
RECENT DEVELOPMENTS ON QUADRATIC TWISTS OF ELLIPTIC
CURVES

CHAO LI

Abstract. We begin with a brief history of the congruent number problem, one of the oldest
unsolved problems in number theory, to motivate the study of quadratic twists of elliptic curves.
Then we survey some recent results on the arithmetic of quadratic twists of elliptic curves, including
Goldfeld’s conjecture and the full Birch and Swinnerton-Dyer conjecture.

1. An old mystery

In an anonymous Arab manuscript in the year 972, one finds one of the oldest unsolved problems
in number theory:

Question 1.1. Given an integer n, does there exist a rational number x such that the 3-term
arithmetic progression

x− n, x, x+ n

are all rational squares?

If so, such an integer n is called a congruent number. The term originates from the Latin word
congruous, meaning in agreement or harmony. The problem itself is almost certainly much older,
with some authors having traced examples in Babylon and India back to around 800 BC. We refer
to Dickson [Dic66, Chap. XVI] for a detailed account of the history of congruent numbers and refer
to S. Zhang [Zha13] for a nice recent survey on the congruent number problem.

Example 1.2. The number 24 is congruent by taking x = 25:

1 = 12, 25 = 52, 49 = 72.

By dividing 4 = 22, we know that 6 is also congruent.

The ancient question of determining congruent numbers may seem a bit random at first glance.
For example, one may wonder why not ask various analogous questions:

• can one determine all 4-term arithmetic progression consisting of squares?
• can one determine all 3-term arithmetic progression consisting of cubes (or more generally
n-th powers for n ≥ 3)?

For the first question, Euler already proved that there is no such 4-term arithmetic progression except
the trivial ones. The second question is equivalent to the Fermat-type equation xn + yn = 2zn, and
it was shown by Darmon–Merel [DM97] in 1997 that there are only trivial solutions as well. So the
congruent number problem is not at all random and developing a criterion for congruent number
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conjecture.
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is indeed an interesting quest. In his famous Liber Quadratorum (the Book of Squares), Fibonacci
proved the following theorem.

Theorem 1.3 (Fibonacci, around 1220). 5, 6, 7 are congruent.

In fact, the arithmetic progression

312, 412, 492, resp. 1132, 3372, 4632

have common difference 122 · 5 and 1202 · 7 respectively, hence n = 5, 7 are congruent. The case
of n = 5, 6 were known to the Arabs, and Fibonacci either rediscovered them or learnt them from
Arab sources.

The congruent number problem also has an interesting connection to geometry.

Proposition 1.4. n is congruent if and only if n is the area of a right-angled triangle with rational
sides (a, b, c).

Proof. Consider the bijection n 7→ (a, b, c) given by

a =
√
x+ n−

√
x− n, b =

√
x+ n+

√
x− n, c = 2

√
x.

Notice a2 + b2 = c2 and the area is indeed given by ab/2 = ((x+ n)− (x− n))/2 = n. �

This connection to geometry dates back to Diophantus’ Arithmetica in the 3rd century. Right-
angled triangle with rational sides was also stated as the principal object of the theory of rational
right triangles in another Arab manuscript in the 10th century.

Fibonacci conjectured that 1 is not congruent, but he was not able to prove it (actually, he gave
an incorrect proof of it). Later Fermat rediscovered the problem (in the equivalent geometric form)
when reading the appendix of his copy of Arithmetica (written by the French translator Bachet).
He proved the following theorem using his famous method of infinite descent (creating a smaller
solution from a given one which leads to contradiction since there cannot be an infinite sequence of
descending positive integers) — the same method he used to show that xn+yn = zn has no nonzero
integer solutions when n = 4 and which led him to believe that the same statement is true for any
integer n ≥ 3.

Theorem 1.5 (Fermat, around 1640). 1, 2, 3 are not congruent.

Fermat’s proof that 1 is not congruent survived in his copy of Arithmetica. As Weil remarked
([Wei84, p. 77]), “Fortunately, just for once, he had found room for this mystery in the margin of
the very last proposition of Diophantus”.

2. Connection with elliptic curves

As we have seen, it took several hundred years to classify all congruent numbers < 10. It would
be desirable to find a more systematic criterion. This is where elliptic curves comes into the picture.

Proposition 2.1. n is congruent if and only if the equation ny2 = x3 − x has a rational solution
with y 6= 0.

