Variation of the Swan conductor of an \mathbb{F}_{ℓ}-sheaf on a rigid disc

Amadou Bah

Paris-Saclay \& IHÉS
December 18, 2020

$$
\begin{aligned}
& D^{(t)} \subset D \\
& t \mapsto s_{w}\left(F_{\left.1 D^{(t)}\right)}\right.
\end{aligned}
$$

Constructed with the ramification than of Abbes-Saito.

Lütkebohmut:
Voniation of the discriminant
$t \mapsto \operatorname{Sw}\left(\mathcal{F}_{1 D^{(t)}}\right)$
Constructed with the ramification
of a coven of D.

Lütkebohmat:

Variation of the discriminant of a coven of D.

Notation

We let

- K be a discrete valuation field

Notation

We let

- K be a discrete valuation field
- \mathcal{O}_{K} its valuation ring, henselian

Notation

We let

- K be a discrete valuation field
- \mathcal{O}_{K} its valuation ring, henselian
- k the residue field of characteristic $p>0$

Notation

We let

- K be a discrete valuation field
- \mathcal{O}_{K} its valuation ring, henselian
- k the residue field of characteristic $p>0$
- π a uniformizer

Notation

We let

- K be a discrete valuation field
- \mathcal{O}_{K} its valuation ring, henselian
- k the residue field of characteristic $p>0$
- π a uniformizer
- \bar{K} a separable closure, with residue field \bar{k}

Notation

We let

- K be a discrete valuation field
- \mathcal{O}_{K} its valuation ring, henselian
- k the residue field of characteristic $p>0$
- π a uniformizer
- \bar{K} a separable closure, with residue field \bar{k}
- $G_{K}=\operatorname{Gal}(\bar{K} / K)$

Notation

We let

- K be a discrete valuation field
- \mathcal{O}_{K} its valuation ring, henselian
- k the residue field of characteristic $p>0$
- π a uniformizer
- \bar{K} a separable closure, with residue field \bar{k}
- $G_{K}=\operatorname{Gal}(\bar{K} / K)$
- $v: \bar{K}^{\times} \rightarrow \mathbb{Q}$ the valuation map normalized by $v(\pi)=1$.

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.
- For general k, Abbes and Saito (~ 2000) defined the logarithmic ramification filtration $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ of G_{K}.

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.
- For general k, Abbes and Saito (~ 2000) defined the logarithmic ramification filtration $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ of G_{K}. For $r \in \mathbb{Q}_{\geq 0}$, put

$$
G_{K, \log }^{r+}=\overline{\cup_{s>r} G_{K, \log }^{s}}
$$

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.
- For general k, Abbes and Saito (~ 2000) defined the logarithmic ramification filtration $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ of G_{K}. For $r \in \mathbb{Q}_{\geq 0}$, put

$$
G_{K, \log }^{r+}=\overline{\cup_{s>r} G_{K, \log }^{s}}
$$

- $G_{K, \log }^{0}=I_{K}$ the inertia subgroup of G_{K} and

$$
G_{K, \log }^{0+1}=P_{K} \subset I_{K} \text { the wild inertia subgroup. }
$$

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.
- For general k, Abbes and Saito (~ 2000) defined the logarithmic ramification filtration $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ of G_{K}. For $r \in \mathbb{Q}_{\geq 0}$, put

$$
G_{K, \log }^{r+}=\overline{\cup_{s>r} G_{K, \log }^{s}}
$$

- $G_{K, \log }^{0}=I_{K}$ the inertia subgroup of G_{K} and $G_{K_{1, l o g}^{0}}^{0+1}=P_{K} \subset I_{K}$ the wild inertia subgroup.
- If K^{\prime} / K is a finite extension, then $G_{K^{\prime}, \log }^{e r} \subset G_{K, \log }^{r}$. It is an equality when K^{\prime} / K is tame.

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.
- For general k, Abbes and Saito (~ 2000) defined the logarithmic ramification filtration $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ of G_{K}. For $r \in \mathbb{Q}_{\geq 0}$, put

$$
G_{K, \log }^{r+}=\overline{\cup_{s>r} G_{K, \log }^{s}}
$$

- $G_{K, \log }^{0}=I_{K}$ the inertia subgroup of G_{K} and $G_{K}^{0+10 g}=P_{K} \subset I_{K}$ the wild inertia subgroup.
- If K^{\prime} / K is a finite extension, then $G_{K^{\prime}, \log }^{e r} \subset G_{K, \log }^{r}$. It is an equality when K^{\prime} / K is tame.
- When k is perfect, $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ coincide with the classical upper ramification filtration.

Logarithmic ramification filtration

- When k is perfect, we have the classical ramification theory.
- For general k, Abbes and Saito (~ 2000) defined the logarithmic ramification filtration $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ of G_{K}. For $r \in \mathbb{Q}_{\geq 0}$, put

$$
G_{K, \log }^{r+}=\overline{\cup_{s>r} G_{K, \log }^{s}}
$$

- $G_{K, \log }^{0}=I_{K}$ the inertia subgroup of G_{K} and $G_{K}^{0+10}=P_{K} \subset I_{K}$ the wild inertia subgroup.
- If K^{\prime} / K is a finite extension, then $G_{K^{\prime}, \log }^{e r} \subset G_{K, \log }^{r}$. It is an equality when K^{\prime} / K is tame.
- When k is perfect, $\left(G_{K, \log }^{r}\right)_{r \in \mathbb{Q} \geq 0}$ coincide with the classical upper ramification filtration.
- Graded quotient

$$
\operatorname{Gr}_{\log }^{r} G_{K}=G_{K, \log }^{r} / G_{K, \log }^{r+} \quad(r>0)
$$

is abelian and killed by p.

