LEVEL RAISING MOD 2 AND OBSTRUCTION TO RANK LOWERING

CHAO LI

Abstract. Given an elliptic curve E defined over \mathbb{Q}, we are motivated by the 2-part of the Birch and Swinnerton-Dyer formula to study the relation between the 2-Selmer rank of E and the 2-Selmer rank of an abelian variety A obtained by Ribet’s level raising theorem. For certain imaginary quadratic fields K satisfying the Heegner hypothesis, we prove that the 2-Selmer ranks of E and A over K have different parity, as predicted by the BSD conjecture. When the 2-Selmer rank of E is one, we further prove that the 2-Selmer rank of A can never be zero, revealing a surprising obstruction to rank lowering which is unseen for p-Selmer groups for odd p.

1. Introduction

1.1. The p-part of the BSD formula. Given an elliptic curve E defined over \mathbb{Q}, the rational points $E(\mathbb{Q})$ form a finitely generated abelian group by the Mordell–Weil theorem. It is a central question in number theory to understand the rank of $E(\mathbb{Q})$, known as the algebraic rank

$$r_{\text{alg}}(E/\mathbb{Q}) := \text{rank} E(\mathbb{Q}).$$

Another important invariant of E is the analytic rank

$$r_{\text{an}}(E/\mathbb{Q}) := \text{ord}_{s=1} L(E/\mathbb{Q},s),$$

defined as the order of vanishing of its L-function $L(E/\mathbb{Q},s)$ at the central point $s = 1$. The remarkable Birch and Swinnerton-Dyer conjecture asserts that the algebraic rank is equal to the analytic rank. It furthermore predicts a precise formula (the BSD formula),

$$\left. \frac{L^{(r)}(E/\mathbb{Q},1)}{r!\Omega(E/\mathbb{Q})R(E/\mathbb{Q})} \right|_{s=1} = \prod_p \frac{c_p(E/\mathbb{Q}) \cdot |\Sha(E/\mathbb{Q})|}{|E(\mathbb{Q})_{\text{tor}}|},$$

for the leading coefficient of the Taylor expansion of $L(E/\mathbb{Q},s)$ at $s = 1$ in terms of various important arithmetic invariants of E (see [Gro11] for detailed definitions), where $r = r_{\text{an}}(E/\mathbb{Q})$.

It is a celebrated theorem of Gross–Zagier and Kolyvagin that the rank part of the BSD conjecture holds when $r_{\text{an}} \leq 1$. In this case, both sides of the BSD formula (1.1) are known to be positive rational numbers. To prove that (1.1) is indeed an equality, it suffices to prove that it is an equality up to a p-adic unit, for each prime p. This is known as the p-part of the BSD formula (denoted by BSD(p) for short), for which much progress has been made:

- When $r_{\text{an}} = 0$, BSD(p) is known for $p \geq 3$ (under certain assumptions) as a consequence of the Iwasawa main conjecture for modular forms ([Kat04, SU14, Wan14]).
- When $r_{\text{an}} = 1$, BSD(p) is known for $p \geq 5$ (under certain assumptions) due to the recent work of W. Zhang [Zha14], as a consequence of his proof of Kolyvagin’s conjecture on p-indivisibility of derived Heegner points (see also [SZ14] for an extension of this result).

2010 Mathematics Subject Classification. 11G05 (primary), 11R34, 11G10 (secondary).

Key words and phrases. Selmer groups, elliptic curves, abelian varieties.
On the other hand, very little is known for BSD(2) (but see Remark 1.11). Although the case \(p = 2 \) is often avoided in number theory due to technical complications, BSD(2) is in fact the most interesting case: for example, one observes from computational data (e.g., Table 4) that the rational number appearing in the BSD formula usually consists of only small prime factors, and most frequently, the factor 2. We remark that this phenomenon is also expected from heuristics concerning the distribution of \(\text{III} \) (Del01, BKL+15).

1.2. \(p \)-Selmer groups and W. Zhang’s strategy. We are motivated to investigate to what extent Zhang’s proof of BSD(\(p \)) might work for \(p = 2 \). For this purpose let us briefly review Zhang’s strategy. Recall that for a number field \(K \), the \(p \)-Selmer group \(\text{Sel}_p(E/K) \) is a subspace of the Galois cohomology group \(H^1(K, E[p]) \) cut out by local conditions coming from local points \(E(K_v) \) for each place \(v \) of \(K \). Namely, it sits in the pull-back diagram

\[
\begin{array}{ccc}
\text{Sel}_p(E/K) & \longrightarrow & H^1(K, E[p]) \\
\downarrow & & \downarrow \prod_v \text{res}_v \\
\prod_v E(K_v)/pE(K_v) & \longrightarrow & \prod_v H^1(K_v, E[p]).
\end{array}
\]

Its \(\mathbb{F}_p \)-dimension is called the \(p \)-Selmer rank of \(E/K \) and is denoted by \(s_p(E/K) \). By the \(p \)-descent exact sequence

\[
0 \to E(K)/pE(K) \to \text{Sel}_p(E/K) \to \text{III}(E/K)[p] \to 0,
\]

the \(p \)-Selmer rank \(s_p(E/K) \) gives an upper bound of the algebraic rank \(r_{\text{alg}}(E/K) \) and the defect is measured by the \(p \)-part of the Tate–Shafarevich group \(\text{III}(E/K) \).

Zhang’s key strategy reduces BSD(\(p \)) from the \(p \)-Selmer rank one case to the rank zero case and roughly consists of three steps:

A: Let \(f \in S_2(N) \) be the newform associated to \(E/\mathbb{Q} \). Find a congruence \(f \equiv g \pmod{p} \) between \(f \) and another newform \(g \in S_2(Nq) \) with level raised at some prime \(q \) (level raising \(\pmod{p} \)).