Proof. Let (a, b, c) be the associated Pythagorean triple. Then the association (a, b, c) 7→ (x, y)

given by
x = b/(c− a), y = 2/(c− a),
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is a bijection with inverse

a =
x2 − 1

y
, b =

2x

y
, c =

x2 + 1

y
. �

The equation ny2 = x3 − x under the change of variables y 7→ n2y and x 7→ nx becomes
y2 = x3 − n2x, which is an example of an elliptic curve in the Weierstrass form.

Definition 2.2. An elliptic curve over Q is a smooth plane cubic curve defined by a Weierstrass
equation

y2 = x3 +Ax+B, A,B ∈ Q.
There is a unique elliptic curve Q that becomes isomorphic to E over the quadratic field Q(

√
d)

(but not over Q), given by its d-th quadratic twist E(d) with the Weierstrass equation

E(d) : y2 = x3 +Ad2x+Bd3.

In particular, the simple family {y2 = x3 − n2x} is an example of quadratic twists family of elliptic
curves.

One of the advantage of working with an elliptic curve is that we can exploit its geometry.

Example 2.3. Consider the elliptic curve

E : y2 = x3 − 36x.

The solution corresponding to the Pythagorean triple (3, 4, 5) is the rational point

(x, y) = (6 · 2, 36 · 1) = (12, 36)

on E. The tangent line to this point is y = 11/2 · x − 30, which intersects the elliptic curve at
another rational point

(x, y) = (25/4, 35/8).

One can repeat this tangent line process to obtain another rational point

(x, y) = (1442401/19600, 1726556399/2744000),

and so on. In this way one starts from the point (12, 36) to generate infinitely many rational points
(with more and more complicated coordinates!) Similarly, if one starts with two rational points,
then the secant line through them will also intersect the elliptic curve at a third rational point (this
is a distinct property of cubic equations). In fact this tangent-secant process provides an abelian
group structure on the elliptic curve E and its rational points E(Q). In this example we have

E(Q) ∼= Z⊕ (Z/2Z)2.

Though in general the group of rational points E(Q) can be infinite, the Mordell(–Weil) theorem
asserts that it cannot be too enormous.

Theorem 2.4 (Mordell, 1928). The abelian group E(Q) is finitely generated.

Definition 2.5. The rank of E(Q) (i.e., the number of copies of Z in E(Q)) is known as the algebraic
rank of E, denoted by ralg(E). Notice that E(Q) is finite (resp. infinite) when ralg(E) = 0 (resp.
> 0).

It is a fact (not obvious, but also not hard) that the only rational points of E(n) : y2 = x3 − n2x
of finite order must have y = 0 ([Sil94, Prop. 6.1]). So n is congruent if and only if ralg(E(n)) > 0,
and the congruent number problem reduces to:
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Question 2.6. Determine all n such that ralg(E(n) : y2 = x3 − n2x) > 0.

3. Understanding the rank: the BSD conjecture

The bad news is that we still know very little about ralg, and there is no algorithm that provably
determines ralg for all elliptic curves. Miraculously, the mysterious algebraic rank should be related
to the analytic properties of its L-function L(E, s). Analogous to the Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
=

∏
p

(1− p−s)−1,

one gathers the local information of E at each prime number p and define

L(E, s) :=
∑
n≥1

an
ns

=
∏
p

Lp(E, s).

Here

Lp(E, s) =


(1− ap · p−s + p · p−2s)−1, p good,
(1± p−s)−1, p multiplicative,
1, p additive,

and ap = p + 1 − |E(Fp)|. When evaluating its value at s = 1, the local factor at a good prime p
gives

(1− app−1 + p · p−2)−1 =
p

p+ 1− ap
=

p

|E(Fp)|
.

Notice that each point in E(Q) reduces mod p and gives a point in E(Fp). So intuitively, when
E(Q) has high rank, each local factor tends to be small, thus the larger r = ralg(E) is, the “smaller”
L(E, 1) is. Birch and Swinnerton-Dyer did numerical experiments for the congruent number curves
and suggested the heuristic ∏

p<X

|E(Fp)|
p

∼ cE · (logX)r,

for some positive constant cE depending on E.
The value of L(E, s) at s = 1 does not literally make sense since the infinite product only converges

when <s > 3/2 (due to Hasse’s bound |ap| ≤ 2
√
p). Nevertheless, thanks to the modularity theorem

of Wiles, Taylor, Breuil, Conrad and Diamond, we now know that L(E, s) can be extended to a
holomorphic function on the entire complex plane, so one can indeed make sense of the order of
vanishing of L(E, s) as a measurement of how “small” L(E, 1) is.

Definition 3.1. We define ords=1 L(E, s) to be the analytic rank of E, denoted by ran(E).

