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Let E : y2 = f(x) be an elliptic curve over Q. The abelian group E(Q) is finitely generated
due to the theorem of Mordell-Weil. All the 15 possibilities of its torsion part are determined
by Mazur but its rank r(E/Q) is far from being completely understood. Our first goal is to try
to understand the rank r(E/Q) for certain elliptic curves E/Q satisfying the following three
conditions. (I could pretend to be clever and mystify these conditions by writing down them
right away. But I shouldn’t. So how about introducing them only when we need them?)

1. 2-descent

A key pole played in the proof of Mordell-Weil theorem is the method of descent. Let n ≥ 2
be an integer. Associated to the exact sequence

0 → E[n] → E → E → 0,

we have an exact sequence in Galois cohomology

0 // E(Q)/nE(Q)
δ //

��

H1(Q, E[n]) //

��

H1(Q, E)[n] //

��

0

0 //
∏

v E(Qv)/nE(Qv)

∏
v δv //

∏
v H

1(Qv, E[n]) //
∏

v H
1(Qv, E)[n] // 0

Understanding the Kummer map δ helps us to understand E(Q). Though the group H1(Q, E[n])
is an enormous infinite group, one can cut out a finite group Seln(E/Q), the n-Selmer group,
using the local conditions defined by the local Kummer maps δv. One then has an exact
sequence

0 → E(Q)/nE(Q) → Seln(E/Q) → Ш(E/Q)[n] → 0.

Computing Seln(E/Q) bounds r(E/Q) from above. Such a procedure is called an n-descent,
though it is not so easy to compute for general n.

Now we are going to describe an explicit 2-descent (which by definition is a 2-descent that is
very explicit). In fact, the Galois module E[2] can be easily described and allows us to identify
the Kummer maps.

Proposition 1.1. Let L = Q[t]/f(t). Then H1(Q, E[2]) ∼= (L×/(L×)2)N=2 and

δ : E(Q)/2E(Q) → (L×/(L×)2)N=2

is explicitly given by P 7→ x(P )− t. The similar description holds for local Kummer maps δv.

Now we assume
a) f(x) ∈ Z[x] is a monic irreducible polynomial of squarefree and negative discriminant

disc(f) = −D (so D ≡ 3 (mod 4)).
This implies that
(1) E[2](Q) = 0.
(2) L is an imaginary cubic field. Let A be the ring of integers of L. Then A× ∼= Z×{±1}.
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(3) ∆(E) = −16D. The equation is minimal. E has multiplicative reduction at p | D,
additive reduction at 2 and good reduction elsewhere.

The multiplicative reduction condition and the negative discriminant pins down all the local
conditions at p ̸= 2 (the image of δv are the units) and ∞ (trivial image), allowing one to
compute Sel2(E/Q) explicitly up to only uncertainty caused by the local condition at p = 2.

Theorem 1.2. Assume a). Then rank2 Sel2(E/Q) = rank2 Pic(A) or rank2 Pic(A) + 1.

2. Root numbers

The 2-Selmer rank is determined once we know its parity. The famous conjecture of Birch
and Swinnerton-Dyer asserts that

r(E/Q) = ords=1 L(E/Q, s),

where L(E/Q, s) is the L-function of E/Q. It implies the special case concerning the parity
of both sides, the parity conjecture: (−1)r(E/Q) = ε(E/Q), where ε(E/Q) is the sign of the
functional equation of L(E/Q, s), called the root number of E/Q. Since our E has no 2-torsion,
according to a theorem of Monsky,

(−1)rank2 Sel2(E/Q) = ε(E/Q).

So it suffices to pin down the root number ε(E/Q).
The nice thing about the root number is that is admits a factorization into local terms.

However it could tricky since the split (resp. nonsplit) multiplicative reduction has root −1
(resp. +1) . We do a trick by going to a quadratic extension Q(i). Then ε(E/Q(i)) =
ε2(E/Q(i)). If we assume

b) E has Kodaira type IV over Q2.
Then we can pin down ε2(E/Q) = ε2(E/Q(i)) = −1 and the conductor N(E/Q) = 4D. In

particular,

Proposition 2.1. Assume a), b). Then ε(E/Q(i)) = −1.

