
GEOMETRIC AND ARITHMETIC THETA CORRESPONDENCES

CHAO LI

Abstract. Geometric/arithmetic theta correspondences provide correspondences between auto-
morphic forms and cohomology classes/algebraic cycles on Shimura varieties. We give an intro-
duction focusing on the example of unitary groups and highlight recent advances in the arithmetic
theory (also known as the Kudla program) and their applications. These are expanded lecture notes
for the IHES 2022 Summer School on the Langlands Program.

1. Introduction

In the 1990s, Kudla [Kud97b] initiated a far-reaching program relating arithmetic geometry
(special cycles on Shimura varieties) and automorphic forms (derivatives of Eisenstein series and
L-functions). Kudla’s lecture [Kud04] at MSRI 2001 outlined this vast program and included many
inspiring discussions about history, examples and known results to date. He also proposed several
central conjectures in the program:

(1) The modularity of the generating function of special cycles in Chow groups and arithmetic Chow
groups [Kud04, Problem 1, Problem 4];

(2) The arithmetic Siegel–Weil formula, relating arithmetic volumes of the generating function to
derivatives of Eisenstein series [Kud04, Problem 6];

(3) The arithmetic inner product formula, relating heights of arithmetic theta lifts to derivatives of
L-functions [Kud04, (8.3)].

These conjectures were largely settled in the case of quaternionic Shimura curves over Q, cumulating
in the monograph of Kudla–Rapoport–Yang [KRY06]. These conjectures in general for Shimura
varieties of higher dimension were seemingly far from reach at that time, yet recent years have
witnessed exciting advances on all of them. The goal of this article is to explain some of these
recent theorems together with their applications, and mention some of the problems which remain
open, providing an update to [Kud04].

In accordance with the theme of the summer school, we will begin with a recap of classical theory
of the theta correspondence that is relevant to us (see Gan’s article [Gan23] in these proceedings
for more details) and develop it into the trilogy of classical/geometric/arithmetic theta correspon-
dences (see Table 1). For certain reductive dual pairs pG,Hq, these provide correspondences from
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automorphic forms for G to automorphic forms/cohomology classes/algebraic cycles associated to
H respectively, and the last of which is the main focus of the Kudla program. The theory of classical
theta correspondences is an indispensable tool in automorphic forms and has many applications in
the Langlands program. Likewise the theory of geometric/arithmetic theta correspondences is an
indispensable tool in the study of cohomology/algebraic cycles of Shimura varieties and has im-
portant applications e.g., to the Hodge conjecture and Tate conjecture/the Birch–Swinnerton-Dyer
conjecture and Beilinson–Bloch conjecture.

Theta Correspondence Lift Automorphic Forms on G to Applications

Classical Automorphic Forms on H Langlands functionality

Geometric Cohomology classes on ShpHq Hodge conjecture

(Kudla–Millson ’80s) Tate conjecture

Arithmetic Algebraic cycles on ShpHq BSD conjecture

(Kudla’s program ’90s) Beilinson-Bloch conjecture
Table 1. Trilogy of theta correspondences

We will mainly discuss the case when H is a unitary group, for which several technical aspects are
simpler than the orthogonal case and more complete results are available, and refer to the recent
exposition [Li23] for some discussion of the orthogonal case including many classical examples.
Needless to say, the Kudla program has grown into a vast area and many topics are not covered due
to the limit on length and scope. Our discussion of the classical and geometric theta correspondence
given here is only intended to highlight certain aspects directly relevant to the arithmetic version.
We emphasize that a very large number of people have made fundamental contributions to the
theory and we refer to Gan’s article [Gan23] in these proceedings for information, references, and
history. There have also been exciting recent advances on the analogue of the Kudla program over
function fields and we refer to Feng–Harris’s article [FH23, §4] in these proceedings for more details.

