
LEVEL RAISING MOD 2 AND OBSTRUCTION TO RANK LOWERING
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Abstract. Given an elliptic curve E defined over Q, we are motivated by the 2-part of the Birch
and Swinnerton-Dyer formula to study the relation between the 2-Selmer rank of E and the 2-
Selmer rank of an abelian variety A obtained by Ribet’s level raising theorem. For certain imaginary
quadratic fields K satisfying the Heegner hypothesis, we prove that the 2-Selmer ranks of E and
A over K have different parity, as predicted by the BSD conjecture. When the 2-Selmer rank of E
is one, we further prove that the 2-Selmer rank of A can never be zero, revealing an obstruction to
rank lowering which is unseen for p-Selmer groups for odd p.

1. Introduction

1.1. The p-part of the BSD formula. For an elliptic curve E defined over Q, the Birch and
Swinnerton-Dyer conjecture asserts that its Mordell–Weil rank is equal to its analytic rank r =

ords=1 L(E/Q, s). It furthermore predicts a precise formula (the BSD formula),

(1.1)
L(r)(E/Q, 1)

r!Ω(E/Q)R(E/Q)
=

∏
p cp(E/Q) · |Ш(E/Q)|

|E(Q)tor|2

for the leading coefficient of the Taylor expansion of L(E/Q, s) at s = 1 in terms of various important
arithmetic invariants of E (see [Gro11] for detailed definitions).

It is a celebrated theorem of Gross–Zagier and Kolyvagin that the rank part of the BSD conjecture
holds when r ≤ 1. In this case, both sides of the BSD formula (1.1) are known to be positive rational
numbers ([Gro11, 3.3],[GZ86, V.(1.1)], [Guo96]). To prove that (1.1) is indeed an equality, it suffices
to prove that it is an equality up to a p-adic unit, for each prime p. This is known as the p-part of
the BSD formula (BSD(p) for short), for which much progress has been made:

• When r = 0, BSD(p) is known for a good prime p ≥ 3 (under certain assumptions) as a conse-
quence of the Iwasawa main conjecture for modular forms ([Kat04], [SU14], [Wan14]).
• When r = 1, BSD(p) is known for a good ordinary prime p ≥ 5 (under certain assumptions)
due to the recent work of W. Zhang [Zha14] (see also the follow-up work [SZ14] and [BBV16]).
For semi-stable curves, Jetchev–Skinner–Wan [JSW15] have established BSD(p) for a good prime
p ≥ 3 in greater generality. See also the more recent works [Spr16] and [Cas17].

On the other hand, very little is known for BSD(2) (but see Remark 1.14). Although the case
p = 2 is often avoided in number theory due to technical complications, BSD(2) is in fact the most
interesting case: for example, one observes from computational data (e.g., [Cre97, Table 4]) that
the rational number appearing in the BSD formula usually consists of only small prime factors, and
most frequently, the factor 2. We remark that this phenomenon is also expected from heuristics
concerning the distribution of Ш ([Del01, BKL+15]).
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We are thus motivated to investigate to what extent Zhang’s proof of BSD(p) might work for
p = 2. For this purpose let us briefly review Zhang’s strategy. Let E/Q be an elliptic curve of
conductor N . Let K be an imaginary quadratic field satisfying the Heegner hypothesis for E/Q:

each prime factor ` of N is split in K.
Under certain assumptions (including p ≥ 5, and local Tamagawa numbers are coprime to p), Zhang
shows that if E/K has p-Selmer rank one, then BSD(p) holds for E/K. Its proof roughly consists
of three steps:
(A) (level raising) One uses Ribet’s level raising congruence ([Rib90]) to produce an auxiliary

modular abelian variety A from E.
(B) (rank lowering) When E/K has p-Selmer rank one, the parity result of Gross–Parson [GP12]

together with a Chebotarev argument allow one to choose A/K with p-Selmer rank zero.
(C) Using the Jochnowitz congruence for Heegner points established by Bertolini–Darmon [BD99],

one can reduce BSD(p) from the p-Selmer rank one case to the rank zero case. Thanks to the
modularity of A, BSD(p) for A/K is known. So BSD(p) for E/K is proved.

1.2. Level raising and rank lowering. The level raising theorem (Step (A)) can be more precisely
summarized as follows.

Theorem 1.3 (Ribet). Let E/Q be an elliptic curve of conductor N . Let f =
∑

n≥1 anq
n be the

associated newform of level N . Let p be a prime. Assume that
(1) ρ̄E,p : GQ → Aut(E[p]) is surjective.
(2) E has good reduction at p.
(3) The Serre conductor N(ρ̄E,p) is equal to N .
Let q be a level raising prime for E (mod p), i.e., q - pN and aq ≡ ±(q + 1) (mod p). Then there
exists a newform g =

∑
n≥1 bnq

n of level Nq and a prime ideal λ|p of the (totally real) Hecke field
F = Q({bn}n≥1) such that we have a congruence between the Hecke eigenvalues

a` ≡ b` (mod λ), for every prime ` 6= q.

Remark 1.4. Under the assumption (1), Ribet’s theorem [Rib90, Thm. 1] shows that ρ̄E,p comes
from a weight 2 form of level Nq that is new at q. Such a level-raised form is automatically new at
any `|N due to the assumptions (2) and (3). We also remark that the assumption (3) implies that
all local Tamagawa numbers of E are coprime to p (see [GP12, Lemma 4]).