The refined Swan conductor

Theorem (Kato, Abbes-Saito, Saito)

Assume that k is of finite type over a perfect sub-field k_{0}. For every $r>0$, there is an injective homomorphism, the refined Swan conductor

$$
\text { rsw }: \operatorname{Hom}\left(\operatorname{Gr}_{\log }^{r} G_{K}, \mathbb{F}_{p}\right) \rightarrow \operatorname{Hom}_{\bar{k}}\left(\mathfrak{m} \frac{r}{K} / \mathfrak{m}_{\bar{K}}^{r+}, \Omega_{k}^{1}(\log) \otimes_{k} \bar{k}\right)
$$

The refined Swan conductor

Theorem (Kato, Abbes-Saito, Saito)

Assume that k is of finite type over a perfect sub-field k_{0}. For every $r>0$, there is an injective homomorphism, the refined Swan conductor

$$
\mathrm{rsw}: \operatorname{Hom}\left(\operatorname{Gr}_{\log }^{r} G_{K}, \mathbb{F}_{p}\right) \rightarrow \operatorname{Hom}_{\bar{k}}\left(\mathfrak{m} \frac{r}{K} / \mathfrak{m}_{\bar{K}}^{r+}, \Omega_{k}^{1}(\log) \otimes_{k} \bar{k}\right)
$$

For $r \in \mathbb{Q}, \mathfrak{m}_{\bar{K}}^{r}$ (resp. $\left.\mathfrak{m}_{\bar{K}}^{r+}\right)$ is the set of elements x of \bar{K} satisfying $v(x) \geq r($ resp. $v(x)>r)$.

The refined Swan conductor

Theorem (Kato, Abbes-Saito, Saito)

Assume that k is of finite type over a perfect sub-field k_{0}. For every $r>0$, there is an injective homomorphism, the refined Swan conductor

$$
\mathrm{rsw}: \operatorname{Hom}\left(\operatorname{Gr}_{\log }^{r} G_{K}, \mathbb{F}_{p}\right) \rightarrow \operatorname{Hom}_{\bar{k}}\left(\mathfrak{m} \frac{r}{K} / \mathfrak{m}_{\bar{K}}^{r+}, \Omega_{k}^{1}(\log) \otimes_{k} \bar{k}\right)
$$

For $r \in \mathbb{Q}, \mathfrak{m}_{\bar{K}}^{r}$ (resp. $\left.\mathfrak{m}_{\bar{K}}^{r+}\right)$ is the set of elements x of \bar{K} satisfying $v(x) \geq r$ (resp. $v(x)>r$). The k-vector space of logarithmic differential 1-forms is

$$
\Omega_{k}^{1}(\log)=\left(\Omega_{k / k_{0}}^{1} \oplus\left(k \otimes_{\mathbb{Z}} K^{\times}\right)\right) /\left(\mathrm{d} \bar{a}-\bar{a} \otimes a, a \in \mathcal{O}_{K}^{\times}\right)
$$

The Swan conductor

Let Λ be a finite field of char. $\ell \neq p, L \subset \bar{K}$ a finite Galois ext. of K of group G and $\rho: G \rightarrow \operatorname{Aut}_{\Lambda}(M)$ a finite dim. cont. rep.

The Swan conductor

Let Λ be a finite field of char. $\ell \neq p, L \subset \bar{K}$ a finite Galois ext. of K of group G and $\rho: G \rightarrow \operatorname{Aut}_{\Lambda}(M)$ a finite dim. cont. rep. M has a unique slope decomposition into G_{K}-stable sub-mod.

$$
M=\bigoplus_{r \in \mathbb{Q} \geq 0} M^{(r)}
$$

$$
M^{(0)}=M^{P_{K}},\left(M^{(r)}\right)^{G_{K, \log }^{r}}=0 \text { and }\left(M^{(r)}\right)^{G_{K, \log }^{r+}}=M^{(r)}(r>0)
$$

The Swan conductor

Let Λ be a finite field of char. $\ell \neq p, L \subset \bar{K}$ a finite Galois ext. of K of group G and $\rho: G \rightarrow \operatorname{Aut}_{\Lambda}(M)$ a finite dim. cont. rep. M has a unique slope decomposition into G_{K}-stable sub-mod.

$$
\begin{gathered}
M=\bigoplus_{r \in \mathbb{Q} \geq 0} M^{(r)} \\
M^{(0)}=M^{P_{K}},\left(M^{(r)}\right)^{G_{K, \log }^{r}}=0 \text { and }\left(M^{(r)}\right)^{G_{K, \log }^{r+}}=M^{(r)}(r>0) .
\end{gathered}
$$

Definition

The (logarithmic) Swan conductor of M is

$$
\operatorname{sw}_{G}(M)=\sum_{r \in \mathbb{Q} \geq 0} r \cdot \operatorname{dim}_{\Lambda} M^{(r)}
$$

The Swan conductor

Let Λ be a finite field of char. $\ell \neq p, L \subset \bar{K}$ a finite Galois ext. of K of group G and $\rho: G \rightarrow \operatorname{Aut}_{\Lambda}(M)$ a finite dim. cont. rep. M has a unique slope decomposition into G_{K}-stable sub-mod.

$$
\begin{gathered}
M=\bigoplus_{r \in \mathbb{Q} \geq 0} M^{(r)} \\
M^{(0)}=M^{P_{K}},\left(M^{(r)}\right)^{G_{K, \log }^{r}}=0 \text { and }\left(M^{(r)}\right)^{G_{K, \log }^{r+}}=M^{(r)}(r>0) .
\end{gathered}
$$

Definition

The (logarithmic) Swan conductor of M is

$$
\operatorname{sw}_{G}(M)=\sum_{r \in \mathbb{Q} \geq 0} r \cdot \operatorname{dim}_{\Lambda} M^{(r)}
$$

$\operatorname{sw}_{G}(M)=0 \Leftrightarrow M^{P_{K}}=M$.

The characteristic cycle

Let $\psi: \mathbb{F}_{p} \rightarrow \Lambda^{\times}$be a nontrivial character. For $r>0, M^{(r)} \neq 0$ has a central character decomposition

$$
M^{(r)}=\bigoplus_{\chi} M_{\chi}^{(r)}
$$

indexed by a finite number of characters $\chi: \operatorname{Gr}_{\log }^{r} G_{K} \rightarrow \Lambda^{\times}$.