2. Classical theta correspondence (recap)

2.1. Weil representation. Let F {F0 be a quadratic extension of number fields. Denote by A “
AF0 be the ring of adeles of F0. Let W be the standard split skew-hermitian space of dimension
2n over F , i.e., W “ F 2n equipped with the skew-hermitian form with matrix wn “

`

0 1n
´1n 0

˘

.
Denote by W “ W bF AF , an skew-hermitian space of rank 2n over AF . Let G “ UpW q, a quasi-
split unitary group. Let P “ MN Ď G be the standard Siegel parabolic subgroup stabilizing the
maximal isotropic subspace Fn ‘ 0n ĎW “ F 2n. Explicitly, under the standard basis we have

M “

#

mpaq “

˜

a 0

0 tā´1

¸

: a P ResF {F0
GLn

+

,

N “

#

npbq “

˜

1n b

0 1n

¸

: b P Hermn

+

.
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Here a ÞÑ ā is the Galois conjugation, and Hermn is the F0-subscheme of ResF {F0
Matn given by

nˆ n hermitian matrices b, i.e., tb̄ “ b.
Let V be an hermitian space of rank m over AF with hermitian form p , q (V is not required to

come from the base change of a hermitian space over F ). Denote by HpAq “ UpVq, an adelic group.
Let η : Aˆ{Fˆ0 Ñ Cˆ be the quadratic character associated to F {F0. Fix χ : AˆF Ñ Cˆ a character
such that χ|Aˆ “ ηm. Such a χ determines a splitting homomorphism

GpAq ˆHpAq Ñ MppVbAF Wq

lifting the natural homomorphism GpAq ˆHpAq Ñ SppV bAF Wq (see [Kud94]). The metaplectic
group MppV bAF Wq has a distinguished representation ωψ “ bωψv depending on an additive
character ψ : A{F0 Ñ Cˆ. Thus a fixed choice of the pair pχ, ψq gives rise to a Weil representation
ω “ ωχ,ψ “ bvωχv ,ψv of GpAq ˆ HpAq. The Weil representation ω has an explicit realization on
S pVnq, the space of Schwartz functions on Vn, known as the Schrödinger model : for ϕ P S pVnq
and x P Vn,

ωpmpaqqϕpxq “ χpdet aq|det a|
m{2
F ϕpx ¨ aq, mpaq PMpAq,

ωpnpbqqϕpxq “ ψptr b px,xqqϕpxq, npbq P NpAq,

ωpwnqϕpxq “ γnV ¨ pϕpxq, wn “
`

0 1n
´1n 0

˘

,

ωphqϕpxq “ ϕph´1 ¨ xq, h P HpAq.

Here px,xq “ ppxi, xjqq1ďi,jďn P HermnpAq is the moment matrix of x, γV is the Weil constant (see
[KR14, (10.3)]), and pϕ is the Fourier transform of ϕ using the self-dual Haar measure on Vn with
respect to ψ ˝ trF {F0

.

2.2. Theta lifting. Let V be an F {F0-hermitian space of dimension m . In this case the adelic
group HpAq for V pAq :“ V bF AF agrees with the A-points of the unitary group H “ UpV q over
F0. We now construct theta functions using the Weil representation ω .

Associated to ϕ P S pV pAqnq, define the (two-variable) theta function

(2.2.0.1) θpg, h, ϕq :“
ÿ

xPV n

ωpg, hqϕpxq “
ÿ

xPV n

ωpgqϕph´1xq, g P GpAq, h P HpAq.

Then θpg, h, ϕq is as a function on GpAq ˆ HpAq is automorphic, in the sense that it is invariant
under GpF0q ˆ HpF0q (such invariance is a consequence of the Poisson summation formula). The
construction of theta function produces the automorphic theta distribution

(2.2.0.2) θ : S pV pAqnq Ñ FunprGsqq b FunprHsq, ϕ ÞÝÑ θp´,´, ϕq,

a GpAq ˆHpAq-equivariant distribution valued in the space of automorphic functions.
Using θpg, h, ϕq as an integral kernel allows one to lift automorphic forms on G to automorphic

forms on H (and vice versa): for an automorphic form φ P A pGpAqq, define the theta lift θϕpφq of
φ to HpAq by the Petersson inner product on rGs :“ GpF0qzGpAq,