B: Let \(K \) be an imaginary quadratic field satisfying the Heegner hypothesis for \(E \) (so that there exists a Heegner point \(y_K \in E(K) \)). Assume the level raising prime \(q \) is inert in \(K \).

Let \(A \) be the elliptic curve associated to \(f \). Show that (in the minimally ramified case)

\[
y_K \notin pE(K_q) \iff s_p(A/K) = 0.
\]

C: Notice that \(E/K \) and \(A/K \) have opposite signs of functional equations (sign changing), so the BSD conjecture predicts that their \(p \)-Selmer ranks have different parity. Prove that one can always find a choice of \(q \) and \(g \) in Step B such that \(s_p(A/K) = s_p(E/K) - 1 \) (rank lowering). In particular, when \(s_p(E/K) = 1 \), we have \(s_p(A/K) = 0 \). It then follows from Step B that the Heegner point \(y_K \notin pE(K_q) \), hence \(y_K \notin pE(K) \). The latter global \(p \)-indivisibility is indeed equivalent to BSD(\(p \)) for \(E/K \) by the Gross–Zagier formula.

Remark 1.3. Step A is ensured by the level raising theorem of Ribet (Rib90) for any \(p \) as long as \(E[p] \) is an absolutely irreducible \(G_\mathbb{Q} \)-representation. The proof of Step B combines the Jochnowitz congruence established by Bertolini–Darmon (BD99) for \(p \geq 5 \), Gross’ explicit

\footnote{When \(g \) does not have rational Fourier coefficients, one works with the corresponding modular abelian variety instead, see 2.6}
Level raising mod 2 and obstruction to rank lowering

Waldspurger formula \cite{Gro87}, and (one divisibility of) BSD\((p)\) in the case \(r_\text{an} = 0\) due to Skinner–Urban \cite{SU14} for \(p \geq 3\). Step C is achieved by a parity argument of Gross–Parson \cite{GP12} for \(p \geq 5\), which verifies the parity prediction on \(p\)-Selmer ranks for some good choice of \(q\) by showing that \(s_p(A/K) = s_p(E/K) \pm 1\), and by a Chebotarev density argument.

Remark 1.4. One can interpret this strategy as a congruence between (suitably defined algebraic parts of) \(L' (E/K)\) and \(L (A/K)\):

- the \(p\)-part of \(L' (E/K)\) is related to the \(p\)-divisibility of the Heegner point \(y_K\) by the Gross–Zagier formula for \(E/K\);
- the \(p\)-part of \(L (A/K)\) is related to \(s_p(A/K)\) by BSD\((p)\) for \(A/K\).

We depict the three steps as follows.

\[
\begin{align*}
E &\quad A & C: \text{Rank lowering} \\
\downarrow &\quad \downarrow & \quad \\
\{f\} &\quad \{g\} & \quad (\text{mod } p) \\
\{\equiv\} &\quad \{\equiv\} & \quad A: \text{Level raising} \\
L' (f/K, 1) &\quad L (g/K, 1) & \quad (\text{mod } p) \\
\{\equiv\} &\quad \{\equiv\} & \quad B: \text{Jochnowitz congruence} \\
\ldownarrow &\quad \ldownarrow & \quad \downarrow \\
y_K \not\in pE(K) &\quad s_p(A/K) = 0
\end{align*}
\]

1.5. Level raising mod 2 and obstruction to rank lowering. Now we specialize the previous discussion to the case \(p = 2\) and explain our main results.

After introducing the necessary background on Ribet’s level raising theorem in Step A (§2) and Selmer groups (§3), we state the parity conjecture (Conjecture 4.3) on the 2-Selmer ranks of \(E/K\) and \(A/K\) as predicted by BSD. Using the results on local conditions proved in §5–6, we verify this parity conjecture in §7 in a way similar to \cite{GP12} and \cite{Zha14} for \(p \geq 5\).

Theorem 1.6 (Theorem 7.1). Assume Assumption 2.1 and 4.1. Suppose \(\text{Frob}_q\) has order 2 acting on \(E[2]\). Then

\[s_2(E/K) = s_2(A/K) \pm 1.\]

Remark 1.7. To get good control over the local condition at \(q\), in \cite{GP12} and \cite{Zha14} the level raising prime \(q\) is chosen so that \(\text{Frob}_q\) acts on \(E[p]\) semi-simply with distinct eigenvalues different from \(\{\pm 1\}\). This requirement forces \(p \geq 5\) and is not possible for \(p = 2\). We overcome this difficulty by choosing \(\text{Frob}_q\) to be a unipotent element of order 2 acting on \(E[2]\) to pin down the local condition at \(q\) (Lemma 5.1 (3)). Another key ingredient in proving Theorem 1.8 is a careful study of quadratic forms giving rise to local Tate pairings in characteristic 2 and of their maximal totally isotropic subspaces (Lemma 6.5).

It follows that if \(s_2(E/K) = 1\), then \(s_2(A/K) = 0\) or 2. One can establish an analogue of the Jochnowitz congruence (in Step B) for \(p = 2\). So to complete W. Zhang’s strategy for proving BSD(2), it remains to complete Step C (rank lowering), i.e., to choose \(q\) so that \(s_2(A/K) = 0\). However, in §8 we prove the following surprising obstruction to rank lowering: \(s_2(A/K)\) can never be lowered to zero!
Theorem 1.8 (Theorem 8.1). Assume Assumption 2.1 and 4.1. Suppose \(\text{Frob}_q \) has order 2 acting on \(E[2] \). Then
\[
s_2(E/K) = 1 \implies s_2(A/K) = 2.
\]

Remark 1.9. Theorem 1.8 tells us that Step C of proving BSD(\(p \)) cannot naively work for \(p = 2 \). We remark that this obstruction to rank lowering over \(K \) is a phenomenon unique to \(p = 2 \), since the odd part of \(\mathcal{W} \) never jumps under a quadratic base change (see Example 8.2.) On the other hand, since there is no such obstruction for \(p = 3 \), the idea in this article of using the unipotent Frobenius to control Selmer ranks can be used to prove BSD(3) when \(r_{\text{an}} = 1 \) under similar assumptions. We hope to return to this idea in a future work.