The level raised newform g, via the Eichler–Shimura construction, determines an abelian variety
A over Q up to isogeny, of dimension [F : Q], with real multiplication by F (so A is of GL2-
type). We choose an A in this isogeny class so that A admits an action by the maximal order
OF . Let k = OF /λ be the residue field. By construction, for almost all primes `, Frob` has the
same characteristic polynomials on the 2-dimensional k-vector spaces E[p]⊗ k and A[λ]. Hence by
Chebotarev’s density theorem and the Brauer-Nesbitt theorem we have

E[p]⊗ k ∼= A[λ]

as GQ-representations.

Definition 1.5. We say the pair (A, λ) is obtained from E via level raising at q (mod p). We
denote the p-Selmer rank of E/K and the λ-Selmer rank of A/K by (see Definitions 2.3 and 2.4)

sp(E/K) := dimFp Selp(E/K), sλ(A/K) := dimk Selλ(A/K).

Notice when A is an elliptic curve (F = Q, λ = (p), k = Fp), sλ(A/K) is its usual p-Selmer rank.
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When the level raising prime q is inert in K, the modular forms f and g have opposite signs
of functional equations. The rank part of BSD conjecture and the conjectural finiteness of Tate–
Shafarevich groups then predict (as justified in Prop. 3.5) the following parity conjecture for Selmer
groups.

Conjecture 1.6. Let E, p, q be as in Theorem 1.3. Assume that

(1) (A, λ) is obtained from E via level raising at q (mod p).
(2) K is an imaginary quadratic field satisfying the Heegner hypothesis for E.
(3) q is inert in K.

Then sp(E/K) and sλ(A/K) have different parity.

This conjectural parity change makes it possible to lower the Selmer rank from one to zero via
level raising. The rank lowering theorem (Step (B)) can be more precisely summarized as follows.

Theorem 1.7 (Gross–Parson, Zhang). Assume we are in the situation of Conjecture 1.6 with p ≥ 5.
Assume that q further satisfies

q 6≡ ±1 (mod p).

Then

(1) Conjecture 1.6 holds. In fact, in this case we have sp(E/K) = sλ(A/K)± 1.

(2) If sp(E/K) = 1, then there exists a positive density set of such primes q such that

sλ(A/K) = 0.

Remark 1.8. Part (1) is the parity lemma of Gross–Parson ([GP12, Lemma 9], [Zha14, Lemma 5.3]).
Part (2) is a restatement of Prop. 5.4, Thm. 7.2 and Lemma 7.3 of [Zha14].

1.9. Level raising mod 2 and obstruction to rank lowering. To get good control over the
local condition at q defining the Selmer group, the key assumption q 6= ±1 (mod p) in Theorem 1.7
is imposed so that Frobq acts on E[p] semi-simply with distinct eigenvalues different from {±1}.
This key assumption forces p ≥ 5 and is not possible for p = 2. The major innovation of this article
is to overcome this technical difficulty. We do so by controlling the local condition when Frobq is
the unipotent class of order 2 acting on E[2]. Notice that q - 2N is a level raising prime (mod
p = 2) if and only if aq is even, if and only if ρ̄E,2(Frobq) ∼ ( 1 0

0 1 ) or ( 1 1
0 1 ) (the trivial or the order

2 class in GL2(F2) ∼= S3).
When Frobq has order 2 acting on E[2], we are able to verify Conjecture 1.6. However, in a

contrast to Part (2) of Theorem 1.7, it turns out one can never lower the 2-Selmer rank to 0,
revealing an obstruction to rank lowering for p = 2. More precisely, we have the following main
theorem.

Theorem 1.10. Assume we are in the situation of Conjecture 1.6 with p = 2. Assume that q
further satisfies

Frobq has order 2 acting on E[2],

and ρ̄E,2|GQ2
is nontrivial. Then

(1) (Theorem 6.1) Conjecture 1.6 is true. In fact, in this case we have s2(E/K) = sλ(A/K)± 1.

(2) (Theorem 7.1) If s2(E/K) = 1, then for any such q we have

sλ(A/K) = 2.
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Remark 1.11. The obstruction to rank lowering tells us that Zhang’s strategy for proving BSD(p)
cannot naively work when p = 2. We remark that this obstruction to rank lowering over K is
a phenomenon unique to p = 2 (see Example 7.2). On the other hand, since there is no such
obstruction for p = 3, the new idea of using the unipotent Frobenius to control Selmer ranks can
be used to prove BSD(3) when r = 1 under similar assumptions.

Remark 1.12. In [LHL16], we enhance Ribet’s level raising theorem to raise the level at multiple
primes simultaneously. With refined control over the signs (which are not detected under the mod
2 congruence, see Remark 3.2), we show that it is possible to obtain arbitrary sλ(A/Q) (over Q)
via level raising mod 2. In particular, the obstruction to rank lowering we discovered occurs only
for p = 2 and only over the imaginary quadratic field K.

Remark 1.13. Analogous to the level raising family, the quadratic twist family also share the same
mod 2 Galois representation. Interestingly (as pointed out to us by one of the referees), Klagsbrun
[Kla12] also found a nontrivial lower bound for 2-Selmer ranks in some explicit quadratic twists
families, when working over a base field with at least one complex place. His result disproved a
conjecture of Mazur–Rubin in [MR10].