The famous Birch and Swinnerton-Dyer (BSD) conjecture asserts that the algebraic rank and the
analytic rank, though defined in seemingly unrelated manners, should be the same:

Conjecture 3.2 (BSD). ralg(E) = ran(E).

By the modularity theorem, we also know that L(E, s) satisfies a functional equation of the type

L(E, s)←→ ε(E) · L(E, 2− s),

where ε(E) ∈ {±1} is the root number of E. More precisely, let

Λ(E, s) := N s/2(2π)−sΓ(s)L(E, s)
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be the complete L-function of E, where N is the conductor of E. Then

Λ(E, s) = ε(E) · Λ(E, 2− s).

In particular, ran(E) is odd if and only if ε(E) = −1. The root number ε(E) are relatively easy to
compute. For example, it is an amusing exercise involving Gauss sums ([Kob93, p. 84]) to find the
following closed formulas for congruent number curves,

ε(E(n) : y2 = x3 − n2x) =

{
−1, n ≡ 5, 6, 7 (mod 8),

+1, n ≡ 1, 2, 3 (mod 8).

The deep BSD conjecture allows us to exploit the tiny bit of knowledge (the sign ε(E(n))) to
make the following very concrete prediction about congruent numbers, which in particular gives a
conceptual explanation as to why 5, 6, and 7 are congruent numbers (Theorem 1.3).

Proposition 3.3. BSD ⇒ any square-free n ≡ 5, 6, 7 (mod 8) is congruent.

4. Goldfeld’s conjecture

The BSD conjecture is still widely open in general. The current best results is the following
theorem.

Theorem 4.1 (Gross–Zagier[GZ86], Kolyvagin [Kol88]). Let E be an elliptic curve over Q. Then

ran(E) = 0⇒ ralg(E) = 0, ran(E) = 1⇒ ralg(E) = 1.

In other words, the BSD conjecture holds whenever ran(E) ≤ 1. We emphasize that even in these
low rank cases, we still do not know how to prove the converse implications

ralg(E) = 0
?
=⇒ ran(E) = 0, ralg(E) = 1

?
=⇒ ran(E) = 1.

So our current knowledge about the BSD conjecture is a bit asymmetric and one may think that
ran is a slightly stronger invariant than ralg for the moment. Motivated by the congruent number
problem, we ask the following natural question:

Question 4.2. Given an elliptic curve E over Q, how does ran(E(d)) vary when d varies?

The celebrated conjecture of Goldfeld asserts that E(d) tends to have the minimal rank (= 0, 1)
compatible with its root number ε(E(d)) ∈ {±1}. It is easy to see that the root number is +1 (resp.
−1) for 50% fundamental discriminant d’s. So in the quadratic twists family {E(d)}, ran should be
0 (resp. 1) for 50% of d’s. Although ran ≥ 2 occurs infinitely often, its occurrence should be sparse
and accounts for only 0% of d’s. Namely,

Conjecture 4.3 (Goldfeld, [Gol79]). In the quadratic twists family {E(d)}, we have

ran(E(d))


= 0, 50% d’s,
= 1, 50% d’s,
≥ 2, 0% d’s.

More precisely, let
Nr(E,X) = {|d| < X : ran(E(d)) = r}.
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Then for r ∈ {0, 1},

Nr(E,X) ∼ 1

2

∑
|d|<X

1, X →∞.

Here d runs over all fundamental discriminants.

Remark 4.4. Heuristics developed by various authors predict that

N≥2(E,X)
?
= X3/4+o(1),

see Park–Poonen–Voight–Wood [PPVW19, §3.3] for a summary. The expected asymptotic for r ≥ 3

is less clear, and there seem to be contradictory predictions in the literature (see [PPVW19, §3.4]).
It is known [ST95, Theorem 3] that

N≥2(E,X)� X1/7/ log2X,

if j(E) 6= 0, 1728. We refer to Silverberg [Sil07] for a nice survey on results for Nr(E,X) when
r ≥ 2.

Goldfeld’s conjecture (GC for short) is still widely open: we do not yet know a single example
E for which GC is valid. One can instead consider the following weaker version (replacing 50% by
any positive proportion):

Conjecture 4.5 (Weak Goldfeld). For r ∈ {0, 1}, Nr(E,X)� X.

Remark 4.6. Katz–Sarnak [KS99] conjectured the analogue of GC for the 2-parameter family
{EA,B : y2 = x3 +Ax+B} of all elliptic curves over Q. The weak version in this case is now known
due to the recent work of Bhargava–Skinner–W. Zhang [BSZ14]. However, their method does not
directly apply to quadratic twists families.