The characteristic cycle

Let $\psi: \mathbb{F}_{p} \rightarrow \Lambda^{\times}$be a nontrivial character. For $r>0, M^{(r)} \neq 0$ has a central character decomposition

$$
M^{(r)}=\bigoplus_{\chi} M_{\chi}^{(r)}
$$

indexed by a finite number of characters $\chi: \operatorname{Gr}_{\log }^{r} G_{K} \rightarrow \Lambda^{\times}$. Each χ factors as $\operatorname{Gr}_{\log }^{r} G_{K} \xrightarrow{\bar{\chi}} \mathbb{F}_{p} \xrightarrow{\psi} \Lambda^{\times}$.

The characteristic cycle

Let $\psi: \mathbb{F}_{p} \rightarrow \Lambda^{\times}$be a nontrivial character. For $r>0, M^{(r)} \neq 0$ has a central character decomposition

$$
M^{(r)}=\bigoplus_{\chi} M_{\chi}^{(r)}
$$

indexed by a finite number of characters $\chi: \operatorname{Gr}_{\log }^{r} G_{K} \rightarrow \Lambda^{\times}$. Each χ factors as $\operatorname{Gr}_{\log }^{r} G_{K} \xrightarrow{\bar{\chi}} \mathbb{F}_{p} \xrightarrow{\psi} \Lambda^{\times}$.

Definition

The Characteristic cycle of M is

$$
\mathrm{CC}_{\psi}(M)=\bigotimes_{r \in \mathbb{Q}>0} \bigotimes_{\chi}\left(\operatorname{rsw}(\bar{\chi})\left(\pi^{r}\right)\right)^{\otimes\left(\operatorname{dim}_{\Lambda} M_{\chi}^{(r)}\right)} \in\left(\Omega_{k}^{1}(\log) \otimes_{k} \bar{k}\right)^{\otimes m}
$$

where $m=\operatorname{dim}_{\Lambda} M / M^{(0)}$.

Theorem (H. Hu, 2015)

If L / K is of type (II), i.e. $\mathcal{O}_{L} / \mathcal{O}_{K}$ is monogenic with purely inseparable residue extension, then

$$
\mathrm{CC}_{\psi}(M) \in\left(\Omega_{k}^{1}\right)^{m} .
$$

Lisse sheaf on unit disc

■ Assume that K is complete and k is algebraically closed.

Lisse sheaf on unit disc

- Assume that K is complete and k is algebraically closed.

■ Let $D=\{x \in \bar{K} \mid v(x) \geq 0\}$ be the closed rigid unit disc and \mathcal{F} a lisse sheaf of Λ-modules on D.

Lisse sheaf on unit disc

- Assume that K is complete and k is algebraically closed.
- Let $D=\{x \in \bar{K} \mid v(x) \geq 0\}$ be the closed rigid unit disc and \mathcal{F} a lisse sheaf of Λ-modules on D. By de Jong,

$$
\mathcal{F} \longleftrightarrow\left[f: X \rightarrow D+\Lambda-\text { rep. } \rho_{\mathcal{F}} \text { of } G=\operatorname{Aut}(X / D)\right] .
$$

We consider the Cartesian diagram $(t \in \mathbb{Q} \geq 0)$

$$
D^{(t)}=\{x \in \bar{K} \mid v(x) \geq t\} .
$$

We consider the Cartesian diagram $(t \in \mathbb{Q} \geq 0)$

$$
\begin{gathered}
\mathfrak{X}_{K^{\prime}}^{(t)} \prec \cdots \cdots \cdots X^{(t)} \longrightarrow X \\
\downarrow \\
\mathfrak{D}_{K^{\prime}}^{(t)} \prec \cdots \cdots \cdots D^{(t)} \longrightarrow D, \\
D^{(t)}=\{x \in \bar{K} \mid v(x) \geq t\}, \mathfrak{D}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(D_{K^{\prime}}^{(t)}\right)\right), \mathfrak{X}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right) .\right.
\end{gathered}
$$

We consider the Cartesian diagram $(t \in \mathbb{Q} \geq 0)$

$$
\begin{aligned}
& D^{(t)}=\{x \in \bar{K} \mid v(x) \geq t\}, \mathfrak{D}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(D_{K^{\prime}}^{(t)}\right)\right), \mathfrak{X}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right)\right.
\end{aligned}
$$

We consider the Cartesian diagram $(t \in \mathbb{Q} \geq 0)$

$D^{(t)}=\{x \in \bar{K} \mid v(x) \geq t\}, \mathfrak{D}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(D_{K^{\prime}}^{(t)}\right)\right), \mathfrak{X}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right)\right.$
The group G acts transitively on $\left\{\overline{\mathfrak{q}}^{(t)}\right\}$. The stabilizer $G_{\bar{q}^{(t)}}$ is the Galois group of a finite extension of type (II) of a discrete valuation field with imperfect residue field.

We consider the Cartesian diagram $(t \in \mathbb{Q} \geq 0)$

$D^{(t)}=\{x \in \bar{K} \mid v(x) \geq t\}, \mathfrak{D}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(D_{K^{\prime}}^{(t)}\right)\right), \mathfrak{X}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right)\right.$
The group G acts transitively on $\left\{\overline{\mathfrak{q}}^{(t)}\right\}$. The stabilizer $G_{\bar{q}^{(t)}}$ is the Galois group of a finite extension of type (II) of a discrete valuation field with imperfect residue field.

$$
\rho_{\mathcal{F}} \quad \rightsquigarrow \quad \rho_{\overline{\bar{q}}^{(t)}}: G_{\overline{\mathbf{q}}^{(t)}} \rightarrow \operatorname{Aut}_{\Lambda}\left(M_{\overline{\mathbf{q}}^{(t)}}\right) .
$$

We consider the Cartesian diagram $(t \in \mathbb{Q} \geq 0)$

$D^{(t)}=\{x \in \bar{K} \mid v(x) \geq t\}, \mathfrak{D}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(D_{K^{\prime}}^{(t)}\right)\right), \mathfrak{X}_{K^{\prime}}^{(t)}=\operatorname{Spf}\left(\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right)\right.$
The group G acts transitively on $\left\{\overline{\mathfrak{q}}^{(t)}\right\}$. The stabilizer $G_{\bar{q}^{(t)}}$ is the Galois group of a finite extension of type (II) of a discrete valuation field with imperfect residue field.