Remark 1.14. Although the obstruction to rank lowering prevents us from proving BSD(2) using
Zhang’s strategy, the same techniques used in this article are useful in proving BSD(2) in other
contexts. In fact, we prove BSD(2) for many quadratic twists of general elliptic curves in [KL16].
Similar results for BSD(2) were previously only known for three quadratic twist families ([Tia14]
for the congruent number curve X0(32), [GA97], [CLTZ15] for X0(49) and [CCL16] for X0(36)).

1.15. Remarks on the proofs and the content of each section. In §3 we justify the parity
conjecture for Selmer groups. This is familiar when p is odd (cf. [Zha14, 9.2]) since the generalized
Cassels–Tate pairing on Ш(A/K)[λ∞] is non-degenerate and skew-symmetric. When p = 2, further
analysis is required since a skew-symmetric pairing in characteristic 2 may fail to be alternating.
We use the argument of Poonen–Stoll [PS99] to show this failure does not occur for Ш(A/K)[λ∞]

(Theorem 3.3), even though it may occur for Ш(A/Q)[λ∞] (Remark 3.4).
In §4 we determine the local conditions for the abelian variety A purely in terms of the Galois

representation A[λ]. The technical heart is to determine the local condition at q (Lemma 4.3 (3)),
which uses the order two Frobq in a crucial way. We also remark it is necessary to assume that
ρ̄E,2|GQ2

is nontrivial in the main theorem due to the extra uncertainty for the local condition at 2
(Remark 6.2). For the same reason, there is an extra uncertainty for the local condition at q when
Frobq is trivial acting on E[2], which leaves us the order two Frobq as the only option to work with.

In §5 we show that the local condition is maximal totally isotropic, not only under the local Tate
pairing but also under a quadratic form giving rise to the pairing. The difference between these
two notions is another subtlety in characteristic 2 (Remark 5.3). The key case is again the local
condition at q. We utilize the quadratic form constructed by Zarhin [Zar74, §2] (see also [O’N02]
and [PR12]) and make it explicit in the proof of Lemma 5.5.

In §6 and §7, we prove the main theorem and illustrate the obstruction to rank lowering in
Example 7.2. After the preparation in §4 and §5, the proof becomes a standard application of
global duality.

1.16. Acknowledgments. This article is a revised version of a chapter of the author’s Harvard
Ph.D. thesis. I am deeply grateful to my thesis advisor, B. Gross, for his constant encouragement
and advice throughout this project. I am thankful to K. Cesnavicius, B. V. Le Hung and W. Zhang
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for helpful conversations and to Y. Liu for useful comments on an earlier draft of this article. I am
also thankful to the referees for careful reading and numerous suggestions. The examples in this
article are computed using Sage ([S+13]) and Magma ([BCP97]).

2. Selmer groups

Suppose (A, λ) is obtained from E via level raising at a level raising prime q (mod p). Fix an
isomorphism E[p] ⊗ k ∼= A[λ] and denote these two k-vector spaces by V . Let we first recall the
general notion of Selmer groups cut out by local conditions.

Definition 2.1. Let K be any number field. Let v be a place of K. We define

H1
ur(Kv, V ) := H1(Kur

v /Kv, V
Iv) ⊆ H1(Kv, V )

consisting of classes which are split over an unramified extension of Kv, where Iv is the inertia
subgroup at v.

Definition 2.2. Let L = {Lv} be the collection of k-subspaces Lv ⊆ H1(Kv, V ), where v runs over
every place of K. We say L is a collection of local conditions if Lv = H1

ur(Kv, V ) for almost all v.
We define the Selmer group cut out by the local conditions L to be

H1
L(V ) := {x ∈ H1(K,V ) : resv(x) ∈ Lv, for all v}.

In other words, it sits in the pull-back diagram

H1
L(V ) //

��

H1(K,V )∏
v resv

��∏
v Lv //

∏
vH

1(Kv, V ).

Definition 2.3. We define Lv(E) to be the image of the local Kummer map

(E(Kv)/pE(Kv))⊗Fp k → H1(Kv, E[p])⊗ k = H1(Kv, V ).

Then the Selmer group cut out by L(E) := {Lv(E)} is equal to H1
L(E)(V ) = Selp(E/K)⊗ k.

Definition 2.4. Similarly, we define Lv(A) to be the image of the local Kummer map

A(Kv)⊗OF
k → H1(Kv, A[λ]) = H1(Kv, V ).

The λ-Selmer group of A is defined to be the Selmer group cut out by L(A) := {Lv(A)}, denoted
by Selλ(A/K). For details on descent with endomorphisms, see the appendix of [GP12].

By definition we have two short exact sequences,

(2.1) 0→ E(K)⊗Z Fp → Selp(E/K)→Ш(E/K)[p]→ 0,

and

(2.2) 0→ A(K)⊗OF
k → Selλ(A/K)→Ш(A/K)[λ]→ 0.

3. Sign changing and the parity conjecture for Selmer groups

In this section we justify Conjecture 1.6. Let us put ourselves in the situation of Conjecture 1.6,
namely, K is an imaginary quadratic field satisfying the Heegner hypothesis for E and q is inert in
K. These two assumptions together give rise to the following sign-changing phenomenon.
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Lemma 3.1. The newform f of level N (associated to E) and newform g of level Nq (associated
to A) have opposite signs of the functional equations over K,

ε(f/K) = −1, ε(g/K) = +1.