Remark 1.11. Exciting progress on BSD(2) has been made recently for some explicit families of elliptic curves: see [Tia14], [TYZ14] for many quadratic twists of the congruent number curve \(y^2 = x^3 - x \) (in the case \(r_{\text{an}} = 0 \) or 1) and [CLTZ15] for many quadratic twists of \(X_0(49) \) (in the case \(r_{\text{an}} = 0 \)). In a forthcoming work [KL15], we prove BSD(2) for many quadratic twists of some general classes of elliptic curves (in the case \(r_{\text{an}} = 0 \) or 1), using a new method based on the \(p \)-adic Waldspurger formula ([BDP13], [LZZ14]) for \(p = 2 \).
for more precise statements). We would like to keep the 2-torsion, but switch good reduction to multiplicative reduction at a prime \(q \mid 2N \) and thus change the local condition at \(q \). For this to happen, a necessary condition is that \(\bar{\rho}(\text{Frob}_q) = (\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}) \) (mod 2) (up to conjugation). Namely, \(\bar{\rho}(\text{Frob}_q) = (\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}) \) or \((\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}) \) (order 1 or 2 in \(\text{GL}_2(\mathbb{F}_2) \cong S_3 \)).

Definition 2.3. We call \(q \mid 2N \) a level raising prime for \(E \) if \(\text{Frob}_q \) is of order 1 or 2 acting on \(E/\mathbb{Q} \). Notice that there are lots of level raising primes: by the Chebotarev density theorem, they make up \(2/3 \) of all primes. If we write \(f = \sum_{n \geq 1} a_n q^n \in S_2(N) \) (normalized so that \(a_1 = 1 \)) to be the newform associated to the elliptic curve \(E \), then by definition \(q \mid 2N \) is a level raising prime for \(E \) if and only if \(a_q \) is even.

Ribet’s level raising theorem ensures that this necessary condition is also sufficient.

Theorem 2.4. Let \(E/\mathbb{Q} \) be an elliptic curve satisfying (1-3) of Assumption 2.1. Let \(q \) be a level raising prime. Then \(\bar{\rho} \) comes from a weight 2 newform of level \(Nq \).

Remark 2.5. Ribet’s theorem [Rib90, Theorem 1] shows that \(\bar{\rho} \) comes from a weight 2 form of level \(Nq \) that is new at \(q \). All such level-raised forms are automatically new at any \(p \mid N \) as well due to Assumption 2.1 (3).

So whenever \(q \) is a level raising prime, there exists a newform \(g = \sum_{n \geq 1} b_n q^n \in S_2(Nq) \) of level \(Nq \) such that \(g \equiv f \) (mod 2). More precisely, there exists a prime \(\lambda \mid 2 \) of the (totally real) Hecke field \(F = \mathbb{Q}(\{ b_n \}_{n \geq 1}) \) such that we have a congruence between the Hecke eigenvalues

\[
b_p \equiv a_p \pmod{\lambda}, \quad p \neq q.
\]

Definition 2.6. The level raised newform \(g \), via the Eichler–Shimura construction, determines an abelian variety \(A \) over \(\mathbb{Q} \) up to isogeny, of dimension \([F : \mathbb{Q}]\), with real multiplication by \(F \) (so \(A \) is of \(\text{GL}_2 \)-type). We choose an \(A \) in this isogeny class so that \(A \) admits an action by the maximal order \(\mathcal{O}_F \). By Assumption 2.1 (2), \(A \) is unique up to a prime-to-\(\lambda \) isogeny.

Let \(k = \mathcal{O}_F/\lambda \) be the residue field. By construction, for almost all primes \(p \), \(\text{Frob}_p \) has the same characteristic polynomials on the 2-dimensional \(k \)-vector spaces \(E[2] \otimes k \) and \(A[\lambda] \). Hence by Chebotarev’s density theorem and the Brauer-Nesbitt theorem we have

\[
E[2] \otimes k \cong A[\lambda]
\]

as \(G_\mathbb{Q} \)-representations.

Definition 2.7. We say that \(A \) is obtained from \(E \) via level raising at \(q \).

Example 2.8. Consider \(E = 11a1 = X_0(11) : y^2 + y = x^3 - x^2 - 10x - 20 \). It satisfies Assumption 2.1. Since \(a_7 = -2 \) is even, we know that \(q = 7 \) is a level raising prime (so are \(q = 13, 17, 19 \)). The space of newforms of level 77 has dimension 5, which corresponds to three isogeny classes of elliptic curves (77a, 77b, 77c) and one isogeny class of abelian surfaces (77d). Among them (77a, 77b) are obtained from \(E \) via level raising at 7. Their first few Hecke eigenvalues are listed in Table 1.

3. Selmer groups

Suppose \(A \) is obtained from \(E \) via level raising at a level raising prime \(q \). Fix an isomorphism \(A[\lambda] \cong E[2] \otimes k \) and denote these two \(k \)-vector spaces by \(V \). In this section we first recall the general notion of Selmer groups cut out by local conditions.
Definition 3.1. Let K be a number field. Let v be a place of K. We define
\[H_{ur}^1(K_v, V) := H^1(K_{ur}^v/K_v, V^I_v) \subseteq H^1(K_v, V) \]
consisting of classes which are split over an unramified extension of K_v, where I_v is the inertia subgroup at v.