θϕpφqphq :“ xθp´, h, ϕq, φyG “

ż

rGs
θpg, h, ϕqφpgqdg
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if it is absolutely convergent. Here dg is the Tamagawa measure on GpAq. If φ is cuspidal, then
this integral is absolutely convergent and defines an automorphic form θϕpφq P A pHpAqq. Let π be
a cuspidal automorphic representation of GpAq, then we obtain an GpAq ˆHpAq-equivariant linear
map

θ : S pV pAqnq b π_ Ñ A pHpAqq, pϕ, φ̄q ÞÝÑ θϕpφq,

and define the global theta lift ΘV pπq Ď A pHpAqq of π to be its image, an HpAq-subrepresentation
of A pHpAqq. The theory of global theta correspondence provides a rather complete description of
ΘV pπq, and we refer to Gan’s article in these proceedings for more details.

2.3. Siegel–Weil formula. Associated to ϕ P S pV pAqnq, consider the theta integral

(2.3.0.3) Ipg, ϕq :“

ż

rHs
θpg, h, ϕq dh,

where dh is the Tamagawa measure on HpAq . Let α be the dimension of a maximal isotropic
subspace of V . The theta integral is absolutely convergent for all ϕ if and only if the pair pV,W q
satisfies Weil’s convergence condition

α “ 0 (i.e., V is anisotropic), or α ą 0 and m´ α ą n.

In this case Ipg, ϕq is an automorphic form on GpAq. It can be viewed as the theta lift of the
identity function on HpAq, and also specializes to the weighted average of theta series within a
genus class for definite hermitian forms (cf. [Li23, Example 2.2.6]). The theta integral produces a
GpAq-equivariant distribution

(2.3.0.4) I : S pV pAqnq Ñ A pGpAqq, ϕ ÞÝÑ Ip´, ϕq.

There is another way of producing automorphic distributions like (2.3.0.4) via Eisenstein series.
For s P C, let

Ips, χq :“ Ind
GpAq
P pAqpχ| ¨ |

s`n{2
F q

be the degenerate principal series representation of GpAq, where Ind
GpAq
P pAq denotes the (unnormalized)

smooth parabolic induction. Associated to ϕ P S pV pAqnq, there is a standard Siegel–Weil section
Φϕpg, sq P Ips, χq defined by

Φϕpg, sq :“ ωpgqϕp0q ¨ | det apgq|s´s0F ,

where
s0 :“

m´ n

2
.

Here we write g “ nmpaqk under the Iwasawa decomposition GpAq “ NpAqMpAqK for K the
standard maximal open compact subgroup of GpAq, and the quantity |det apgq|F :“ |det a|F is
well-defined. We obtain a distribution

Φpsq : S pV pAqnq Ñ Ips, χq, ϕ ÞÝÑ Φϕpg, sq,

and the special value s “ s0 is the unique value such that Φpsq is GpAq-equivariant. Define the
(hermitian) Siegel Eisenstein series

Epg, s, ϕq :“
ÿ

γPP pF0qzGpF0q

Φϕpγg, sq, g P GpAq.
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The Siegel Eisenstein series Epg, s, ϕq converges absolutely when Repsq ą n
2 . It has a meromorphic

continuation1 to s P C and satisfies a functional equation centered at s “ 0 (see Lapid’s article
[Lap22] in these proceedings for the analytic theory of Eisenstein series). If Epg, s, ϕq is homomor-
phic at s “ s0, then its value at s “ s0 produces a GpAq-equivariant distribution

(2.3.0.5) Eps0q : S pV pAqnq Ñ A pGpAqq, ϕ ÞÝÑ Ep´, s0, ϕq.

The Siegel–Weil formula gives a precise identity between the two distributions (2.3.0.4) and (2.3.0.5).

Theorem 2.3.1 (Siegel–Weil formula). Assume that the pair pV,W q satisfies Weil’s convergence
condition. Then Epg, s, ϕq is holomorphic at s0 and

κ ¨ Ipg, ϕq “ Epg, s0, ϕq,

where κ “ 1{2 if m ą n and κ “ 1 otherwise.