Proof. Recall that the sign of the functional equation ε(f/K) can be written as the product of local
signs εv(f/K):

(1) For any finite place v of K not dividing the level N , εv(f/K) = +1.
(2) For `|N , ` splits as two places v1, v2 in K and εv1(f/K) = εv2(f/K).

It follows that the product of local signs at all finite places is +1, and thus

ε(f/K) = ε∞(f/K) = −1.

Similarly, the sign of the functional equation ε(g/K) can be written as the product of local signs
εv(g/K) (notice g has trivial nebentypus). Since q is inert in K, we have εq(g/K) = −1 and the
same reasoning shows that

ε(g/K) = −ε∞(g/K) = +1,

as desired. �

Remark 3.2. When p = 2, both signs may occur for ε(g/Q) (over Q). For example, consider
E = 11a1 = X0(11) : y2 + y = x3 − x2 − 10x − 20 (Cremona’s label). It satisfies the assumptions
in Theorem 1.3. Since a7 = −2 is even, we know that q = 7 is a level raising prime. The elliptic
curves A1 = 77a1 and A2 = 77b1 are both obtained from E via level raising at 7 (mod 2). Their
first few Hecke eigenvalues are listed in Table 1.

2 3 5 7 11 13 17 19
11a1 −2 −1 1 −2 1 4 −2 0
77a1 0 −3 −1 −1 −1 −4 2 −6
77b1 0 1 3 1 −1 −4 −6 2

Table 1. Level raising at 7

We find
ε(E/Q) = +1, ε(A1/Q) = −1, ε(A2/Q) = +1.

Therefore there is no parity prediction over Q for level raising mod 2. For more refined control over
the possible signs under level raising mod 2, see [LHL16].

Next let us show that dimk Ш(A/K)[λ] “should” be even.

Theorem 3.3. Assume Ш(A/K)[λ∞] is finite, then dimk Ш(A/K)[λ] is even.

Remark 3.4. For a general modular abelian variety A of dimension ≥ 2, dimk Ш(A/Q)[λ] (over Q)
may fail to be even when p = 2. For example, there is a unique modular abelian surface A of level
65 (up to isogeny). It has real multiplication by F = Q(

√
3) and p = 2 is ramified in F . One can

identify A as the Jacobian of the genus two curve ([GGR05, 4.2]):

y2 = −x6 − 4x5 + 3x4 + 28x3 − 7x2 − 62x+ 42.

An explicit 2-descent shows that Ш(A/Q)[2] ∼= Z/2Z. However, as the proof below shows, this
failure disappears for the abelian variety (A, λ) obtained from level raising, after a base change to
any even degree number field.
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Proof. Let A∨/Q be the dual abelian variety of A/Q. Then A∨ also admits an action by OF , given
by the action dual to the OF -action on A. Let L be any number field. Consider the classical
Cassels–Tate pairing ([PS99, §3])

〈 , 〉 : Ш(A/L)×Ш(A∨/L)→ Q/Z.

By the OF -equivariance, its restriction to the λ-primary parts

Ш(A/L)[λ∞]×Ш(A∨/L)[λ∞]→ Q/Z

naturally induces an OF,λ-linear non-degenerate pairing

Ш(A/L)[λ∞]×Ш(A∨/L)[λ∞]→ Hom(OF,λ,Q/Z) ∼= Fλ/OF,λ,
(x, y) 7→ (a 7→ 〈ax, y〉).

This is known as Flach’s generalized Cassels–Tate pairing ([Fla90], see also [Nek, 6.3] applied to the
λ-adic Tate modules T = Tλ(A) and T ∗(1) = Tλ(A∨)). Now using a OF -linear and coprime-to-λ
polarization φ : A → A∨ and noticing that the Rosati involution acts trivially on OF (since F
is totally real), we obtain a skew-symmetric non-degenerate OF,λ-linear pairing ([Fla90, Theorem
2],[Nek, 6.5])

Ш(A/L)[λ∞]×Ш(A/L)[λ∞]→ Fλ/OF,λ.
Hence Ш(A/L)[λ∞] = Y ⊕ Y for some maximal totally isotropic OF,λ-submodule Y if p 6= 2 ([Nek,
6.5]). In particular, we know that Ш(A/L)[λ] is an even dimensional k-vector space for any number
field L if p 6= 2.

When p = 2, further analysis is required since a skew-symmetric pairing may fail to be alternating
in characteristic 2. Recall that Poonen–Stoll [PS99] defined a class cL = φ−1(cφ) ∈Ш(A/L)[2] with
the property that 〈a, a〉 = 〈a, cL〉 for any a ∈Ш(A/L)[2]. Moreover, by construction, the class cL
is the image of cQ under the restriction map

res : Ш(A/Q)[2]→Ш(A/L)[2],

since the polarization φ is defined over Q. Now recall that for a, a′ ∈Ш(A/L)[2], the pairing 〈a, a′〉
is defined as a sum

〈a, a′〉 =
∑
v

invv(bv),

where v runs over all places of L, invv : H2(Lv,F2(1))) ∼= F2 is the local invariant map and bv is a
certain class in H2(Lv,F2(1)) constructed from a and a′. It follows that for a, a′ ∈Ш(A/Q)[2], we
have the relation

〈res(a), res(a′)〉 = [L : Q] · 〈a, a′〉.
Therefore when [L : Q] is even, we have 〈cL, cL〉 = 0.