Definition 3.2. Let $\mathcal{L} = \{\mathcal{L}_v\}$ be the collection of k-subspaces $\mathcal{L}_v \subseteq H^1(K_v, V)$, where v runs over every place of K. We say \mathcal{L} is a collection of local conditions if $\mathcal{L}_v = H_{ur}^1(K_v, V)$ for almost all v. We define the Selmer group cut out by the local conditions \mathcal{L} to be
\[H^1_{\mathcal{L}}(V) := \{x \in H^1(K, V) : \operatorname{res}_v(x) \in \mathcal{L}_v, \text{ for all } v\}. \]

In other words, it sits in the pull-back diagram
\[
\begin{array}{ccc}
H^1_{\mathcal{L}}(V) & \longrightarrow & H^1(K, V) \\
\downarrow & & \downarrow \\
\prod_v \mathcal{L}_v & \longrightarrow & \prod_v H^1(K_v, V).
\end{array}
\]

Definition 3.3. We define $\mathcal{L}_v(E)$ to be the image of the local Kummer map
\[(E(K_v)/2E(K_v)) \otimes F_2 k \rightarrow H^1(K_v, E[2]) \otimes k = H^1(K_v, V). \]
Then the Selmer group cut out by $\mathcal{L}(E) := \{\mathcal{L}_v(E)\}$ is equal to $H^1_{\mathcal{L}(E)}(V) = \operatorname{Sel}_2(E/K) \otimes k$.

Definition 3.4. Similarly, we define $\mathcal{L}_v(A)$ to be the image of the local Kummer map
\[A(K_v) \otimes \mathcal{O}_F k \rightarrow H^1(K_v, A[\lambda]) = H^1(K_v, V). \]
The λ-Selmer group of A is defined to be the Selmer group cut out by $\mathcal{L}(A) := \{\mathcal{L}_v(A)\}$, denoted by $\operatorname{Sel}_\lambda(A/K)$. For details on descent with endomorphisms, see the appendix of [GPT2].

Definition 3.5. We denote the 2-Selmer ranks of E/K and A/K by
\[s_2(E/K) := \dim_{F_2} \operatorname{Sel}_2(E/K), \quad s_2(A/K) := \dim_k \operatorname{Sel}_\lambda(A/K) \]
respectively. Notice that the prime $\lambda|2$ of K is implicit in the notation $s_2(A/K)$ for brevity (there is no danger of confusion since the prime $\lambda|2$ is already built in the definition of A).

4. Sign changing and the parity conjecture for 2-Selmer groups

Following [GPT12] and [Zha14], in this section deduce a parity prediction on the 2-Selmer ranks of E/K and A/K for certain imaginary quadratic fields K. Recall that an imaginary quadratic field K satisfies the Heegner hypothesis for E/Q if p is split in K for any $p | N$, where N is the conductor of E/Q. From now on we assume the following assumption.

Assumption 4.1.
(1) K is an imaginary quadratic field satisfying the Heegner hypothesis for E/Q.
(2) q is a level raising prime for E, which is inert in K.

Proposition 4.2. Assume Assumption 2.1 and 4.1. Then the newform f of level N and newform g of level Nq have opposite signs of the functional equations over K,

$$\varepsilon(f/K) = -1, \quad \varepsilon(g/K) = +1.$$

Proof. Recall that the sign of the functional equation $\varepsilon(f/K)$ can be written as the product of local signs $\varepsilon_v(f/K)$. For any finite place v of K not dividing the level N, $\varepsilon_v(f/K) = +1$. For $p|N$, p splits as p_1p_2 in K and $\varepsilon_{p_1}(f/K) = \varepsilon_{p_2}(f/K)$, so $\varepsilon_{p_1}(f/K) \cdot \varepsilon_{p_2}(f/K) = +1$. It follows that

$$\varepsilon(f/K) = \varepsilon_{\infty}(f/K) = -1.$$

Since q is inert in K, we have $\varepsilon_q(g/K) = -1$ and the same reasoning shows that

$$\varepsilon(g/K) = -\varepsilon_{\infty}(g/K) = +1,$$

as desired. \qed

By Proposition 4.2, the BSD conjecture predicts that rank $E(K)$ and $\text{dim}_F A(K) \otimes_{\mathcal{O}_F} F$ have different parity. Moreover, $\text{dim}_F \text{III}(E/K)[2]$ and $\text{dim}_K \text{III}(A/K)[\lambda]$ should be even. So the BSD conjecture predicts the following

Conjecture 4.3. Assume 2.1 and 4.1. Then $s_2(E/K)$ and $s_2(A/K)$ have different parity.

Our next goal is to prove this parity conjecture for 2-Selmer ranks (Theorem 7.1), as least when $\overline{\rho}(\text{Frob}_q)$ is non-trivial.

Remark 4.4. Over Q, the signs $\varepsilon(f/Q)$ and $\varepsilon(g/Q)$ are not necessarily opposite. For example, consider $E = 11a1$ in Example 2.8. Both $A_1 = 77a$ and $A_2 = 77b$ are obtained from E via level raising at 7 and

$$\varepsilon(E/Q) = +1, \quad \varepsilon(A_1/Q) = -1, \quad \varepsilon(A_2/Q) = +1.$$

Therefore level raising mod 2 does not necessarily change the signs of the functional equations over Q and thus there is no parity prediction. For more refined control over the possible signs under level raising mod 2, see [LL15].

Remark 4.5. Notice that $\text{dim}_K \text{III}(A/Q)[\lambda]$ is not necessarily even when $\text{dim} A > 1$: the Cassels–Tate pairing is always skew-symmetric but may fail to be alternating. So even when $\varepsilon(g/Q)$ and $\varepsilon(f/Q)$ are opposite, there is no parity prediction for 2-Selmer ranks over Q. This is again a phenomenon unique to $p = 2$. When A has an odd degree polarization, Poonen–Stoll [PS99] constructed an element $c \in \text{III}(A/Q)[2]$ with Cassels–Tate pairing $\langle c, c \rangle = 0$ or $1/2 \in Q/\mathbb{Z}$, so that $\langle \cdot, \cdot \rangle$ on $\text{III}(A/Q)[2]$ is alternating if and only if $\langle c, c \rangle = 0$.