Let E∗ : −y2 = f(x) be the (−1)-quadratic twist of E. Then because

ε(E/Q(i)) = ε(E/Q)ε(E∗/Q),

we know that one of E,E∗ has root number +1 and another has root number −1. We write
them as E± according to the sign. It follows that

Proposition 2.2. Assume a), b). Then rank2 Sel2(E
+/Q) is even; rank2 Sel2(E−/Q) is odd.

If we further assume
c) Pic(A) has odd order.

Proposition 2.3. Assume a), b), c). Then rank2 Sel2(E
+/Q) = 0; rank2 Sel2(E−/Q) = 1.

In particular, r(E+/Q) = 0 and r(E−/Q) ≤ 1. BSD predicts r(E−/Q) = 1 and thus
r(E/Q(i)) = 1. Notice one expects that the condition a), b), c) should define a positive
portion among all elliptic curves (though I don’t know how to prove it). Gross-Zagier and
Kolyvagin says that if ords=1 L(E/Q(i), s) = 1, then r(E/Q(i)) = 1 and a point of infinite
order is supplied by a Heegner point. We don’t know that the order of vanishing is exactly
one, but BSD predicts it should. So let us look at the Heegner point and see what we can say
about it.
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3. Heegner points on Shimura curves

The Heegner points over Q(i) are coming from a Shimura curve associated to then quaternion
algebra

B = Q+Qi+Qj +Qij, i2 = −1, j2 = D, ij = −ji.

It is ramified at p = 2 and p ≡ 3 (mod 4), p | D. Let R = Z+ Zi+ Zj + Zij ⊆ B (an order of
reduced discriminant 4D). Then the Shimura curve has complex uniformization

X = XR = B×(Q)\H± ×B×(Af )/R̂
× = R×\H±.

Shimura showed that X has a canonical model over Q and classifies abelian surfaces with
endomorphisms by R. The Heegner points correspond to embeddings Z[i] ↪→ R and are
defined over Q(i).

Let σ be the cuspidal automorphic representation on GL2(A) associated to E and let π
be the automorphic representation on B(A) via the Jacquet-Langlands correspondence. Then
Hom0

Q(J,E) ∼= πR̂× , where J = Jac(X).
(1) For p | D or p ≡ 1 (mod 4), πp ∼= σp.
(2) For p | D and p ≡ 3 (mod 4), πp is trivial on R×

p , since Rp ⊆ Bp is the maximal order.
So it is the trivial or sign representation of B×

p /R
×
p Q×

p
∼= Z/2.

(3) For p = 2, πp is trivial on R×
p since R×

p = 1+ϖOp ⊆ B×
p consists of the one units. So

it is the unique 2-dimensional representation of B×
p /R

×
p Q×

p
∼= S3.

Proposition 3.1. Hom0
Q(J,E) has dimension 2.

Now let P0 be the Heegner point corresponding to the natural embedding Z[i] → R. The
group B×

p /R
×
p Q×

p
∼= S3 acts on X and S3 · x0 consists of three points {P0, P1, P2}. So D0 =

Div0(P0, P1, P2) is the A2 lattice as a S3-module. S3 also acts on J , hence on Hom0
Q(J,E).

Therefore HomQ(J,E) is either the A2 lattice or its dual. In either case,

Proposition 3.2. HomQ(J,E)⊗Z[S3] D
0 ∼= Z and its image P lies in E−(Q) ⊆ E(Q(i)).

So we constructed a candidate for a point of infinite order on E−(Q).