Our knowledge of the weak Goldfeld conjecture (WGC for short) is in better shape. Heath-Brown
([HB04, Thm. 4]) proved the implication

GRH ⇒ WGC.

More precisely, one assumes GRH (Grand Riemann Hypothesis) for the L-functions L(E(d), s) for
this implication. The recent breakthrough of Smith [Smi17] establishes the implication

BSD ⇒ GC for the congruent number curve,

and more generally for elliptic curves with full rational 2-torsion and without rational cyclic subgroup
of order 4. In particular, the result of Smith has the remarkable consequence (compare Theorem
1.5 and Prop. 3.3) that

100% of square-free integers n ≡ 1, 2, 3 (mod 8) are not congruent.

5. Unconditional results on Goldfeld’s conjecture

As GRH and BSD are widely believed to be true, the works mentioned provide strong evidence
towards GC. However, it is still desirable to prove results towards GC without assuming these deep
conjectures. We now describe some recent unconditional results in two directions: to establish
WGC for some special examples of elliptic curves, and to establish good lower bounds for Nr(E,X)

(r ∈ {0, 1}) for more general elliptic curves.
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5.1. Specific E. The curve E = X0(19) is the first known example for which WGC is valid (see
James [Jam98] for r = 0 and Vatsal [Vat98] for r = 1). Later many authors have verified WGC for
infinitely many curves E using various methods (see [Vat99], [BJK09] and [Kri16]). However, all
these examples are a bit special, as they are all covered by our following theorem.

Theorem 5.1 (Kriz–L.[KL19a]). WGC is true for any E with a rational 3-isogeny.

Example 5.2. We also have an explicit lower bound for the proportion. For example, when
E = X0(19), our lower bound is 19/160 = 11.875% of d < 0 for r = 0 and 19/160 = 11.875% of
d > 0 for r = 1 (which is slightly better than the previous ones 19/240 = 7.92%).

Theorem 5.1 gives so far the most general results for WGC (see [KL19a, §1.7] for a comparison
with previous methods). There are two more known examples for which WGC are valid and are
not covered by Theorem 5.1: the congruent number curves {y2 = x3 − d2x} and the sextic twists
family {y2 = x3 + d} of j-invariant 0 curves.

Theorem 5.3 (Tian–Yuan–S. Zhang [TYZ17], Smith [Smi16]). WGC holds for the congruent num-
ber curves family {y2 = x3 − d2x}. In fact, the proportion is at least 41.9% for r = 0 and at least
55.9% for r = 1.

Theorem 5.4 (Kriz–L.[KL19a]). WGC holds for the sextic twists family {y2 = x3 + d}. In fact,
the proportion is at least 1/6 for r = 0 and at least 1/6 for r = 1.

Remark 5.5. In a recent work, Bhargava–Elkies–Shnidman [BES20] prove the analogue of Theo-
rem 5.4 for 3-Selmer ranks 0,1, by determining the exact average size of 3-isogeny Selmer groups.
The same method also works for quadratic twists family of any elliptic curve with a 3-isogeny
([BKLOS19]). We remark that their method however does not have the same implication for ana-
lytic rank r = 0, 1 (or algebraic rank 1), since the p-converse to the theorem of Gross–Zagier and
Kolyvagin is not known for p an additive and Eisenstein prime.

Remark 5.6. Browning [Bro17] has used Theorem 5.4 as a key input to show that a positive
proportion of cubic surfaces of the form f(x, y) = g(w, z) has a Q-point, where f, g are binary cubic
forms.

5.2. General E. When r = 0, the best result towards GC was due to Ono-Skinner [OS98]: they
showed that for any elliptic curve E/Q,

N0(E,X)� X

logX
.

When r = 1, the best general result was due to Perelli-Pomykala [PP97]: they showed in general
that for any ε > 0,

N1(E,X)� X1−ε.

We improve both bounds for a wide class of elliptic curves satisfying some technical assumption on
Heegner points (see §6.3).

Theorem 5.7 (Kriz–L.[KL19a]). Assume that E(Q)[2] = 0. Assume that there exists a Heegner
point yK ∈ E(K) for some imaginary quadratic field K such that

2 splits in K and |Ẽ
ns(F2)|
2 · log2(yK) 6≡ 0 (mod 2).
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Then for r ∈ {0, 1}, we have

Nr(E,X)�


X

log5/6X
, if Gal(Q(E[2])/Q) ∼= S3,

X

log2/3X
, if Gal(Q(E[2])/Q) ∼= Z/3Z.