Notice that a quadratic base change K/Q kills the latter obstruction and so the parity prediction is available over K (see, e.g., [Ces14] §3.1).

5. **Local conditions**

Under Assumption 2.1 and 4.1, the following lemma identifies the local conditions of the abelian variety A purely in terms of the Galois representation V, which is the key to controlling the Selmer rank under level raising.
Lemma 5.1. Suppose A is obtained from E via level raising at q (we allow $A = E$ and view $q = 1$ in this case). Let $L = L(A)$ be the local conditions defining $\text{Sel}_A(A/K)$. Then

1. For $v \nmid 2q\infty$,

$$L_v = H^1_{\text{ur}}(K_v, V).$$

2. For $v = \infty$,

$$L_v = H^1(K_v, V) = 0.$$

3. For $v = q$, if $\text{Frob}_q \in G_{Q_q}$ has order 2 acting on V, then $H^1(K_v, V)$ is 4-dimensional and

$$L_v = \text{im}(H^1(K_v, W) \to H^1(K_v, V))$$

is 2-dimensional. Here W is the unique G_{Q_q}-stable line in V. Moreover,

$$L_v \cap H^1_{\text{ur}}(K_v, V) = H^1_{\text{ur}}(K_v, W)$$

is 1-dimensional.

4. If E has good reduction at $v|2$, then

$$L_v = H^1_{fl}(\text{Spec} O_v, E[2]) \otimes k,$$

where E/O_v is the Néron model of E/K_v and $H^1_{fl}(\text{Spec} O_v, E[2])$ is the flat cohomology group, viewed as a subspace of $H^1_{fl}(\text{Spec} K_v, E[2]) = H^1(K_v, E[2])$.

5. If E has multiplicative reduction at $v|2$, then

$$L_v = \text{im}(H^1(Q_2, W) \to H^1(Q_2, V)).$$

Here W is the unique G_{Q_2}-stable line in V.

Proof. For $v \nmid 2qN\infty$, $L_v = H^1_{\text{ur}}(K_v, V)$ by [GP12, Lemma 6]. For $v|2N$, since v is split in K, the items (1), (4) and (5) follow from the corresponding items (1), (4) and (5) in [LL15, Lemma 5.6]. The item (2) is clear since K is imaginary. It remains to prove (3), which is the key difference from the case over \mathbb{Q} considered in [LL15, Lemma 5.6].

Our argument closely follows the proof of [GP12, Lemma 8]. Let A/\mathbb{Z}_q be the Néron model of A/Q_q. Let A^0/\mathbb{F}_q be the identity component of the special fiber of A. Since A is an isogeny factor of the new quotient of $J_0(Nq_1 \cdots q_m)$, it has purely toric reduction at q: A^0/\mathbb{F}_q is a torus that is split over \mathbb{F}_q and is isogeny to \mathbb{F}_q if and only if $\varepsilon_q(g/Q) = -1$. By the Néron mapping property, O_F acts on A^0 and makes the character group $X^*(A^0/\mathbb{F}_q) \otimes \mathbb{Q}$ a 1-dimensional F-vector space.

Let T/Q_q be the split torus with character group $X^*(A^0/\mathbb{F}_q)$. Let $\chi : \text{Gal}(K_q/Q_q) \to \{\pm 1\}$ be the trivial or nontrivial quadratic character according to whether A^0/\mathbb{F}_p splits over \mathbb{F}_q or not. Let $T(\chi)/Q_q$ be the twist of T/Q_q by χ. Then O_F naturally acts on T (dual to the action on the character group). By the theory of q-adic uniformization, we have a G_{Q_q}-equivariant exact sequence

$$0 \to \Lambda \to T(\chi)(\overline{Q_q}) \to A(\overline{Q_q}) \to 0,$$

where Λ is a free \mathbb{Z}-module with the G_{Q_q}-action by χ. Since O_F is a maximal order, Λ is a locally free O_F-module of rank one. Consider the following commutative diagram

$$\begin{array}{ccc}
T(\chi)(K_q) \otimes O_F/\lambda & \longrightarrow & H^1(K_q, T(\chi)[\lambda]) \\
\downarrow & & \downarrow \\
A(K_q) \otimes O_F/\lambda & \longrightarrow & H^1(K_q, A[\lambda]).
\end{array}$$
Here the horizontal arrows are the local Kummer maps and the vertical maps are induced by the \(q \)-adic uniformization. The left vertical map is surjective since its cokernel lies in \(H^1(K_q, \Lambda) = \text{Hom}(G_{K_q}, \Lambda) \), which is zero as \(\Lambda \) is torsion-free. The top horizontal map is also surjective since its cokernel maps into \(\Lambda \), which is zero by Hilbert 90 as \(\Lambda \) is a split torus over \(K_q \). It follows that

\[
\mathcal{L}_q = \text{im} \left(H^1(K_q, T(\chi)) \to H^1(K_q, A[\lambda]) \right).
\]

Also, because \(\Lambda \) has no \(\lambda \)-torsion, we see that \(T(\chi)[\lambda] \to A[\lambda] \) is a \(G_{\mathbb{Q}_q} \)-equivariant injection. But since \(\text{Frob}_q \in G_{\mathbb{Q}_q} \) is assumed to have order 2 acting on \(V = A[\lambda] \), \(V \) has a unique \(G_{\mathbb{Q}_q} \)-stable line \(W \). Therefore

\[
\mathcal{L}_q = \text{im}(H^1(K_q, W) \to H^1(K_q, V)).
\]