This theorem was proved in Weil [Wei65, Theorem 5] (when m ą 2n, in which case Epg, s, ϕq is
also absolutely convergent at s “ s0), Ichino [Ich07, Theorem 1.1] (when n ă m ď 2n) and Yamana
[Yam11, Theorem 2.2] (when m ď n). If the Weil’s convergence condition is not satisfied, one
can still naturally define Ipg, ϕq via regularization and it is a long effort starting with the work of
Kudla–Rallis [KR94] to generalize the Siegel–Weil formula outside the convergence range and for all
reductive dual pairs of classical groups. We refer to Gan–Qiu–Takeda [GQT14] for the most general
Siegel–Weil formula and a nice summary of the literature and history. The Siegel–Weil formula is an
indispensable tool in the arithmetic theory of quadratic forms and hermitian forms (see e.g. [Li23,
§1–2] for classical examples).

2.4. Rallis inner product formula. Piatetski-Shapiro–Rallis [PSR86, PSR87] discovered an in-
tegral representation (the doubling method) of the standard L-function for cuspidal automorphic
representations π of GpAq, via integrating against a Siegel Eisenstein series on a “doubling” group.
Combining with the doubling seesaw and the Siegel–Weil formula, one arrives at the Rallis inner
product formula, which relates the Petersson inner product of theta lifts (from G to H) and a special
value of the standard L-function of π .

Consider the skew-hermitian space W ˝ “ W ‘ p´W q of dimension 4n over F . Define G˝ :“

UpW ˝q, a quasi-split unitary group of rank twice that of UpW q . Associated to the parabolic
subgroup P ˝ Ď G˝ stabilizing the maximal isotropic subspace tpw,´wq : w P W u Ď W ˝, we
have a Weil representation ω˝ of G˝pAq on A pV pAq2nq. There is an isomorphism of GpAq ˆGpAq
representations

δ : ω b pω_ b χq » ω˝|GpAqˆGpAq

such that for any ϕ1, ϕ2 P S pV pAqnq, we have

δpϕ1 b ϕ2qp0q “ xϕ1, ϕ2yω,

1Careful readers may notice that in early works such as [KR88, KR94], the function ϕ is assumed to be K-finite
in order to obtain the meromorphic continuation. This K-finiteness assumption can be dropped thanks to the work
of Lapid [Lap08].
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where x , yω is the inner product on S pV pAqnq. For any ϕ1, ϕ2 P S pV pAqnq, we have a Siegel
Eisenstein series Epg, s, δpϕ1 b ϕ2qq on G˝.

For any φ1, φ2 P π, define the global doubling zeta integral

Zps, φ1, φ2, ϕ1, ϕ2q :“

ż

rGsˆrGs
φ1pg1qφ2pg2q ¨ Eppg1, g2q, s, δpϕ1 b ϕ2qqχ

´1pdet g2qdg1dg2.

It converges absolutely when Repsq " 0 and extends to a meromorphic function on C. When
ϕi “ bvϕi,v and φi “ bvφi,v are factorizable, the global doubling zeta integral factorizes into a
product of local doubling zeta integrals

Zps, φ1, φ2, ϕ1, ϕ2q “
ź

v

Zvps, φ1,v, φ2,v, ϕ1,v, ϕ2,vq,

where

Zvps, φ1,v, φ2,v, ϕ1,v, ϕ2,vq :“

ż

GpF0,vq

xgvφ1,v, φ2,vyπv
¨ Φϕ1,vbϕ2,vppgv, 1q, sq dgv

converges absolutely when Repsq " 0 and extends to a meromorphic function on C. When all the
data are normalized unramified at a finite place v with xφ1,v, φ2,vy “ 1, we have

