then, we have the identity

∂αf (t) = 〈ãαf (t), rG〉, (14.1)

where 〈·, ·〉 is the usual pairing for class functions and rG is the
character of the regular representation of G.

The right derivative of
∂αf at t ∈ [ri, ri−1[ is

d

dt
∂αf (t+) = σi − d+ δf (i) = 〈s̃wβ

f (t), rG〉. (14.2)
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where 〈·, ·〉 is the usual pairing for class functions and rG is the
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14.1 is an incarnation of the classical equality of the valuation
of the different with the value of the Artin character at 1.
14.2 is deduced from a formula à la Raynaud for the dimension
of some nearby cycle involving σ and δf (i).
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A nearby cycles formula

x(t) X
(t)
K′

0
(t)

D
(t)
K′ .
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x
(t)
j X

(t)
K′

0
(t)

D
(t)
K′ .

 O
D

(t)

K′ ,0
(t) = A(t) → B

(t)
j = O

X
(t)

K′ ,x
(t)
j

.

• P (t)
j = set of height 1 prime ideals of B(t)

j

• B(t)
j,s = B

(t)
j /mKB

(t)
j is reduced

B̃
(t)
j,0 normalization of B(t)

j,0

δ
(t)
j = dimk(B̃

(t)
j,0/B

(t)
j,0).

• A(t)
K′ = A(t) ⊗OK′ K

′ → B
(t)
j,K′ = A(t) ⊗OK′ K

′.

Bilinear trace map Bj,K′ ×Bj,K′ → A
(t)
K′ well-defined

 K ′-linear determinant homomorphism T
(t)
j

d
(t)
j = dimK′(Coker(T

(t)
j ))
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Proposition

For each i = 1, . . . , n and each t ∈]ri, ri−1[∩Q, we have∑
j

(d
(t)
j − 2δ

(t)
j + |Pj |) = σi + δf (i). (16.1)

Remark

Imagine Y (t) = X
(t)
K′ were a scheme over S′ = Spec(OK′). Then,

Kato proved that

2δ
(t)
j − |P

(t)
j |+1 = dimΛH

1
ét(Y

(t)
(x′j)
× η,Λ). (17.1)
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Remark

Imagine Y (t) = X
(t)
K′ were a scheme over S′ = Spec(OK′). Then,

Kato proved that

2δ
(t)
j − |P

(t)
j |+1 = dimΛH

1
ét(Y

(t)
(x′j)
× η,Λ). (19.1)
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Sketch of proof

X [t] X(t)

D[t] D(t)

� f (t)  

X
[t]
K′ X

(t)
K′

D
[t]
K′ D

(t)
K′

� f̂ (t)

X [t] =

δf (i)∐
j=1

D[t/dij ]  X
[t]
K′ =

δf (i)∐
j=1

D[t/dij ]

Y
(t)
K′ = (X

(t)
K′ ∪ (

δf (i)∐
j

D
(t)
ij )
/
D[t/dij ] ∼ D

[t]
ij → Spf(OK′).

is a formal relative curve, normal, proper (flat); smooth rigid
generic fiber Y(t)

η′ and Sing(Y
(t)
s′ ) ⊂ X

(t)
s′ − X

[t]
s′ = f̂

(t)−1

s′ (0(t)).
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Y
(t)
K′ proper flat formal curve ⇒ algebraizable (Grothendieck) :

there exists Y (t)
K′ normal, proper flat over S′ = Spec(OK′),

with smooth generic fiber, such that Ŷ (t)
K′
∼= Y

(t)
K′ .

Approximation of f (t): rigid Runge theorem (Raynaud)
⇒ ∃ g(t) : Y

(t)
K′ → P1

S′ s.t. ĝ
(t)
η′ is close enough to f (t) on

D
[t]
ij that df (t) and dg(t)

η′ have the same zeros with same orders

of vanishing on D[t]
ij .

Then,
2g(Y

(t)
η )− 2|π0(Y

(t)
η )|= deg(div(dg

(t)
η′ )).

deg(div(dg
(t)
η′ )) =

∑N
j=1 d

(t)
j − σi − 2δf (i).
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2|π0(Y
(t)
η )|−2g(Y

(t)
η ) = χ(Y

(t)
η ,Λ) = χ(Y

(t)
s′ , RΨ

Y
(t)

K′ /S
′(Λ))

χ(Y
(t)
s′ , RΨ

Y
(t)

K′ /S
′(Λ)) = N+δf (i)−

N∑
j=1

dimΛH
1
ét(Y

(t)
(x′j)
×η,Λ)

dimΛH
1
ét(Y

(t)
(x′j)
× η,Λ) = 2δ

(t)
j − |P

(t)
j |+1 (Kato).

Put together ⇒ QED.
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Theorem

Let χ ∈ RΛ(G).Then, the map

ãαf (χ, ·) : Q≥0 → Q, t 7→ 〈ãαf (t), χ〉G (20.1)

is continuous and piecewise linear, with finitely many slopes which
are all integers. Its right derivative at t ∈ Q≥0 is

d

dt
ãαf (χ, t+) = 〈s̃wβ

f (t), χ〉G. (20.2)
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Conclusion

Proposition

Let M be a Λ-valued representation of G. Then, we have the
identities

〈ãαf , χM 〉 = swG(M), (21.1)

〈s̃wβ
f , χM 〉 = − ordp(CCψ(M)) + dimΛ(M/M (0)). (21.2)

Deduced from a comparison theorem of H. Hu:

CCψ(M) = KCCψ(1)(χM ).
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Conclusion

Proposition

Let M be a Λ-valued representation of G. Then, we have the
identities

〈ãαf , χM 〉 = swG(M), (22.1)

〈s̃wβ
f , χM 〉 = − ordp(CCψ(M)) + dimΛ(M/M (0)). (22.2)

Deduced from a comparison theorem of H. Hu:

CCψ(M) = KCCψ(1)(χM ).
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Thank you !