Since \(q \) is inert in \(K \), we know that \(\text{Frob}_q \in G_{K_q} \) acts on \(V \) trivially. Hence \(H^1(K_q, V) \) is 4-dimensional and \(H^1_{ur}(K_q, V) \) is 2-dimensional. The intersection \(\mathcal{L}_q \cap H^1_{ur}(V) = H^1_{ur}(K_q, W) \) consists of unramified homomorphisms \(\text{Gal}(K_q^{ur}/K_q) \to W \), hence is 1-dimensional. \(\square \)

6. \(\mathcal{L}_v(A) \) is maximal totally isotropic for the quadratic form \(Q_v \)

Since we are working in characteristic 2, to prove the parity conjecture \[4.3\], we need not only the perfect local Tate pairing

\[
\langle \cdot, \cdot \rangle_v : H^1(K_v, V) \times H^1(K_v, V) \to k(1),
\]

but also a quadratic form \(Q_v \) giving rise to it. To define \(Q_v \), first recall that the line bundle \(\mathcal{L} = \mathcal{O}_E(2\infty) \) on \(E \) induces a degree 2 map

\[
E \to \mathbb{P}^1 = \mathbb{P}(H^0(E, \mathcal{L})).
\]

For \(P \in E \), let \(\tau_P \) be the translation by \(P \) on \(E \). Since for \(P \in E[2] \), \(\tau_P^* \mathcal{L} \cong \mathcal{L} \), the translation by \(E[2] \) induces an action of \(E[2] \) on \(\mathbb{P}^1 \), i.e., a homomorphism \(E[2] \to \text{PGL}_2 \).

Definition 6.1. For a place \(v \) of \(K \), we define

\[
Q_v : H^1(K_v, E[2]) \to H^1(K_v, \text{PGL}_2) \to H^2(K_v, \mathbb{G}_m),
\]

where the first map is induced by the above homomorphism \(E[2] \to \text{PGL}_2 \) and the second map is induced by the short exact sequence

\[
1 \to \mathbb{G}_m \to \text{GL}_2 \to \text{PGL}_2 \to 1.
\]

By local class field theory, \(H^2(K_v, \mathbb{G}_m) \cong \mathbb{Q}/\mathbb{Z} \) and so \(Q_v \) takes value in \(H^2(K_v, \mathbb{G}_m)[2] \cong \mathbb{Z}/2\mathbb{Z} \). By \[O\'N02\] §4, \(Q_v \) is a quadratic form and extending scalars we obtain a quadratic form

\[
Q_v : H^1(K_v, V) \to k.
\]

By \[O\'N02\] 4.3, the associated bilinear form \(\langle x, y \rangle \mapsto Q_v(x + y) - Q_v(x) - Q_v(y) \) is equal to the local Tate pairing \(\langle \cdot, \cdot \rangle_v \).

Definition 6.2. We say a subspace \(W \subseteq H^1(K_v, V) \) is totally isotropic for \(Q_v \) if \(Q_v|W = 0 \). We say \(W \) is maximal totally isotropic for \(Q_v \) if it is totally isotropic and \(W = W^\perp \) (orthogonal complement under \(\langle \cdot, \cdot \rangle_v \)).
Remark 6.3. As char(k) = 2, the requirement \(Q_v|_W = 0 \) is stronger than \(\langle , \rangle_v|_W = 0 \). For example, for the 2-dimensional quadratic space \((k^2, Q) \) with \(Q((x, y)) = xy \), the associated bilinear form is given by \[\langle (x_1, y_1), (x_2, y_2) \rangle = x_1y_2 + x_2y_1. \]

In particular \(\langle (x, y), (x, y) \rangle = 2xy = 0 \) and hence all three lines in \(k^2 \) are maximal totally isotropic for the bilinear form \(\langle , \rangle \). But only the two lines \(x = 0 \) and \(y = 0 \) are maximal totally isotropic for the quadratic form \(Q \).

Remark 6.4. The local condition \(L_v(E) \) for the elliptic curve \(E \) is maximal totally isotropic for \(Q_v \) by [PR12] Prop. 4.11 (this is also implicit in [ON02] Prop. 2.3).

Lemma 6.5. Suppose \(\text{Frob}_q \in G_{Q_q} \) has order 2 acting on \(V \). Then for any place \(v \) of \(K \), \(L_v(A) \) is maximal totally isotropic for \(Q_v \).

Proof. The claim for \(v \neq q \) follows immediately from Lemma 5.1 and Remark 6.4. It remains to check the case \(v = q \). We provide an explicit way to compute the image of a cocycle \(c \in H^1(K_q, E[2]) \) under \(Q_v \). Recall that \(H^1(K_q, \text{PGL}_2) \) classifies forms of \(\mathbb{P}^1 \), i.e., algebraic varieties \(S/K_q \) which become isomorphic to \(\mathbb{P}^1 \) over \(\overline{K}_q \). For any cocycle \(c \), the corresponding form \(S \) can be described as follows. As a set, \(S = \mathbb{P}^1(\overline{K}_q) \). The Galois action of \(g \in G_{K_q} \) on \(x \in S \) is given by \(g.x = c(g).g(x) \). The cocycle \(c \) gives the trivial class in \(H^1(K_q, \text{PGL}_2) \) if and only if \(S(K_q) \neq \emptyset \).