Zvps, φ1,v, φ2,v, ϕ1,v, ϕ2,vq “
Lps` 1{2, πv ˆ χvq

b2n,vpsq
,

where Lps` 1{2, πv ˆ χvq is the doubling L-factor (see Harris–Kudla–Sweet [HKS96], Lapid–Rallis
[LR05], Yamana [Yam14]) and agrees with standard (base change) L-factor Lps` 1{2,BCpπvq b χq

in this unramified case, and bk,vpsq :“
śk
i“1 Lp2s` i, η

k´i
v q is a product of Hecke L-factors. Define

the normalized local doubling zeta integral

Z6vps, φ1,v, φ2,v, ϕ1,v, ϕ2,vq :“

ˆ

Lps` 1{2, πv ˆ χvq

b2n,vpsq

˙´1

¨ Zvps, φ1,v, φ2,v, ϕ1,v, ϕ2,vq,

then Z6vps, φ1,v, φ2,v, ϕ1,v, ϕ2,vq “ 1 for almost all v.
At s “ s0, the normalized local zeta integral evaluates to

Z6vps0, φ1,v, φ2,v, ϕ1,v, ϕ2,vq “

ż

GpF0,vq

xgvφ1,v, φ2,vyπv
¨ xgvϕ1,v, ϕ2,vyωvdgv,

the integral of the product of matrix coefficients of πv and ωv. Thus it produces a GpF0,vqˆGpF0,vq-
equivariant distribution

Z6vps0q : S pV 2n
v q Ñ πv b pπ_v b χvq, ϕ1,v b ϕ2,v ÞÝÑ Z6vps0,´,´, ϕ1,v, ϕ2,vq.

Taking product produces a GpAq ˆGpAq-equivariant distribution

(2.4.0.1)
ź

v

Z6vps0q : S pV pAq2nq Ñ π b pπ_ b χq.

On the other hand, the Petersson inner product of theta lifts also defines a GpAq ˆ GpAq-
equivariant distribution

(2.4.0.2) xθ, θy : S pV pAq2nq Ñ π b pπ_ b χq, pϕ1, ϕ2q ÞÝÑ xθϕ1p´q, θϕ2p´qyH .

The Rallis inner product gives a precise identity between the two distributions (2.4.0.1) and (2.4.0.2).
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Theorem 2.4.1 (Rallis inner product formula). Assume that the pair pV,W ˝q satisfies Weil’s
convergence condition. Let π be a cuspidal automorphic representation of GpAq. Then for any
φi “ bvφi,v P bvπv » π, ϕi “ bvϕi,v P S pV pAqnq (i “ 1, 2),

κ ¨ xθϕ1pφ1q, θϕ2pφ2qyH “
Lps0 ` 1{2, π ˆ χq

b2nps0q
¨
ź

v

Z6vps0, φ1,v, φ2,v, ϕ1,v, ϕ2,vq.

Here s0 “ pm´ 2nq{2, κ “ 1{2 if m ą 2n and κ “ 1 otherwise, are the constants in the Siegel–Weil
formula (Theorem 2.3.1) for the pair pV,W ˝q.

This theorem was proved in J.-S. Li [Li92]. The formula originates from the work of Rallis [Ral84]
on the case of orthogonal/symplectic dual pairs , hence its name. WhenWeil’s convergence condition
is not satisfied, one can still use the regularized Siegel–Weil formula to derive a regularized version
of the Rallis inner product formula and again we refer to [GQT14] for the most general statements.

2.5. Theta dichotomy in the equal rank case. The Rallis inner product formula plays an
important role in Rallis’s program on the nonvanishing criterion for global theta lifts ([Ral87], cf.
[GQT14, §1.2]). We recall a special case when m “ 2n, i.e., when the two spaces V,W have equal
rank. In this case, κ “ 1 and as m is even we can simply choose the splitting character χ to be
the trivial character. The special point s0 “ 0 in the Siegel–Weil formula for pV,W ˝q corresponds
to the center of the function equation of the Eisenstein series, and the Rallis inner product formula
relates the Petersson inner product of theta lifts and central L-values Lp1{2, πq. By the Rallis inner
product formula, we know that

global theta lifting ΘV pπq ‰ 0 ðñ Lp1{2, πq ‰ 0, and
ś

v Z
6
vp0q ‰ 0 in (2.4.0.1).