On the other hand, when 〈cL, cL〉 = 0, the endomorphism σ of Ш(A/L) defined by

σ(a) =

{
a, if 〈a, cL〉 = 0,

a+ cL, if 〈a, cL〉 = 1/2,

is an automorphism of order 2, and the modified pairing 〈a, a′〉σ := 〈a, σ(a′)〉 on Ш(A/L) is non-
degenerate and alternating ([PS99, p.1122]). This modified pairing induces a OF,λ-linear non-
degenerate and alternating pairing on the λ-primary part Ш(A/L)[λ∞]. In particular, we know that
Ш(A/L)[λ] is an even dimensional k-vector space for any even degree number field L if p = 2. �
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Now we can justify the parity conjecture for Selmer groups (Conjecture 1.6), as it is predicted by
the rank part of the BSD conjecture and the finiteness of Ш. More precisely,

Proposition 3.5. Assume that

(1) the rank part of BSD conjecture is true for E/K and A/K.
(2) Ш(E/K)[p∞] and Ш(A/K)[λ∞] are finite.

Then sp(E/K) and sλ(A/K) have different parity.

Proof. By the short exact sequences (2.1) and (2.2), we have

sp(E/K) = rankE(K) + dimFp E(K)[p] + dimFp Ш(E/K)[p],

and
sλ(A/K) = dimF A(K)⊗OF

F + dimk A(K)[λ] + dimk Ш(A/K)[λ].

By Lemma 3.1, the rank part of the BSD conjecture implies that rankE(K) and dimF A(K)⊗OF
F

have different parity. Since ρ̄E,p is assumed to be surjective, we know that it remains irreducible
when restricted to any quadratic extension of Q, hence

E(K)[p] = 0, A(K)[λ] = 0.

Since the Cassels–Tate pairing on Ш(E/K)[p] is non-degenerate and alternating, we know that
dimFp Ш(E/K)[p] is even. By Theorem 3.3, we know that dimk Ш(A/K)[λ] is also even. The
result the follows. �

4. Local conditions

In the rest of this article, we will prove Theorem 1.10. In fact we will prove it in Theorems 6.1 and
7.1 under the following slightly weaker assumptions (allowing multiplicative reduction at p = 2):

Assumption 4.1. Let E/Q be an elliptic curve of conductor N . Let f =
∑

n≥1 anq
n be the

associated newform of level N . Let ρ̄E,2 : GQ → Aut(E[2]) be its mod 2 Galois representation.
Assume:

(1) ρ̄E,2 is surjective.
(2) E has good or multiplicative reduction at 2 (i.e., 4 - N).
(3) The Serre conductor N(ρ̄E,2) is equal to the odd part of N . If 2 | N , ρ̄E,2 is ramified at 2.
(4) If 2 - N , then ρ̄E,2|GQ2

is nontrivial.
(5) q is a level raising prime for E (mod 2) (i.e., q - 2N and aq is even).
(6) K is an imaginary quadratic field satisfying the Heegner hypothesis for E (i.e., every prime

factor of N splits in K).
(7) q is inert K.

Remark 4.2. Recall that the Serre conductor N(ρ̄E,2) ([Ser87, 1.2]) measures the ramification of the
mod 2 Galois representation ρ̄E,2. In particular, all the level raised forms will be automatically new
at ` | N due to assumption (3). Assumption (3) is also equivalent to saying that the component
group of the Néron model of E at any ` | N has odd order (see [GP12, Lemma 4]), which in
particular implies that all local Tamagawa numbers of E are odd.

Under Assumption 4.1 (1-5), Ribet’s level raising theorem (Theorem 1.3) and its extension when
E is multiplicative at 2 (see Theorem 1.1 and Remark 2.3 of [LHL16]) ensure that there exists
a newform g =

∑
n≥1 bnq

n of level Nq and a prime ideal λ|2 of the (totally real) Hecke field
8



F = Q({bn}n≥1) such that we have a congruence between the Hecke eigenvalues

a` ≡ b` (mod λ), for every prime ` 6= q.

Recall this level raised newform g, via the Eichler–Shimura construction, determines an abelian
variety A over Q up to isogeny, of dimension [F : Q], with real multiplication by F (so A is of
GL2-type). We choose an A in this isogeny class so that A admits an action by the maximal order
OF . We say the pair (A, λ) is obtained from E via level raising at q (mod 2) (Definition 1.5). We
fix an isomorphism E[2]⊗ k ∼= A[λ] (k = OF /λ) and denote these two k-vector spaces by V .

The following lemma identifies the local conditions for the abelian variety A purely in terms of
the Galois representation V , which is the key to controlling the Selmer rank under level raising.

Lemma 4.3. Suppose (A, λ) is obtained from E via level raising at q (mod 2) (we allow A = E

and view q = 1 in this case). Let L = L(A) be the local conditions defining Selλ(A/K). Then
(1) For v - 2q∞,

Lv = H1
ur(Kv, V ).

(2) For v =∞,
Lv = H1(Kv, V ) = 0.

(3) For v = q, if Frobq ∈ GQq has order 2 acting on V , then there is a unique GQq -stable line
W ⊆ V as ρ̄E,2(Frobq) is conjugate to ( 1 1

0 1 ). We have H1(Kv, V ) is 4-dimensional and

Lv = im(H1(Kv,W )→ H1(Kv, V ))

is 2-dimensional. Moreover,

Lv ∩H1
ur(Kv, V ) = H1

ur(Kv,W )

is 1-dimensional, where we identify H1
ur(Kv,W ) with its image in H1(Kv, V ).