Since \(\text{Frob}_q \in G_{Q_q} \) has order 2 acting on \(V \), we know that \(E[2](Q_q) \cong \mathbb{Z}/2\mathbb{Z} \). Let \(P \) be the generator of \(E[2](Q_q) \). Let \(\sigma \in G_{K_q} \) be a Frobenius and let \(\tau \) be a generator of the tame quotient \(\text{Gal}(K_q^t/K_q^w) \). Then by Lemma 5.1 (3), \(L_q(A) \) is generated by the two cocycles

\[c(\sigma) = 0, \quad c(\tau) = P \]

and

\[c'(\sigma) = P, \quad c'(\tau) = 0. \]

For the cocycle \(c \), the corresponding form \(S \) has a \(K_q \)-rational point if and only if there exists \(x \in \mathbb{P}^1(K_q^t) \) such that

\[\sigma(x) = x, \quad P, \tau(x) = x. \]

Suppose \(E \) has a Weierstrass equation \(y^2 = F(x) \), where \(F(x) \in \mathbb{Q}[x] \) is an irreducible cubic polynomial. Let \(\alpha_1, \alpha_2, \alpha_3 \) be the three roots of \(F(x) \). We fix a embedding \(\overline{K} \hookrightarrow \overline{K}_q \) and view \(\alpha_i \) as elements in \(\overline{K}_q \). Without loss of generality, we may assume that \(\alpha_1 \in K_q \) and thus \(P = (\alpha_1, 0) \). Then the action of \(P \) on \(\mathbb{P}^1 \) is an involution that swaps \(\alpha_1 \leftrightarrow \infty, \alpha_2 \leftrightarrow \alpha_3 \). One can compute explicitly that this involution is given by the linear fractional transformation

\[x \mapsto \frac{\alpha_1x + (\alpha_2\alpha_3 - \alpha_1\alpha_2 - \alpha_1\alpha_3)}{x - \alpha_1}. \]

Therefore \(Q_q(c) = 0 \) if and only if there exists \(x \in \mathbb{P}^1(K_q^t) \) such that

\[(6.1) \quad \sigma(x) = x, \quad (\tau(x) - \alpha_1)(x - \alpha_1) = (\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1). \]

The right hand side is the image of \(\alpha_1 - \alpha_2 \) under the norm map \(K_q^\times \to Q_q^\times \), hence has even valuation. Thus \(\beta = \sqrt{(\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1)} \) lies in \(K_q \) and \(x = \alpha_1 + \beta \) satisfies (6.1). It follows that \(Q_q(c) = 0 \).

Similarly, \(Q_q(c') = 0 \) if and only if there exists \(x \in \mathbb{P}^1(K_q^w) \) such that

\[(\sigma(x) - \alpha_1)(x - \alpha_1) = (\alpha_2 - \alpha_1)(\alpha_3 - \alpha_1). \]
Taking the solution \(x = \alpha_2 \in K_q^2 \) we see that \(Q_q(c') = 0 \). Hence \(\mathcal{L}_q(A) \) is maximal totally isotropic for \(Q_q \).

Remark 6.6. The local condition \(\mathcal{L}_q(A) \) may fail to be maximal totally isotropic for \(Q_q \) when working over \(\mathbb{Q} \) instead of over \(K \). This is expected since there is no parity prediction over \(\mathbb{Q} \) (Remark 4.4).

7. Parity of 2-Selmer ranks

Now we are ready to prove the parity conjecture 4.3 on the 2-Selmer ranks.

Theorem 7.1. Assume Assumption 2.1 and 4.1. Suppose \(\text{Frob}_q \in G_{Q_q} \) has order 2 acting on \(V \). Then

\[
 s_2(E/K) = s_2(A/K) \pm 1.
\]

Moreover,

\[
 s_2(E/K) = s_2(A/K) - 1
\]

if and only if \(\text{res}_q(\text{Sel}_2(E/K) \otimes k) \subseteq H^1_{ur}(K_q, W) \), where \(W \) is the unique \(G_{Q_q} \)-stable line in \(V \).

Proof. Define the strict local conditions \(\mathcal{S} \) by \(\mathcal{S}_v = \mathcal{L}_v(E) = \mathcal{L}_v(A) \) for \(v \neq q \) and

\[
 \mathcal{S}_q = \mathcal{L}_v(E) \cap \mathcal{L}_v(A) = H^1_{ur}(K_q, W)
\]

(the second equality is by Lemma 5.1). Similarly, define the relaxed local conditions \(\mathcal{R} \) by \(\mathcal{R}_v = \mathcal{L}_v(E) = \mathcal{L}_v(A) \) for \(v \neq q \) and \(\mathcal{R}_q = S_q \). Then we have

\[
 H^1_S(V) \subseteq H^1_{\mathcal{L}(E)}(V) \subseteq H^1_K(V), \quad H^1_S(V) \subseteq H^1_{\mathcal{L}(A)}(V) \subseteq H^1_K(V).
\]

Since \(S^\perp = \mathcal{R} \), we use [DDT97], Theorem 2.18] to compare the dual Selmer groups:

\[
 \frac{\#H^1_S(V)}{\#H^1_K(V)} = \prod_v \frac{\#S_v}{\#H^0(K_v, V)}, \quad \frac{\#H^1_R(V)}{\#H^1_S(V)} = \prod_v \frac{\#R_v}{\#H^0(K_v, V)}.
\]

It follows that

\[
 \dim H^1_R(V) - \dim H^1_S(V) = \frac{1}{2}(\dim \mathcal{R}_q - \dim \mathcal{S}_q) = 1,
\]

since \(\mathcal{S}_q \) is 1-dimensional and \(\mathcal{R}_q \) is 3-dimensional. By global class field theory, for any class \(c \in H^1_K(V) \), we have

\[
 \sum_v Q_v(\text{res}_v(c)) = 0.
\]

Since \(\mathcal{R}_v \) is totally isotropic for \(Q_v \) for any \(v \neq q \) by Remark 6.4, we know that \(Q_q(\text{res}_q(c)) = 0 \). In other words, the image \(\text{res}_q(H^1_K(V)) \) is also a totally isotropic subspace for \(Q_q \). It follows that the quotient space \((\text{res}_q(H^1_K(V)) + \mathcal{S}_q)/\mathcal{S}_q \) is a nonzero totally isotropic subspace of \(\mathcal{R}_q/\mathcal{S}_q \) under (the quadratic form induced by) \(Q_q \).