$$
\begin{aligned}
& \rho_{\mathcal{F}} \quad \rightsquigarrow \quad \rho_{\overline{\mathfrak{q}}^{(t)}}: G_{\overline{\mathbf{q}}^{(t)}} \rightarrow \operatorname{Aut}_{\Lambda}\left(M_{\overline{\mathbf{q}}^{(t)}}\right) . \\
& \rightsquigarrow \quad \operatorname{sw}_{G_{\overline{\mathbf{q}}^{(t)}}}\left(M_{\overline{\mathbf{q}}^{(t)}}\right) \quad \text { and } \quad \operatorname{CC}_{\psi}\left(M_{\overline{\mathbf{q}}^{(t)}}\right) .
\end{aligned}
$$

Main theorem

Theorem

The function $\operatorname{sw}(\mathcal{F}, \cdot): \mathbb{Q}_{\geq 0} \rightarrow \mathbb{Q}, \quad t \mapsto \operatorname{sw}_{G_{\overline{\mathfrak{q}}}(t)}\left(M_{\overline{\mathfrak{q}}^{(t)}}\right)$ is continuous and piecewise linear, with finitely many slopes which are all integers.

Main theorem

Theorem

The function $\operatorname{sw}(\mathcal{F}, \cdot): \mathbb{Q}_{\geq 0} \rightarrow \mathbb{Q}, \quad t \mapsto \operatorname{sw}_{G_{\overline{\mathfrak{q}}}(t)}\left(M_{\overline{\mathfrak{q}}}(t)\right)$ is continuous and piecewise linear, with finitely many slopes which are all integers. Its right derivative is the locally constant function

$$
\varphi_{s}(\mathcal{F}, \cdot): t \mapsto-\operatorname{ord}_{\overline{\mathfrak{p}}^{(t)}}\left(\mathrm{CC}_{\psi}\left(M_{\overline{\mathfrak{q}}^{(t)}}\right)\right)+\operatorname{dim}_{\Lambda}\left(M_{\overline{\mathfrak{q}}^{(t)}} / M_{\overline{\mathfrak{q}}^{(t)}}^{(0)}\right)
$$

where $M_{\overline{\mathfrak{q}}^{(t)}}^{(0)}$ is the tame part of $M_{\bar{q}^{(t)}}$ and $\operatorname{ord}_{\overline{\mathfrak{p}}^{(t)}}$ is the extension to $\Omega_{\kappa\left(\overline{\mathfrak{p}}^{(t)}\right)}^{1}$ of the normalized discrete valuation on the residue field $\kappa\left(\overline{\mathfrak{p}}^{(t)}\right)$, which is the field of fraction of $\mathcal{O}_{\mathfrak{D}_{s^{\prime}}^{(t)} \overline{\mathfrak{p}}^{(t)}}$.

Remarks

(1) $\varphi_{s}(\mathcal{F}, t)$ is the dimension of the space of nearby cycles $\Psi_{0}\left(\mathcal{F}_{\mid D^{(t)}}\right)$ (Deligne-Kato formula).

Remarks

(1) $\varphi_{s}(\mathcal{F}, t)$ is the dimension of the space of nearby cycles $\Psi_{0}\left(\mathcal{F}_{\mid D^{(t)}}\right)$ (Deligne-Kato formula).
(2) The function $\operatorname{sw}(\mathcal{F}, \cdot)$ should be convex.

Remarks

(1) $\varphi_{s}(\mathcal{F}, t)$ is the dimension of the space of nearby cycles $\Psi_{0}\left(\mathcal{F}_{\mid D^{(t)}}\right)$ (Deligne-Kato formula).
(2) The function $\operatorname{sw}(\mathcal{F}, \cdot)$ should be convex.
(3) The theorem should also hold when \mathcal{F} has "horizontal ramification".

Remarks

(1) $\varphi_{s}(\mathcal{F}, t)$ is the dimension of the space of nearby cycles $\Psi_{0}\left(\mathcal{F}_{\mid D^{(t)}}\right)$ (Deligne-Kato formula).
(2) The function $\operatorname{sw}(\mathcal{F}, \cdot)$ should be convex.
(3) The theorem should also hold when \mathcal{F} has "horizontal ramification".
(4) Analogous result by Ramero. Baldassarri, Pulita, Poineau-Pulita, Kedlaya proved an analogue for p-adic differential equations.

The discriminant of a rigid morphism

■ X / K smooth affinoid space and $f: X \rightarrow D$ finite flat, étale over an admissible open subset of D containing 0 .

The discriminant of a rigid morphism

■ X / K smooth affinoid space and $f: X \rightarrow D$ finite flat, étale over an admissible open subset of D containing 0 .

■ $\mathfrak{d}_{f}(t)=\left|\mathfrak{d}_{\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right) / \mathcal{O}^{\circ}\left(D_{K^{\prime}}^{\prime}\right)}^{(t)}\right|_{\sup }=|\pi|^{\partial_{f}^{\alpha}(t)} \quad\left(t \in \mathbb{Q}_{\geq 0}\right)$.

The discriminant of a rigid morphism

■ X / K smooth affinoid space and $f: X \rightarrow D$ finite flat, étale over an admissible open subset of D containing 0 .

- $\quad \mathfrak{d}_{f}(t)=\left|\mathfrak{d}_{\mathcal{O}^{\circ}\left(X_{K^{\prime}}^{(t)}\right) / \mathcal{O}^{\circ}\left(D_{K^{\prime}}^{(t)}\right)}\right|_{\sup }=|\pi|^{\partial_{f}^{\alpha}(t)} \quad\left(t \in \mathbb{Q}_{\geq 0}\right)$.
- Weierstrass preparation theorem: an ivertible function on $A\left(\rho, \rho^{\prime}\right)=\left\{x \in \bar{K} \mid \rho \geq v(x) \geq \rho^{\prime}\right\}\left(\rho, \rho^{\prime} \in \mathbb{Q}\right)$ can be written in the form

$$
\xi \mapsto c \xi^{d}(1+h(\xi)), \quad \text { with } \quad h(\xi)=\sum_{i \in \mathbb{Z}-\{0\}} h_{i} \xi^{i}
$$

where $c \in K^{\times}, d \in \mathbb{Z}$ (the order of the function) and h such that $|h(\xi)|_{\text {sup }}<1$.