(4) If E has good reduction at v|2, then

Lv = H1
fl(SpecOv, E [2])⊗ k,

where E/Ov is the Néron model of E/Kv and H1
fl(SpecOv, E [2]) is the flat cohomology group,

viewed as a subspace of H1
fl(SpecKv, E[2]) = H1(Kv, E[2]).

(5) If E has multiplicative reduction at v|2, then there is a unique GQ2-stable line W ⊆ V by
Assumption 4.1 (3) that ρ̄E,2 is ramified at 2. We have

Lv = im(H1(Q2,W )→ H1(Q2, V )).

Proof. For v - 2qN∞, Lv = H1
ur(Kv, V ) by [GP12, Lemma 6]. For v|2N , since v is split in K, the

items (1), (4) and (5) follow from the corresponding items (1), (4) and (5) in [LHL16, Lemma 6.6].
The item (2) is clear since K is imaginary. It remains to prove (3), which is the key difference from
the case over Q considered in [LHL16, Lemma 6.6].

Our argument closely follows the proof of [GP12, Lemma 8]. Let A/Zq be the Néron model of
A/Qq. Let A0/Fq be the identity component of the special fiber of A. Since A is an isogeny factor
of the new quotient of J0(Nq), it has purely toric reduction at q: A0/Fq is a torus that is split over
Fq2 and it is split over Fq if and only if εq(g/Q) = −1. By the Néron mapping property, OF acts
on A0 and makes the character group X∗(A0/Fq)⊗Q a 1-dimensional F -vector space.

Let T/Qq be the split torus with character group X∗(A0/Fq). Let χ : Gal(Kq/Qq) → {±1}
be the trivial or nontrivial quadratic character according to whether A0/Fp splits over Fq or not.
Let T (χ)/Qq be the twist of T/Qq by χ. Then OF naturally acts on T (dual to the action on the
character group). By the theory of q-adic uniformization (cf. [BL91]), we have a GQq -equivariant
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exact sequence
0→ Λ→ T (χ)(Qq)→ A(Qq)→ 0,

where Λ is a free Z-module with the GQq -action by χ. Since OF is a maximal order, Λ is a locally
free OF -module of rank one. Consider the following commutative diagram

T (χ)(Kq)⊗OF /λ //

��

H1(Kq, T (χ)[λ])

��
A(Kq)⊗OF /λ // H1(Kq, A[λ]).

Here, the horizontal arrows are the local Kummer maps and the vertical maps are induced by the
q-adic uniformization. The left vertical map is surjective since its cokernel lies in H1(Kq,Λ) =

Hom(GKq ,Λ), which is zero as Λ is torsion-free. The top horizontal map is also surjective since its
cokernel maps into H1(Kq, T (χ)), which is zero by Hilbert 90 as T (χ) is a split torus over Kq. It
follows that

Lq = im
(
H1(Kq, T (χ)[λ])→ H1(Kq, A[λ])

)
.

Also, because Λ has no λ-torsion, we see that T (χ)[λ] → A[λ] is a GQq -equivariant injection (for
this we need the twist T (χ) rather than T ). But since Frobq ∈ GQq is assumed to have order 2
acting on V = A[λ], V has a unique GQq -stable line W . Therefore

Lq = im(H1(Kq,W )→ H1(Kq, V )).

Since q is inert in K, we know that Frobq ∈ GKq acts on V trivially. Hence H1(Kq, V ) is 4-
dimensional and H1

ur(Kq, V ) is 2-dimensional. The intersection Lq ∩H1
ur(V ) = H1

ur(Kq,W ) consists
of unramified homomorphisms Gal(Kur

q /Kq)→W , hence is 1-dimensional. �

5. Lv(A) is maximal totally isotropic for the quadratic form Qv

Since we are working in characteristic 2, to prove Conjecture 1.6, we need not only the perfect
local Tate pairing

〈 , 〉v : H1(Kv, V )×H1(Kv, V )→ k(1),

but also a quadratic form Qv giving rise to it. To define Qv, first recall that the line bundle
L = OE(2∞) on E induces a degree 2 map

E → P1 = P(H0(E,L)).

For P ∈ E, let τP be the translation by P on E. Since for P ∈ E[2], τ∗PL ∼= L, the translation by
E[2] induces an action of E[2] on P1, i.e., a homomorphism E[2]→ PGL2.

Definition 5.1. For a place v of K, we define

Qv : H1(Kv, E[2])→ H1(Kv,PGL2)→ H2(Kv,Gm),

where the first map is induced by the above homomorphism E[2] → PGL2 and the second map is
induced by the short exact sequence

1→ Gm → GL2 → PGL2 → 1.

By local class field theory, H2(Kv,Gm) ∼= Q/Z and so Qv takes value in H2(Kv,Gm)[2] ∼= Z/2Z.
By [O’N02, §4], Qv is a quadratic form and extending scalars we obtain a quadratic form

Qv : H1(Kv, V )→ k.
10



By [O’N02, 4.3], the associated bilinear form (x, y) 7→ Qv(x + y) − Qv(x) − Qv(y) is equal to the
local Tate pairing 〈 , 〉v.