Example 3.3. Consider the case D = 11. The Shimura curve X has genus 2 and is given by
the equation −y2 = x6− 7x4+59x2+11. The three elliptic points are ∞, (1, 8i) and (−1, 8i).
The Jacobian J is (2, 2)-isogenous to E × F , where

E = 44A1 : y2 = x3 + 7x2 + 59x− 11, F = 44A2 : y2 = x3 − 59x2 − 77x− 121

are 3-isogenous to each other. Therefore Hom0
Q(J,E) is indeed 2-dimensional. Moreover, the

point (−1, 8) is a point of infinite order on the (−1)-twist of E.

In order to prove P has infinite order, one hopes for the best that P is not divisible by 2 in
E(Q(i)). If one believes it, then at least the divisor P0 − P1 ∈ J(Q(i)) cannot be divisible by
2. This is a question only involving the Shimura curve X and can be investigated by studying
the reduction of J mod 2. Our next goal is to compute the reduction of J mod 2 using the
theory of p-adic uniformization.

4. p-adic uniformization and reduction of Jacobian of Shimura curves

Now we turn to a slightly more general situation. Let B/Q be a quaternion algebra ramified
at p and possibly other places (we will specialize to the case p = 2 in the end). Let S ⊆ B be
an order such that Sp is an maximal order Op of Bp. Let R ⊆ S be an index p sub-order such
that

Rp = {x ∈ Op : x mod ϖ ∈ Fp ⊆ Fp2
∼= Op/ϖ}.
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Then R×
p has index p+1 in S×

p . Let X (resp. Y ) be the Shimura curve associated to R (resp.
S). Then X → Y is a degree p + 1 covering map. By the complex uniformization, either of
X and Y is a union of projective curves of the form Γ\H±, where Γ is a discrete subgroup of
PGL2(R). Interestingly, by a deep theorem of Cerednik-Drinfeld, these Shimura curves also
admit p-adic uniformization. Let Ω = Cp−Qp be the p-adic half plane, then Y (Cp) (as a rigid
analytic space) is a union of Mumford curves of the form Γ\Ω, where Γ is a discrete subgroup
of PGL2(Qp). Even better, Ω has an integral model over Zp, whose special fiber consists of
P1’s with intersection graph an infinite (p + 1)-valent tree T . When Γ acts freely on the tree
T , the Shimura curve Y has a regular stable model over Zp whose special fiber consists of P1

with intersection graph Γ\T . So one can describe the reduction mod p of the Shimura curve
Y (whose level at p is maximal) in terms of the quotient graph Γ\T .

What about the Shimura curve X with non-maximal level at p? The miracle is that the
p-adic half plane Ω is far from “simply-connected”: it admits a tower of etale covers (known as
the Drinfeld tower)

· · ·Ωn → · · · → Ω2 → Ω1 → Ω0 = Ω,

where the covering group for Ωn → Ω is (Op/ϖ
n)×. The n-th cover Ωn can be used to

uniformize the Shimura curve with level 1 + ϖnOp at p. Therefore our Shimura curve X is
uniformized by the first (tame) Drinfeld cover Ω1. Using Teitelbaum’s geometric description
of Ω1 and Edixhoven’s theorem on the Neron models under tamely ramified extensions, we are
able to compute the reduction mod p of the Jacobians JX and JY .

Theorem 4.1. Let JX (resp. JY ) be the Neron model of JX (resp. JY ) over W = W (Fp).
Suppose the level away from p is small enough. Then the connected component of the special
fiber of the Neron models are given by

J 0
Y,Fp

∼= Gg(Y )
m , J 0

X,Fp

∼= Gg(Y )
m ×Gg(X)−g(Y )

a ,

where g(·) denotes the genus.

Example 4.2. Consider the case p = 2.

Remark 4.3. Come back to our original situation (p = 2). Since Ga is killed by 2, if the
reduction of P0 − P1 ∈ J(Q(i)) projects to a nonzero element in Gg(X)−g(Y )

a , then P0 − P1

cannot be divisible by 2. Whether P0 − P1 maps to a nonzero element in Gg(X)−g(Y )
a seems

to be more subtle: it can be checked by constructing a regular model of X over Z2[i], but the
special fiber of such a regular model is often nonreduced and complicates the computation.