■ When $X=A\left(r / d, r^{\prime} / d\right)\left(r \geq r^{\prime} \geq 0\right)$, and $f: A\left(r / d, r^{\prime} / d\right) \rightarrow A\left(r, r^{\prime}\right) \subset D$ finite étale of order d, Lütkebohmert computes ∂_{f}^{α} explicitly and observes that it is affine and is

$$
\frac{d}{d t} \partial_{f}^{\alpha}(t+)=\sigma-d+1, \quad t \in\left[r^{\prime}, r[\cap \mathbb{Q},\right.
$$

where σ is the order of f^{\prime}.

- When $X=A\left(r / d, r^{\prime} / d\right)\left(r \geq r^{\prime} \geq 0\right)$, and $f: A\left(r / d, r^{\prime} / d\right) \rightarrow A\left(r, r^{\prime}\right) \subset D$ finite étale of order d, Lütkebohmert computes ∂_{f}^{α} explicitly and observes that it is affine and is

$$
\frac{d}{d t} \partial_{f}^{\alpha}(t+)=\sigma-d+1, \quad t \in\left[r^{\prime}, r[\cap \mathbb{Q}\right.
$$

where σ is the order of f^{\prime}.
■ More generally, by the semi-stable reduction theorem, ∂_{f}^{α} is continuous and piecewise linear with finitely many slopes (integers) given by

$$
\frac{d}{d t} \partial_{f}^{\alpha}(t+)=\sigma_{i}-d+\delta_{f}(i)
$$

for some partition $r_{n+1}=0<r_{n}<\cdots<r_{0}=+\infty$ et $t \in\left[r_{i}, r_{i-1}[\right.$.

Ramification of \mathbb{Z}^{2}-valuation rings

Ramification of \mathbb{Z}^{2}-valuation rings

$$
\begin{aligned}
& \overline{\mathfrak{q}}^{(t)} \longrightarrow m>\bar{x}^{(t)} \longrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
& \downarrow \downarrow \downarrow \\
& \overline{\mathfrak{p}}^{(t)} \xrightarrow{(t)} \overline{\overline{0}}^{(t)} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)}, \\
& \text { - } \mathcal{O}_{\mathfrak{D}_{\mathbb{R}^{\prime}}^{(t), 0^{(t)}}}=A \subset V_{t} \subset A_{\mathfrak{p}^{(t)}} \rightsquigarrow V_{t}^{h} .
\end{aligned}
$$

Ramification of \mathbb{Z}^{2}-valuation rings

- $\mathcal{O}_{\mathfrak{D}_{K^{\prime}}^{(t)}, \overline{0}^{(t)}}=A \subset V_{t} \subset A_{\mathfrak{p}^{(t)}} \rightsquigarrow \quad V_{t}$.

■ K. Kato: ramification theory for monogenic extensions of V_{t}^{h}.

Ramification of \mathbb{Z}^{2}-valuation rings

- $\mathcal{O}_{\mathfrak{D}_{K^{\prime}}^{(t)} \overline{0}^{(t)}}=A \subset V_{t} \subset A_{\mathfrak{p}^{(t)}} \quad \rightsquigarrow \quad V_{t}^{h}$.
- K. Kato: ramification theory for monogenic extensions of V_{t}^{h}.
$■ \mathcal{O}_{\mathfrak{X}_{K^{\prime}}^{(t)}, \bar{x}^{(t)}}=B \subset W_{t} \subset B_{\mathfrak{q}^{(t)}} \quad \rightsquigarrow \quad V_{t}^{h} \rightarrow W_{t}^{h}$.

Ramification of \mathbb{Z}^{2}-valuation rings

- $\mathcal{O}_{\mathfrak{D}_{K^{\prime}}^{(t)} \overline{0}^{(t)}}=A \subset V_{t} \subset A_{\mathfrak{p}^{(t)}} \quad \rightsquigarrow \quad V_{t}^{h}$.
- K. Kato: ramification theory for monogenic extensions of V_{t}^{h}.

■ $\mathcal{O}_{\mathfrak{X}_{K^{\prime}}^{(t)}, \bar{x}^{(t)}}=B \subset W_{t} \subset B_{\mathfrak{q}^{(t)}} \rightsquigarrow \quad V_{t}^{h} \rightarrow W_{t}^{h}$.
\Rightarrow Ramification filtration of $\operatorname{Gal}\left(\mathbb{L}_{t}^{h} / \mathbb{K}_{t}^{h}\right) \subset G$ indexed by the value group of V_{t}^{h} (isomorphic to \mathbb{Z}^{2}).

Ramification of \mathbb{Z}^{2}-valuation rings

- $\mathcal{O}_{\mathfrak{D}_{K^{\prime}}^{(t)} \overline{0}^{(t)}}=A \subset V_{t} \subset A_{\mathfrak{p}^{(t)}} \quad \rightsquigarrow \quad V_{t}^{h}$.
- K. Kato: ramification theory for monogenic extensions of V_{t}^{h}.
$■ \mathcal{O}_{\mathfrak{X}_{K^{\prime}}(t), \bar{x}^{(t)}}=B \subset W_{t} \subset B_{\mathfrak{q}^{(t)}} \quad \rightsquigarrow \quad V_{t}^{h} \rightarrow W_{t}^{h}$.
\Rightarrow Ramification filtration of $\operatorname{Gal}\left(\mathbb{L}_{t}^{h} / \mathbb{K}_{t}^{h}\right) \subset G$ indexed by the value group of V_{t}^{h} (isomorphic to \mathbb{Z}^{2}).

$$
\tilde{a}_{f}^{\alpha}(t): G=\operatorname{Aut}(X / D) \rightarrow \mathbb{Q} \quad \text { and } \quad \widetilde{\operatorname{sw}}_{f}^{\beta}(t): G \rightarrow \mathbb{Z}
$$

The link

Proposition

Assume $K_{X} \simeq \mathcal{O}_{X}$. Then, we have the identity

$$
\begin{equation*}
\partial_{f}^{\alpha}(t)=\left\langle\widetilde{a}_{f}^{\alpha}(t), r_{G}\right\rangle, \tag{14.1}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the usual pairing for class functions and r_{G} is the character of the regular representation of G.