Definition 5.2. We say a subspaceW ⊆ H1(Kv, V ) is totally isotropic for Qv if Qv|W = 0. We say
W is maximal totally isotropic for Qv if it is totally isotropic andW = W⊥ (orthogonal complement
under 〈 , 〉v).

Remark 5.3. As char(k) = 2, the requirement Qv|W = 0 is stronger than 〈 , 〉v|W = 0. For example,
for the 2-dimensional quadratic space (k2, Q) with Q((x, y)) = xy, the associated bilinear form is
given by

〈(x1, y1), (x2, y2)〉 = x1y2 + x2y1.

In particular 〈(x, y), (x, y)〉 = 2xy = 0 and hence all three lines in k2 are maximal totally isotropic
for the bilinear form 〈 , 〉. But only the two lines x = 0 and y = 0 are maximal totally isotropic for
the quadratic form Q.

Remark 5.4. The local condition Lv(E) for the elliptic curve E is maximal totally isotropic for Qv
by [PR12, Prop. 4.11] (this is also implicit in [O’N02, Prop. 2.3]).

Lemma 5.5. Suppose Frobq ∈ GQq has order 2 acting on V . Then for any place v of K, Lv(A) is
maximal totally isotropic for Qv.

Proof. The claim for v 6= q follows immediately from Lemma 4.3 and Remark 5.4. It remains to check
the case v = q. We provide an explicit way to compute the image of a cocycle c ∈ H1(Kq, E[2])

under Qq. Recall that H1(Kq,PGL2) classifies forms of P1, i.e., algebraic varieties S/Kq which
become isomorphic to P1 over Kq. For any cocycle c, the corresponding form S can be described as
follows. As a set, S = P1(Kq). The Galois action of g ∈ GKq on x ∈ S is given by g.x = c(g).g(x).
The cocycle c gives the trivial class in H1(Kq,PGL2) if and only if S(Kq) 6= ∅.

Since Frobq ∈ GQq has order 2 acting on V (i.e., ρ̄E,2(Frobq) is conjugate to ( 1 1
0 1 )), we know that

E[2](Qq) ∼= Z/2Z. Let P be the generator of E[2](Qq). Let σ ∈ GKq be a Frobenius and let τ be a
generator of the tame quotient Gal(Kt

q/K
ur
q ). Then by Lemma 4.3 (3), Lq(A) is generated by the

two cocycles
c(σ) = 0, c(τ) = P

and
c′(σ) = P, c′(τ) = 0.

For the cocycle c, the corresponding form S has a Kq-rational point if and only if there exists
x ∈ P1(Kt

q) such that
σ(x) = x, P.τ(x) = x.

Suppose E has a Weierstrass equation y2 = F (x), where F (x) ∈ Q[x] is an irreducible cubic
polynomial. Let α1, α2, α3 be the three roots of F (x). Without loss of generality, we may assume
that α1 ∈ Qq and thus P = (α1, 0). Then the action of P on P1 is an involution that swaps
α1 ↔∞, α2 ↔ α3. One can compute explicitly that this involution is given by the linear fractional
transformation

x 7→ α1x+ (α2α3 − α1α2 − α1α3)

x− α1
.

Therefore Qq(c) = 0 if and only if there exists x ∈ P1(Kt
q) such that

(5.1) σ(x) = x, (τ(x)− α1)(x− α1) = (α2 − α1)(α3 − α1).

The right hand side is the image of α1 − α2 under the norm map K×q → Q×q , hence has even
valuation. Thus β =

√
(α2 − α1)(α3 − α1) lies in Kq and x = α1 +β ∈ Kq satisfies (5.1). It follows
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that Qq(c) = 0. Similarly, Qq(c′) = 0 if and only if there exists x ∈ P1(Kur
q ) such that

(σ(x)− α1)(x− α1) = (α2 − α1)(α3 − α1).

Again x = α1 + β ∈ Kq is a solution and we see that Qq(c′) = 0.
It follows that Lq(A) is totally isotropic for Qq. By Lemma 4.3 (3), the dimension of Lq(A) is

half of the dimension of H1(Kq, V ), hence Lq is maximally totally isotropic for Qq. �

Remark 5.6. The local condition Lq(A) may fail to be maximal totally isotropic for Qq when working
over Q instead of over K. This is expected since there is no parity prediction over Q (Remark 3.2).

6. Parity of 2-Selmer ranks

Now we are ready to prove the parity conjecture on 2-Selmer ranks.

Theorem 6.1. Assume Assumption 4.1. Suppose Frobq ∈ GQq has order 2 acting on V . Then

s2(E/K) = sλ(A/K)± 1.

Moreover,
s2(E/K) = sλ(A/K)− 1

if and only if resq(Sel2(E/K)⊗ k) ⊆ H1
ur(Kq,W ), where W is the unique GQq -stable line in V .

Proof. Define the strict local conditions S by Sv = Lv(E) = Lv(A) for v 6= q and

Sq = Lq(E) ∩ Lq(A) = H1
ur(Kq,W ).

The second equality is by Lemma 4.3 (3), where we identified H1
ur(Kq,W ) with its image in

H1(Kq, V ). Similarly, define the relaxed local conditions R by Rv = Lv(E) = Lv(A) for v 6= q and
Rq = S⊥q . Then we have

H1
S(V ) ⊆ H1

L(E)(V ) ⊆ H1
R(V ), H1

S(V ) ⊆ H1
L(A)(V ) ⊆ H1

R(V ).