Remark 5.8. Notice the improvement in r = 0 is on the exponent of logX, and the improvement
in r = 1 is more essential. We remark that in contrast to previous methods, the rank 0 and 1
twists in Theorem 5.7 are all explicitly constructed, in the spirit of Mazur–Rubin’s work [MR10]
on 2-Selmer ranks in quadratic twists families. For these explicit twists, we have also proved the
2-part of the refined Birch and Swinnerton–Dyer formula (see §7).

Remark 5.9. There are also similar but slightly weaker results for certain elliptic curves with
E(Q)[2] = Z/2Z ([KL19b]). For elliptic curves E appearing in Theorem 5.7 and [KL19b], one
obtain as a consequence that Silverman’s conjecture holds for E, namely there exist infinitely many
primes p such that E(±p) has rank 0 (resp. rank > 0).

Remark 5.10. For certain elliptic curves with E(Q)[2] = Z/2Z, the work of Coates–Y. Li–Tian–
Zhai [CLTZ15] also improves the current bounds, using a generalization of the classical method of
Heegner and Birch for prime twists.

6. Congruences between Heegner points

6.1. Congruences between L-values. The starting point of the proof of Theorem 5.7 is the
simple observation that quadratic twisting does not change the mod 2 Galois representations

E[2] ∼= E(d)[2].

More generally, suppose we have two elliptic curves E,E′ such that

E[p] ∼= E′[p],

as Galois representations, or in terms of the associated modular forms, we have a congruence

fE ≡ fE′ (mod p).

One expects that such a congruence induces a certain “congruence” between special L-values

L(E, 1)
?≡ L(E′, 1) (mod p)

Making sense of this congruence is more subtle as both sides are transcendental numbers. So one
needs to replace the L-value L(E, 1) by its suitable algebraic part Lalg(E, 1). Notice that when E
and E′ have root number −1, both sides of the congruence are 0 and thus it is better to consider
“congruence” between the first derivatives

L′(E, 1)
?≡ L′(E′, 1) (mod p).

Again making precise sense of this congruence is a bit subtle. General theory of p-adic L-functions
provides a framework to systematically treat these types of congruences. Let us not go into this
general theory but take a more concrete point view, namely, we will replace L(E, 1) or L′(E, 1) by
its algebraic or p-adic incarnation provided by Heegner points.
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6.2. Algebraic incarnation. Let K = Q(
√
dK) be an imaginary quadratic field. Assume K

satisfies the Heegner hypothesis for E: any prime dividing the conductor N = N(E) of E is split in
K (this forces E/K to have root number −1). The theory of complex multiplication then provides
Heegner points yK ∈ E(K) (defined up to torsion and sign, see [Gro84]). The Gross-Zagier formula
relates L′(E/K, 1) with the Neron-Tate height pairing of the Heegner point yK ,

L′(E/K, 1) = (∗) · 〈yK , yK〉NT,

here (∗) is an explicit nonzero constant depending on E/K. Since the Neron-Tate height pairing

〈, 〉NT : E(K)× E(K)→ R

is non-degenerate modulo the torsion part E(K)tor. We know that

(1) ran(E/K) = 1⇔ yK is of infinite order.

This provides a way to access the analytic rank by studying the Heegner point yK , which we may
think of as an algebraic incarnation of L(E, 1) or L′(E, 1). We refer to W. Zhang [Zha14] for a
recent survey on Heegner points.

6.3. p-adic incarnation. For the purpose of mod p congruences, it would be better to use a p-adic
invariant associated to yK . Recall that we have a formal logarithm

logp : Ê(pZp)→ Zp, (t = −x/y) 7→
∫ t

0
ωE(T ).

given by integrating the invariant differential ωE(T ) on the formal group Ê. Linearly extending
gives a p-adic logarithm,

logp : E(Qp)→ Qp,

whose kernel consists exactly the torsion points in E(Qp). If logp(yK) 6= 0, then yK is of infinite
order in E(Kp), and hence yK is of infinite order in E(K) and by (1) we obtain ran(E/K) = 1.
Finally, using

ran(E/K) = ran(E) + ran(E(dK)),

we arrive at the following implication that

(2) logp(yK) 6= 0⇒ {ran(E), ran(E(dK))} = {0, 1}.

In this way, we are able to access the analytic rank using the p-adic logarithm logp(yK), which we
may think of as the p-adic incarnation of L(E, 1) or L′(E, 1).