Proposition

Assume $K_{X} \simeq \mathcal{O}_{X}$. Then, we have the identity

$$
\begin{equation*}
\partial_{f}^{\alpha}(t)=\left\langle\widetilde{a}_{f}^{\alpha}(t), r_{G}\right\rangle \tag{15.1}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the usual pairing for class functions and r_{G} is the character of the regular representation of G. The right derivative of ∂_{f}^{α} at $t \in\left[r_{i}, r_{i-1}[\right.$ is

$$
\begin{equation*}
\frac{d}{d t} \partial_{f}^{\alpha}(t+)=\sigma_{i}-d+\delta_{f}(i)=\left\langle\widetilde{\mathrm{sw}}_{f}^{\beta}(t), r_{G}\right\rangle \tag{15.2}
\end{equation*}
$$

- 14.1 is an incarnation of the classical equality of the valuation of the different with the value of the Artin character at 1.
- 14.2 is deduced from a formula à la Raynaud for the dimension of some nearby cycle involving σ and $\delta_{f}(i)$.

A nearby cycles formula

$$
\begin{gathered}
\bar{x}^{(t)} \longrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
\overline{0}^{(t)} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)} \text {. } \\
\downarrow
\end{gathered}
$$

$$
\begin{aligned}
& \bar{x}_{j}^{(t)} \longrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
& \downarrow^{(} \downarrow^{(t)} \\
& \overline{0}^{(t)} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)}
\end{aligned}
$$

$$
{\underset{\overline{0}}{ }}_{\bar{x}_{j}^{(t)} \longrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \longrightarrow{\underset{D}{K^{\prime}}}_{\downarrow}^{\downarrow} \rightsquigarrow \mathcal{O}_{\mathfrak{D}_{K^{\prime}}^{(t)}, \overline{0}^{(t)}}=A^{(t)} \rightarrow B_{j}^{(t)}=\mathcal{O}_{\mathfrak{X}_{K^{\prime}}^{(t)}, \bar{x}_{j}^{(t)}} .}
$$

- $P_{j}^{(t)}=$ set of height 1 prime ideals of $B_{j}^{(t)}$

$$
\begin{aligned}
& \bar{x}_{j}^{(t)} \longrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
& \downarrow \downarrow^{\downarrow} \\
& \overline{0}^{(t)} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)}
\end{aligned}
$$

- $P_{j}^{(t)}=$ set of height 1 prime ideals of $B_{j}^{(t)}$
- $B_{j, s}^{(t)}=B_{j}^{(t)} / \mathfrak{m}_{K} B_{j}^{(t)}$ is reduced
$B_{j, 0}^{(t)}$ normalization of $B_{j, 0}^{(t)}$
$\delta_{j}^{(t)}=\operatorname{dim}_{k}\left(\widetilde{B_{j, 0}^{(t)}} / B_{j, 0}^{(t)}\right)$.

$$
\begin{aligned}
& \bar{x}_{j}^{(t)} \longrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
& \downarrow \downarrow^{\downarrow} \\
& \overline{0}^{(t)} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)}
\end{aligned}
$$

- $P_{j}^{(t)}=$ set of height 1 prime ideals of $B_{j}^{(t)}$
- $B_{j, s}^{(t)}=B_{j}^{(t)} / \mathfrak{m}_{K} B_{j}^{(t)}$ is reduced
$B_{j, 0}^{(t)}$ normalization of $B_{j, 0}^{(t)}$
$\delta_{j}^{(t)}=\operatorname{dim}_{k}\left(\widetilde{B_{j, 0}^{(t)}} / B_{j, 0}^{(t)}\right)$.
- $A_{K^{\prime}}^{(t)}=A^{(t)} \otimes_{\mathcal{O}_{K^{\prime}}} K^{\prime} \rightarrow B_{j, K^{\prime}}^{(t)}=A^{(t)} \otimes_{\mathcal{O}_{K^{\prime}}} K^{\prime}$.

Bilinear trace map $B_{j, K^{\prime}} \times B_{j, K^{\prime}} \rightarrow A_{K^{\prime}}^{(t)}$ well-defined
$\rightsquigarrow K^{\prime}$-linear determinant homomorphism $T_{j}^{(t)}$
$d_{j}^{(t)}=\operatorname{dim}_{K^{\prime}}\left(\operatorname{Coker}\left(T_{j}^{(t)}\right)\right)$

Proposition

For each $i=1, \ldots, n$ and each $t \in] r_{i}, r_{i-1}[\cap \mathbb{Q}$, we have

$$
\begin{equation*}
\sum_{j}\left(d_{j}^{(t)}-2 \delta_{j}^{(t)}+\left|P_{j}\right|\right)=\sigma_{i}+\delta_{f}(i) \tag{16.1}
\end{equation*}
$$

Proposition

For each $i=1, \ldots, n$ and each $t \in] r_{i}, r_{i-1}[\cap \mathbb{Q}$, we have

$$
\begin{equation*}
\sum_{j}\left(d_{j}^{(t)}-2 \delta_{j}^{(t)}+\left|P_{j}\right|\right)=\sigma_{i}+\delta_{f}(i) \tag{18.1}
\end{equation*}
$$

Remark

Imagine $Y^{(t)}=\mathfrak{X}_{K^{\prime}}^{(t)}$ were a scheme over $S^{\prime}=\operatorname{Spec}\left(\mathcal{O}_{K^{\prime}}\right)$. Then, Kato proved that

$$
\begin{equation*}
2 \delta_{j}^{(t)}-\left|P_{j}^{(t)}\right|+1=\operatorname{dim}_{\Lambda} H_{\hat{\mathrm{et}}}^{1}\left(Y_{\left(\bar{x}_{j}^{\prime}\right)}^{(t)} \times \bar{\eta}, \Lambda\right) \tag{19.1}
\end{equation*}
$$

Sketch of proof

$$
\begin{aligned}
& X^{[t]} \longleftrightarrow X^{(t)} \\
& \downarrow \square \quad \downarrow^{f^{(t)}} \rightsquigarrow \\
& \mathfrak{X}_{K^{\prime}}^{[t]} \longleftrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
& D^{[t]} \longleftrightarrow D^{(t)} \\
& \mathfrak{D}_{K^{\prime}}^{[t]} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)}
\end{aligned}
$$