Since S⊥ = R, we use [DDT97, Theorem 2.18] to compare the dual Selmer groups:

#H1
S(V )

#H1
R(V )

=
∏
v

#Sv
#H0(Kv, V )

,
#H1

R(V )

#H1
S(V )

=
∏
v

#Rv
#H0(Kv, V )

,

where v runs over all places of K. It follows that

dimH1
R(V )− dimH1

S(V ) =
1

2
(dimRq − dimSq) = 1,

since Sq is 1-dimensional and Rq is 3-dimensional. By global class field theory, for any class c ∈
H1
R(V ), we have ∑

v

Qv(resv(c)) = 0.

Since Rv is totally isotropic for Qv for any v 6= q by Remark 5.4, we know that Qq(resq(c)) = 0. In
other words, the image resq(H

1
R(V )) is also a totally isotropic subspace for Qq. It follows that the

quotient space (resq(H
1
R(V )) + Sq)/Sq is a nonzero totally isotropic subspace of Rq/Sq under (the

quadratic form induced by) Qq.
SinceRq/Sq is a 2-dimensional quadratic space obtained by extending scalars from a 2-dimensional

quadratic space over F2 and Rq/Sq contains an isotropic line under Qq, we know that it must have
Arf invariant 0 and thus is isomorphic to (k2, xy) as a quadratic space. By Remark 5.3, there are
exactly two maximal totally isotropic subspaces of Rq containing Sq. On the other hand, we already
have two such maximal totally isotropic subspaces by Remark 5.4 and Lemma 5.5: namely Lq(E)

12



and Lq(A). It follows that either H1
R(V ) = H1

L(E)(V ) or H1
R(V ) = H1

L(A)(V ). The two cases cannot
hold simultaneously since

H1
L(A)(V ) ∩H1

L(E)(V ) = H1
S(V ) ( H1

R(V ).

So either
H1
L(A)(V ) = H1

R(V ), H1
L(E)(V ) = H1

S(V ),

or
H1
L(E)(V ) = H1

R(V ), H1
L(A)(V ) = H1

S(V ).

Moreover, the first case happens if and only if resq(H
1
L(E)(V )) ⊆ Sq. The desired result then

follows. �

Remark 6.2. The conclusion of Theorem 6.1 may fail when dropping the assumption that ρ̄E,2|GQ2

is nontrivial, due to the uncertainty of the local condition at 2. For example, the elliptic curve

E = 2351a1 : y2 + xy + y = x3 − 5x− 5

has trivial ρ̄E,2|GQ2
. The elliptic curve

A = 25861i1 : y2 + xy + y = x3 + x2 − 17x+ 30

is obtained from E via level raising at q = 11 (mod 2). For K = Q(
√
−111), we have

rankE(K) = s2(E/K) = 1 and rank(A/K) = s2(A/K) = 4

differ by 3 (rather than 1).

7. obstruction to rank lowering

It follows from Theorem 6.1 that if s2(E/K) = 1, then sλ(A/K) = 0 or 2. However, the
Chebotarev density argument for p ≥ 5 in [Zha14, Lemma 7.3] fails in this case and does not show
that one can always get sλ(A/K) = 0. In fact, we prove the following obstruction to rank lowering:
sλ(A/K) can never be lowered to zero!

Theorem 7.1. Assume Assumption 4.1. Suppose Frobq ∈ GQq has order 2 acting on V . Then

s2(E/K) = 1 =⇒ sλ(A/K) = 2.

Proof. By Theorem 6.1, we need to show that resq(Sel2(E/K)⊗ k) ⊆ H1
ur(Kq,W ), where W is the

unique GQq -stable line in V . By definition, the Galois group Gal(K/Q) acts on Sel2(E/K). By
assumption, we have Sel2(E/K) ∼= Z/2Z, so the action of Gal(K/Q) on Sel2(E/K) must be trivial.
It follows that

resq(Sel2(E/K)⊗ k) ⊆ H1
ur(Kq, V )Gal(Kq/Qq).

The right hand side is nothing but H1
ur(Kq,W ), as desired. �

We end with an example illustrating Theorem 7.1.

Example 7.2. Consider E = 11a1 = X0(11). In Table 2 we list the first few level raising primes q
and corresponding level raising abelian varieties A (all of which are elliptic curves). For each choice
of K = Q(

√
dK), we find that s2(A/K) = 2 always! In many cases, this is explained by the fact

that rankA(K) = 2. In the remaining cases, we have

dimF2 Ш(A/K)[2] = 2,
13



q A dK rankA(K) dim Ш(A/K)[2] s2(A/K)
7 77a −8 2 0 2
7 77b −8 0 2 2
13 143a −7 2 0 2
13 143a −8 2 0 2
17 187a −7 2 0 2
17 187a −24 0 2 2
19 209a −7 2 0 2
19 209a −19 2 0 2
29 319a −8 2 0 2
29 319a −19 0 2 2

Table 2. obstruction to rank lowering

though in all such cases the 2-part of Ш for A/Q and its quadratic twist AK/Q are both trivial,

Ш(A/Q)[2] = 0, Ш(AK/Q)[2] = 0.

Notice that this is a phenomenon unique to p = 2 because for odd p it is always true that

Ш(A/K)[p] ∼= Ш(A/Q)[p]⊕Ш(AK/Q)[p].
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