6.4. The main congruence formula. Coming back to the situation of two elliptic curves E,E′

with an isomorphism
E[p] ∼= E′[p]

of Galois representations. Let K be an imaginary quadratic field satisfying the Heegner hypothesis
for both E and E′. Then one may expect a mod p congruence

logp(yK)
?≡ logp(y

′
K) (mod p).

This identity of course would not be true without further modification: for example if log2(yK) 6= 0

(mod 2), then applying the identity for E′ = E(d) and p = 2 would imply that ran(E(d)) ∈ {0, 1}
for any d, which is not true (see Remark 4.4). Fortunately, we are able to prove the following main
congruence formula.
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Theorem 6.1 (Kriz–L.[KL19a]). Let E,E′ be two elliptic curves such that

E[pm]ss ∼= E′[pm]ss

as semisimple GQ-representations. Let M be the product of all primes `| gcd(N,N ′) such that
a`(E) ≡ a`(E

′) (mod pm). Assume K satisfies Heegner hypothesis for E,E′ and let yK , y′K be the
associated Heegner points. Assume p splits in K. Then we have a congruence ∏

`|pNN ′,`-M

|Ẽns(F`)|
`

 · logp(yK) ≡ ±

 ∏
`|pNN ′,`-M

|Ẽ′ns(F`)|
`

 · logp(y
′
K) (mod pm).

Remark 6.2. Recall that Ẽns(F`) denotes the number of F`-points of the nonsingular part of the
mod ` reduction of E, which is ` + 1 − a`(E) if ` - N , ` ± 1 if `||N and ` if `2|N . The factors in
the above congruence can be understood as the result of removing the Euler factors of L(E, 1) and
L(E′, 1) at bad primes.

Remark 6.3. The link between the p-adic logarithm of Heegner points and p-adic L-functions
dates back to Rubin [Rub92] in the CM case and was recently established in great generality by
Bertolini–Darmon–Prasanna [BDP13] and Liu–S. Zhang–W. Zhang [LZZ18].

Remark 6.4. The congruence formula in Theorem 6.1 can be viewed as a congruence between the
special values (at the trivial character) of the BDP p-adic L-functions for two congruent modular
forms of weight 2. Recently, under the Heegner hypothesis, Hatley–Lei [HL19] study the varia-
tion of anticyclotomic algebraic µ-invariants and λ-invariants for Selmer groups under congruences,
which can be viewed as an algebraic analogue of Theorem 6.1. If one can extend Theorem 6.1
to more general anticyclotomic characters, then one can hope to use [HL19] and the method of
Greenberg–Vatsal [GV00] to propagate the validity of the anticyclotomic Iwasawa main conjecture
under congruences.

Notice that Theorem 6.1 allows us to propagate the non-vanishing (mod p) of the p-adic logarithm
of Heegner points through congruences, as long as the extra Euler factors are p-adic units. We apply
to the case p = 2 and E′ = E(d) and construct an explicit set of d’s such that the p-adic logarithm
of P (d) ∈ E(d)(K) is nonzero and counting the size of such set of d’s allows us to prove Theorem
5.7. We illustrate this construction by an example.

Example 6.5. Consider the curve 37a1 in Cremona’s table,

E = 37a1 : y2 + y = x3 − x,

It is the rank one optimal curve over Q of smallest conductor (N = 37). Take

K = Q(
√
−7),

the imaginary quadratic field with smallest |dK | satisfying the Heegner hypothesis for E such that
2 is split in K. The Heegner point

yK = (0, 0) ∈ E(K)

generates E(Q) = E(K) ∼= Z. The formal logarithm associated to ωE is

log2(t) = t+ 1/2 · t4 − 2/5 · t5 + 6/7 · t7 − 3/2 · t8 + 2/3 · t9 + · · ·
10



We have |Ẽ(F2)| = 5 and the point 5yK = (1/4,−5/8) reduces to ∞ ∈ Ẽ(F2). Plugging in the
parameter t = −x(5yK)/y(5yK) = 2/5, we know that up to a 2-adic unit,

log2 yK = log2 5yK = 2 + 25 + 26 + 28 + 29 + · · · ∈ 2Z×2 .

Hence
|Ẽ(F2)| · log2 yK

2
∈ Z×2 .

So the assumptions in Theorem 5.7 are satisfied. Consider the set N consisting of square-free
products of the signed primes

−11, 53,−71,−127, 149, 197,−211,−263, 337,−359, 373,−379,−443,−571,−599, 613, · · ·

For any d ∈ N , we have the (rank part of) BSD conjecture is true for E(d) and E(−7d). and{
ran(E(d)) = 1, ran(E(−7d)) = 0, d > 0,

ran(E(d)) = 0, ran(E(−7d)) = 1, d < 0.