Sketch of proof

Sketch of proof

$$
\begin{aligned}
& X^{[t]} \longleftrightarrow X^{(t)} \quad \mathfrak{X}_{K^{\prime}}^{[t]} \longleftrightarrow \mathfrak{X}_{K^{\prime}}^{(t)} \\
& \downarrow \square \quad \downarrow^{(t)} \rightsquigarrow \quad \downarrow \quad \square \quad \downarrow^{(t)} \\
& D^{[t]} \longleftrightarrow D^{(t)} \\
& \mathfrak{D}_{K^{\prime}}^{[t]} \longrightarrow \mathfrak{D}_{K^{\prime}}^{(t)} \\
& X^{[t]}=\coprod_{j=1}^{\delta_{f}(i)} D^{\left[t / d_{i j}\right]} \quad \rightsquigarrow \mathfrak{X}_{K^{\prime}}^{[t]}=\coprod_{j=1}^{\delta_{f}(i)} \mathfrak{D}^{\left[t / d_{i j}\right]} \\
& \mathfrak{Y}_{K^{\prime}}^{(t)}=\left(\mathfrak{X}_{K^{\prime}}^{(t)} \cup\left(\coprod_{j}^{\delta_{f}^{(i)}} \mathfrak{D}_{i j}^{(t)}\right) / \mathfrak{D}^{\left[t / d_{i j}\right]} \sim \mathfrak{D}_{i j}^{[t]} \rightarrow \operatorname{Spf}\left(\mathcal{O}_{K^{\prime}}\right) .\right.
\end{aligned}
$$

is a formal relative curve, normal, proper (flat); smooth rigid generic fiber $\mathfrak{Y}_{\eta^{\prime}}^{(t)}$ and $\operatorname{Sing}\left(\mathfrak{Y}_{s^{\prime}}^{(t)}\right) \subset \mathfrak{X}_{s^{\prime}}^{(t)}-\mathfrak{X}_{s^{\prime}}^{[t]}=\widehat{f}_{s^{\prime}}^{(t)^{-1}}\left(0^{(t)}\right)$.

- $\mathfrak{Y}_{K^{\prime}}^{(t)}$ proper flat formal curve \Rightarrow algebraizable (Grothendieck) : there exists $Y_{K^{\prime}}^{(t)}$ normal, proper flat over $S^{\prime}=\operatorname{Spec}\left(\mathcal{O}_{K^{\prime}}\right)$, with smooth generic fiber, such that $\widehat{Y_{K^{\prime}}^{(t)}} \cong \mathfrak{Y}_{K^{\prime}}^{(t)}$.
- $\mathfrak{Y}_{K^{\prime}}^{(t)}$ proper flat formal curve \Rightarrow algebraizable (Grothendieck) : there exists $Y_{K^{\prime}}^{(t)}$ normal, proper flat over $S^{\prime}=\operatorname{Spec}\left(\mathcal{O}_{K^{\prime}}\right)$, with smooth generic fiber, such that $\widehat{Y_{K^{\prime}}^{(t)}} \cong \mathfrak{Y}_{K^{\prime}}^{(t)}$.
■ Approximation of $f^{(t)}$: rigid Runge theorem (Raynaud) $\Rightarrow \quad \exists \quad g^{(t)}: Y_{K^{\prime}}^{(t)} \rightarrow \mathbb{P}_{S^{\prime}}^{1}$ s.t. $\widehat{g}_{\eta^{\prime}}^{(t)}$ is close enough to $f^{(t)}$ on $D_{i j}^{[t]}$ that $d f^{(t)}$ and $d g_{\eta^{\prime}}^{(t)}$ have the same zeros with same orders of vanishing on $D_{i j}^{[t]}$.
- $\mathfrak{Y}_{K^{\prime}}^{(t)}$ proper flat formal curve \Rightarrow algebraizable (Grothendieck) : there exists $Y_{K^{\prime}}^{(t)}$ normal, proper flat over $S^{\prime}=\operatorname{Spec}\left(\mathcal{O}_{K^{\prime}}\right)$, with smooth generic fiber, such that $\widehat{Y_{K^{\prime}}^{(t)}} \cong \mathfrak{Y}_{K^{\prime}}^{(t)}$.
■ Approximation of $f^{(t)}$: rigid Runge theorem (Raynaud) $\Rightarrow \quad \exists \quad g^{(t)}: Y_{K^{\prime}}^{(t)} \rightarrow \mathbb{P}_{S^{\prime}}^{1}$ s.t. $\widehat{g}_{\eta^{\prime}}^{(t)}$ is close enough to $f^{(t)}$ on $D_{i j}^{[t]}$ that $d f^{(t)}$ and $d g_{\eta^{\prime}}^{(t)}$ have the same zeros with same orders of vanishing on $D_{i j}^{[t]}$.
Then,

$$
2 g\left(Y_{\bar{\eta}}^{(t)}\right)-2\left|\pi_{0}\left(Y_{\bar{\eta}}^{(t)}\right)\right|=\operatorname{deg}\left(\operatorname{div}\left(d g_{\eta^{\prime}}^{(t)}\right)\right)
$$

- $\mathfrak{Y}_{K^{\prime}}^{(t)}$ proper flat formal curve \Rightarrow algebraizable (Grothendieck) : there exists $Y_{K^{\prime}}^{(t)}$ normal, proper flat over $S^{\prime}=\operatorname{Spec}\left(\mathcal{O}_{K^{\prime}}\right)$, with smooth generic fiber, such that $\widehat{Y_{K^{\prime}}^{(t)}} \cong \mathfrak{Y}_{K^{\prime}}^{(t)}$.
■ Approximation of $f^{(t)}$: rigid Runge theorem (Raynaud) $\Rightarrow \quad \exists \quad g^{(t)}: Y_{K^{\prime}}^{(t)} \rightarrow \mathbb{P}_{S^{\prime}}^{1}$ s.t. $\widehat{g}_{\eta^{\prime}}^{(t)}$ is close enough to $f^{(t)}$ on $D_{i j}^{[t]}$ that $d f^{(t)}$ and $d g_{\eta^{\prime}}^{(t)}$ have the same zeros with same orders of vanishing on $D_{i j}^{[t]}$.
Then,

$$
2 g\left(Y_{\bar{\eta}}^{(t)}\right)-2\left|\pi_{0}\left(Y_{\bar{\eta}}^{(t)}\right)\right|=\operatorname{deg}\left(\operatorname{div}\left(d g_{\eta^{\prime}}^{(t)}\right)\right)
$$