Since \(\mathcal{R}_q/\mathcal{S}_q \) is a 2-dimensional quadratic space obtained by extending scalars from a 2-dimensional quadratic space over \(\mathbb{F}_2 \) and \(\mathcal{R}_q/\mathcal{S}_q \) contains an isotropic line under \(Q_q \), we know that it must have Arf invariant 0 and thus is isomorphic to \((k^2, xy) \) as a quadratic space. By Remark 6.3 and Lemma 6.5, there are exactly two maximal totally isotropic subspaces of \(\mathcal{R}_q \) containing \(\mathcal{S}_q \). On the other hand, we already have two such maximal totally isotropic subspaces by Remark 6.4 and Lemma 6.5, namely \(\mathcal{L}_q(E) \) and \(\mathcal{L}_q(A) \). It follows that either \(H^1_R(V) = H^1_{\mathcal{L}(E)}(V) \) or
$H^1_R(V) = H^1_{\mathcal{L}(A)}(V)$. The two cases cannot hold simultaneously since

$$H^1_{\mathcal{L}(A)}(V) \cap H^1_{\mathcal{L}(E)}(V) = H^1_S(V) \subsetneq H^1_R(V).$$

So either

$$H^1_{\mathcal{L}(A)}(V) = H^1_R(V), \quad H^1_{\mathcal{L}(E)}(V) = H^1_S(V),$$

or

$$H^1_{\mathcal{L}(E)}(V) = H^1_R(V), \quad H^1_{\mathcal{L}(A)}(V) = H^1_S(V).$$

Moreover, the first case happens if and only if $\text{res}_q(H^1_{\mathcal{L}(E)}(V)) \subseteq S_q$. The desired result then follows.

\[\square \]

Remark 7.2. The conclusion of Theorem 7.1 may fail when Assumption 2.1 (4) is not satisfied due to the uncertainty of the local condition at 2. For example, the elliptic curve

$$E = 2351a1 : y^2 + xy + y = x^3 - 5x - 5$$

has trivial $\overline{\rho}|_{G_{\mathbb{Q}_2}}$. The elliptic curve

$$A = 25861i1 : y^2 + xy + y = x^3 + x^2 - 17x + 30$$

is obtained from E via level raising at $q = 11$. For $K = \mathbb{Q}(\sqrt{-177})$,

$$r_{\text{alg}}(E/K) = s_2(E/K) = 1 \quad \text{and} \quad r_{\text{alg}}(A/K) = s_2(A/K) = 4$$

differ by 3 (rather than 1).

8. OBSTRUCTION TO RANK LOWERING

It follows from Theorem 7.1 that if $s_2(E/K) = 1$, then $s_2(A/K) = 0$ or 2. However, the Chebotarev density argument for $p \geq 5$ in [Zha14] fails in this case and does not show that one can always get $s_2(A/K) = 0$. In fact, we prove the following very surprising obstruction to rank lowering: $s_2(A/K)$ can never be lowered to zero!

Theorem 8.1. Assume Assumption 2.1 and 4.1. Suppose $\text{Frob}_q \in G_{\mathbb{Q}_q}$ has order 2 acting on V. Then

$$s_2(E/K) = 1 \implies s_2(A/K) = 2.$$

Proof. By Theorem 7.1 we need to show that $\text{res}_q(\text{Sel}_2(E/K) \otimes k) \subseteq H^1_{\text{ur}}(K_q, W)$, where W is the unique $G_{\mathbb{Q}_q}$-stable line in V. By definition, the Galois group $\text{Gal}(K/\mathbb{Q})$ acts on $\text{Sel}_2(E/K)$. By assumption, we have $\text{Sel}_2(E/K) \cong \mathbb{Z}/2\mathbb{Z}$, so the action of $\text{Gal}(K/\mathbb{Q})$ on $\text{Sel}_2(E/K)$ must be trivial. It follows that

$$\text{res}_q(\text{Sel}_2(E/K) \otimes k) \subseteq H^1_{\text{ur}}(K_q, V)^{\text{Gal}(K_q/\mathbb{Q}_q)}.$$

The right hand side is nothing but $H^1_{\text{ur}}(K_q, W)$, as desired. \[\square \]

We end with an example illustrating Theorem 8.1

Example 8.2. Consider $E = X_0(11)$. In Table 2 we list the first few level raising primes q and corresponding level raising abelian varieties A (all of which are elliptic curves). For each choice of $K = \mathbb{Q}(\sqrt{d_K})$, we find that $s_2(A/K) = 2$ always! In many cases, this is explained by the fact that $r_{\text{alg}}(A/K) = 2$. In the remaining cases, there is a jump coming from the 2-part of III for the base change A/K,

$$\dim \text{III}(A/K)[2] = 2,$$
Table 2. obstruction to rank lowering

<table>
<thead>
<tr>
<th>q</th>
<th>A</th>
<th>d_K</th>
<th>$r_{\text{alg}}(A/K)$</th>
<th>$\dim\Sha(A/K)[2]$</th>
<th>$s_2(A/K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>77a</td>
<td>−8</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>77b</td>
<td>−8</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>143a</td>
<td>−7</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>143a</td>
<td>−8</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>187a</td>
<td>−7</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>187a</td>
<td>−24</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>209a</td>
<td>−7</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>209a</td>
<td>−19</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>319a</td>
<td>−8</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>319a</td>
<td>−19</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

though in all such cases the 2-part of \Sha for A/Q and its quadratic twist A^K/Q are both trivial,

$$\Sha(A/Q)[2] = 0, \quad \Sha(A^K/Q)[2] = 0.$$

Notice that this is a phenomenon unique to $p = 2$ because for odd p it is always true that

$$\Sha(A/K)[p] = \Sha(A/Q)[p] \oplus \Sha(A^K/Q)[p].$$

References

[Del01] C. Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined over \mathbb{Q}, Experiment. Math. 10(2), 191–196 (2001).

E-mail address: chaoli@math.columbia.edu

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027