Since Gal(Q(E[2])/Q)) ∼= S3, it follows that

Nr(E,X)� X

log5/6X
, r = 0, 1.

6.5. Heegner points at Eisenstein primes. The proof of WGC in Theorems 5.1 and 5.4 also
replies on a congruence formula involving the p-adic logarithm of Heegner points. Now suppose p
is an Eisenstein prime for E (i.e., E[p] is a reducible GQ-representation, or equivalently, E admits
a rational p-isogeny). In this case, we have

the modular form fE ≡ an Eisenstein series (mod p),
and one may expect a congruence

(3) logp(yK)
?≡ a Katz p-adic L-value (mod p)

We prove a precise congruence of this kind in [KL19a]. Next,
• By Gross’ factorization (since the relevant character is a restriction from Q to K), the Katz
p-adic L-value factorizes as a product of two Kubota–Leopoldt p-adic L-values.
• The Kubota–Leopoldt p-adic L-values evaluates to the Bernoulli numbers, which are related
to relative p-class number of degree p − 1 abelian CM number fields by the class number
formula.

The upshot is that the Eisenstein series side of the congruence can be evaluated explicitly, and
we arrive at a congruence formula of the type

(4) logp(yK) ≡ product of two relative p-class numbers (mod p)

(up to certain Euler factors that can be made precise, but we ignore them here).

Remark 6.6. When E/Q has CM by Q(
√
−p) (of class number 1), Rubin [Rub83] proved a mod

p congruence formula between the algebraic part of L(E, 1) and certain Bernoulli numbers. Notice
that E admits a p-isogeny (multiplication by

√
−p), our congruence formula (4) specializes to provide

a mod p congruence between the p-adic logarithm of the Heegner point on E and certain Bernoulli
numbers, which can be viewed as a generalization of Rubin’s formula from the rank 0 case to the
rank 1 case.

11



Remark 6.7. Analogous to Remark 6.4, the congruence formula (3) can be viewed as an congruence
between the BDP p-adic L-function and the anticyclotomic Katz p-adic L-function. One can hope
to use the known cases of the Iwasawa main conjecture for Katz p-adic L-functions to prove new
cases of the anticyclotomic main conjecture for elliptic curves when E[p] is reducible.

When p = 3, the relative p-class numbers becomes the 3-class numbers of two quadratic fields.
Our final ingredient to finish the proof of WGC in Theorems 5.1 and 5.4 is Davenport–Heilbronn’s
theorem ([DH71]) (enhanced by Nakagawa–Horie [NH88] with congruence conditions), which allows
one to find a positive proportion of twists such that both 3-class numbers in question are trivial.

We illustrate this explicit criterion by the example of sextic twists family in Theorem 5.4.

Example 6.8. Let E : y2 = x3 − 432 (isomorphic to x3 + y3 = 1 and j(E) = 0). Let

Ed : y2 = x3 − 432d

be the d-th sextic twist of E. Then Ed admits a 3-isogeny and we have the following explicit criterion
for analytic rank one in terms the 3-class numbers (denoted by h3(−)) of quadratic fields. Suppose
K satisfies the Heegner hypothesis for 3d (all prime factors of 3d are split in K). Assume that
(1) d is a fundamental discriminant.
(2) d ≡ 2, 3, 5, 8 (mod 9).
(3) If d > 0, h3(−3d) = h3(dKd) = 1. If d < 0, h3(d) = h3(−3dKd) = 1.
Then ran(Ed/K) = 1.

Remark 6.9. More generally, the Cohen–Lenstra heuristic for p-class groups of number fields
together with the congruence formula (4) should imply WGC for any elliptic curve with a rational
p-isogeny. Unfortunately, very little is known at the moment for the Cohen–Lenstra heuristic when
p ≥ 5.

6.6. Rubin–Silverberg families and sieves. Let us end our discussion on congruences between
Heegner points with an application to other families of elliptic curves. Since the modular curve
X(N) has genus zero when N = 2, 3, 4, 5, there are infinitely families of elliptic curves with the
same mod N = 2, 3, 4, 5 representation. Rubin and Silverberg [RS01], [RS95], [Sil97] computed
explicit equations Et : y2 = x3 +A(t)x+B(t) for the universal elliptic curves with constant mod N
Galois representation. It is a natural question to understand the rank distribution in these Rubin–
Silverberg families {Et}. Using Theorem 6.1, we can produce explicit analytic rank 0 or 1 curves
Et by only requiring Et satisfying certain desired local properties.