■ $\quad \operatorname{deg}\left(\operatorname{div}\left(d g_{\eta^{\prime}}^{(t)}\right)\right)=\sum_{j=1}^{N} d_{j}^{(t)}-\sigma_{i}-2 \delta_{f}(i)$.

$$
\text { - } \quad 2\left|\pi_{0}\left(Y_{\bar{\eta}}^{(t)}\right)\right|-2 g\left(Y_{\bar{\eta}}^{(t)}\right)=\chi\left(Y_{\bar{\eta}}^{(t)}, \Lambda\right)=\chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right)
$$

$$
\begin{aligned}
& \text { - } 2\left|\pi_{0}\left(Y_{\bar{\eta}}^{(t)}\right)\right|-2 g\left(Y_{\bar{\pi}}^{(t)}\right)=\chi\left(Y_{\bar{\eta}}^{(t)}, \Lambda\right)=\chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right) \\
& \chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right)=N+\delta_{f}(i)-\sum_{j=1}^{N} \operatorname{dim}_{\Lambda} H_{\mathrm{et}}^{1}\left(Y_{\left(\bar{x}_{j}\right)}^{(t)} \times \bar{\eta}, \Lambda\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 2\left|\pi_{0}\left(Y_{\bar{\pi}}^{(t)}\right)\right|-2 g\left(Y_{\bar{\pi}}^{(t)}\right)=\chi\left(Y_{\bar{\pi}}^{(t)}, \Lambda\right)=\chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right) \\
& \chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right)=N+\delta_{f}(i)-\sum_{j=1}^{N} \operatorname{dim}_{\Lambda} H_{\mathrm{et}}^{1}\left(Y_{\left.\overline{(\bar{x}}_{j}\right)}^{(t)} \times \bar{\eta}, \Lambda\right) \\
& \operatorname{dim}_{\Lambda} H_{\mathrm{et}}^{1}\left(Y_{\left(\bar{x}_{j}\right)}^{(t)} \times \bar{\eta}, \Lambda\right)=2 \delta_{j}^{(t)}-\left|P_{j}^{(t)}\right|+1 \quad \text { (Kato). }
\end{aligned}
$$

$$
\begin{gathered}
2\left|\pi_{0}\left(Y_{\bar{\eta}}^{(t)}\right)\right|-2 g\left(Y_{\bar{\eta}}^{(t)}\right)=\chi\left(Y_{\bar{\eta}}^{(t)}, \Lambda\right)=\chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right) \\
\chi\left(Y_{s^{\prime}}^{(t)}, R \Psi_{Y_{K^{\prime}}^{(t)} / S^{\prime}}(\Lambda)\right)=N+\delta_{f}(i)-\sum_{j=1}^{N} \operatorname{dim}_{\Lambda} H_{\mathrm{ett}}^{1}\left(Y_{\left(\bar{x}_{j}^{\prime}\right)}^{(t)} \times \bar{\eta}, \Lambda\right) \\
\operatorname{dim}_{\Lambda} H_{\mathrm{ett}}^{1}\left(Y_{\left(\bar{x}_{j}^{\prime}\right)}^{(t)} \times \bar{\eta}, \Lambda\right)=2 \delta_{j}^{(t)}-\left|P_{j}^{(t)}\right|+1 \quad \text { (Kato) } .
\end{gathered}
$$

Put together \Rightarrow QED.

Theorem

Let $\chi \in R_{\Lambda}(G)$.Then, the map

$$
\begin{equation*}
\tilde{a}_{f}^{\alpha}(\chi, \cdot): \mathbb{Q} \geq 0 \rightarrow \mathbb{Q}, \quad t \mapsto\left\langle\widetilde{a}_{f}^{\alpha}(t), \chi\right\rangle_{G} \tag{20.1}
\end{equation*}
$$

is continuous and piecewise linear, with finitely many slopes which are all integers. Its right derivative at $t \in \mathbb{Q}_{\geq 0}$ is

$$
\begin{equation*}
\frac{d}{d t} \widetilde{a}_{f}^{\alpha}(\chi, t+)=\left\langle\widetilde{\mathrm{sw}}_{f}^{\beta}(t), \chi\right\rangle_{G} \tag{20.2}
\end{equation*}
$$

Conclusion

Proposition

Let M be a Λ-valued representation of G. Then, we have the identities

$$
\begin{gather*}
\left\langle\widetilde{a}_{f}^{\alpha}, \chi_{M}\right\rangle=\operatorname{sw}_{G}(M) \tag{21.1}\\
\left\langle\widetilde{\mathrm{sw}}_{f}^{\beta}, \chi_{M}\right\rangle=-\operatorname{ord}_{\mathfrak{p}}\left(\mathrm{CC}_{\psi}(M)\right)+\operatorname{dim}_{\Lambda}\left(M / M^{(0)}\right) \tag{21.2}
\end{gather*}
$$

Conclusion

Proposition

Let M be a Λ-valued representation of G. Then, we have the identities

$$
\begin{gather*}
\left\langle\widetilde{a}_{f}^{\alpha}, \chi_{M}\right\rangle=\operatorname{sw}_{G}(M) \tag{22.1}\\
\left\langle\widetilde{\mathrm{sw}}_{f}^{\beta}, \chi_{M}\right\rangle=-\operatorname{ord}_{\mathfrak{p}}\left(\mathrm{CC}_{\psi}(M)\right)+\operatorname{dim}_{\Lambda}\left(M / M^{(0)}\right)
\end{gather*}
$$

Deduced from a comparison theorem of H . Hu :

$$
\mathrm{CC}_{\psi}(M)=\mathrm{KCC}_{\psi(1)}\left(\chi_{M}\right)
$$

Thank you!