Let us illustrate this idea by an example. Consider

E = 256b1 : y2 = x3 − 2x

of j-invariant 1728. Then the 1-parameter family

Et : y2 = x3 +A(t)x+B(t), A(t) = 2(108t4 − 36t2 − 1), B(t) = 16t(108t4 + 1),

has constant mod 3 representation Et[3] ∼= E[3]. Let P (t) = 108t4 + 36t2 − 1. The

∆(Et) = −29 · P (t)3 = −∆(E) · P (t)3.

We can prove the following theorem:

Theorem 6.10 (Kriz–L.). Suppose t ∈ Z such that for any prime `|P (t), we have
(1) `4 - P (t).

12



(2) 6B(t) ∈ (F×` )2 if and only if ` ≡ 2 (mod 3).
Then ran(Et) ≤ 1.

Question 6.11. Can one count how many |t| < X satisfying the two assumptions of Theorem 6.10?

Such counting would give a lower bound on the number of analytic rank 0 or 1 curves in the family
{Et}. This leads to an interesting and nontrivial question in sieve theory. Brun’s sieve allows one
to obtain an asymptote X

logk X
for the number of |t| < X such that P (t) has a bounded number of

prime factors (where k > 0 is related to the dimension of the sieve). However, adding the condition
(2) for each prime factor `|P (t) seems to be causing difficulty and new ideas are needed.

7. The full BSD conjecture

Besides the rank conjecture ralg(E) = ran(E), Birch and Swinnerton-Dyer further conjectured a
precise formula

(5)
L(r)(E/Q, 1)

r!Ω(E/Q)R(E/Q)
=

∏
p cp(E/Q) · |Ш(E/Q)|

|E(Q)tor|2

for the leading coefficient of the Taylor expansion of L(E/Q, s) at s = 1 (here r = ran(E)) in terms
of various important arithmetic invariants of E. This is known as the full BSD conjecture, or the
refined BSD formula. See [Gro11] for detailed definitions of invariants appearing in the formula.
Here we mention that the Shafarevich–Tate group Ш(E/Q) is defined to be

Ш(E/Q) = ker(H1(Q, E)→
∏
v

H1(Qv, E)),

where v runs over all places of Q. It is conjectured to be always finite, which is proved when r ≤ 1

by Gross–Zagier and Kolyvagin. We remark that there is still no example of an elliptic curve E/Q
with r ≥ 2 for which we can prove the finiteness of Ш(E/Q).

When r ≤ 1, both sides of the BSD formula (5) are known to be positive rational numbers. To
prove that (5) is indeed an equality, it suffices to prove that it is an equality up to a p-adic unit, for
each prime p. This is known as the p-part of the BSD formula (BSD(p) for short).

Much progress for BSD(p) for p odd has been made recently (see [KL19a, Rem. 1.22] for a
summary of results) using deep methods from Iwasawa theory. However, there are real technical
difficulties at present in using Iwasawa theory to prove BSD(p) when p = 2. As an application of
Theorem 6.1, we are able to prove BSD(2) when r ≤ 1 for many quadratic twists of an elliptic curve
in Theorem 5.7. Using different methods based on modular symbols, Zhai [Zha16] and Cai-L.-Zhai
[CLZ20] are also able to prove BSD(2) for many quadratic twists of a wide class of elliptic curves,
and an analogue of Theorem 5.7 when r = 0 for these elliptic curves. Combining BSD(p) for all
p’s allows one prove the full BSD conjecture for infinitely many quadratic twists of a wide class of
elliptic curves, and finally leads to the following theorem (see [Wan14, Theorem 9.3]).

Theorem 7.1. The full BSD conjecture holds for infinitely many elliptic curves over Q without
complex multiplication (and of analytic rank 0).

Remark 7.2. This theorem is due to the work of many people. We refer to Skinner’s Arizona
Winter School 2018 notes [Ski] for a nice survey on the Iwasawa theory of elliptic curves (for p odd).
Here we content ourselves by listing the authors for proving the corresponding BSD(p) (r = 0):

• p odd, good ordinary: Kato, Skinner–Urban,
13



• p odd, good supersingular: Kobayashi, Wan, Sprung,
• p odd, multiplicative: Skinner,
• p odd, additive: Wan,
• p = 2: Kriz–L., Zhai, Cai–L.–Zhai.

Remark 7.3. The analogue of Theorem 7.1 in the CM case was known earlier for r ≤ 1 (see
[KL19a, Rem. 1.24] for the references for p odd and Zhao [Zha97] and Tian [Tia14] for p = 2).
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