The local condition Z6vp0q ‰ 0 turns out to be equivalent to that the local theta lift ΘVvpπvq ‰ 0

(cf. [HKS96, Proposition 3.1]). Moreover, at any nonsplit place v we have the theta dichotomy :
there exists a unique (up to isomorphism) local hermitian space Vv “ Vvpπvq of rank n over Fv
such that Z6vp0q ‰ 0 (cf. [Liu11a, Proposition 2.6]). At a finite nonsplit place v, we further have
the epsilon dichotomy of Harris–Kudla–Sweet [HKS96, Theorem 6.1], as completed by Gan–Ichino
[GI14, Theorem 11.1]), pinning down exactly one of the two local hermitian spaces over Fv:

Z6vp0q ‰ 0 ðñ εpVvq “ ωπvp´1q ¨ εp1{2, πv, ψvq,

where εpVvq “ ηvpp´1qmpm´1q{2 detpVvqq P t˘1u is the local Hasse invariant, εp1{2, πv, ψvq P t˘1u is
the central value of the doubling epsilon factor and ωπv is the central character of πv. We remark
that the dichotomy phenomenon involving local root numbers appeared in many earlier works, such
as the classic works of Tunnell [Tun83] and Waldspurger [Wal85], as well as the works of Prasad
[Pra90] and Harris–Kudla [HK91] in the case of the triple product. We refer to Harris–Kudla–Sweet
[HKS96] for the foundational theory of the theta dichotomy for unitary groups and related history
and references.

For any cuspidal automorphic representation π of GpAq, the theta dichotomy associates to it a
unique collection of local hermitian spaces tVv “ Vvpπvquv such that ΘVvpπvq ‰ 0 for all places v,
or equivalently, a unique hermitian space V “ Vπ of rank n over AF such that ΘVvpπvq ‰ 0 for all
places v, where Vv :“ VbA F0,v. Say that V is coherent if V » V bF AF for some hermitian space
V over F , and incoherent otherwise.
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Define εpVq :“
ś

v εpVvq P t˘1u. Then the Hasse principle implies that V is coherent if and only
if εpVq “ `1. The epsilon dichotomy implies the equality of signs

εpVπq “ εp1{2, πq.

We have two cases:

‚ If εp1{2, πq “ `1, then Vπ is coherent. If Vπ » V bF AF , then

the global theta lift ΘV pπq ‰ 0 ðñ Lp1{2, πq ‰ 0.

Moreover ΘV 1pπq “ 0 for all hermitian spaces V 1 of rank n over F different from V for local
reasons.

‚ If εp1{2, πq “ ´1, then Vπ is incoherent. The global theta lift ΘV pπq “ 0 for all hermitian spaces
V of rank n over F for local reasons.

In the second case there is no global theta lifting associated to the incoherent space V “ Vπ and
Lp1{2, πq “ 0 always, due to the sign of the functional equation. It is natural and interesting to study
the central derivative L1p1{2, πq. The Birch and Swinnerton-Dyer conjecture and its generalization
by Beilinson and Bloch suggests that the condition L1p1{2, πq ‰ 0 should be related to the non-
triviality of algebraic cycles. When the incoherent space V is totally definite, next we will canonically
associate to it a unitary Shimura variety X over F and use the generating function of its special
cycles to define an arithmetic theta lift ΘVpπq Ď CHnpXq. Here CHnpXq is the Chow group of
algebraic cycles of codimension n on X modulo rational equivalence. One of the goals of the Kudla
program on arithmetic theta lifting is to establish an analogous criterion (cf. Theorem 4.5.2)

(2.5.0.1) the arithmetic theta lift ΘVpπq ‰ 0
?
ðñ L1p1{2, πq ‰ 0.

3. Geometric theta correspondence

3.1. Unitary Shimura varieties. From now on we assume that F {F0 is a CM extension of a
totally real number field.

As in §2, V denotes a hermitian space over F of rank m and H “ UpV q. We fix an embedding
σ : F ãÑ C and view F (resp. F0) as a subfield of C (resp. R) . Say V is standard indefinite if V
has signature pm´ 1, 1q at the real place of F0 induced by σ , and signature pm, 0q at all other real
places. When V is standard indefinite, there is a system of unitary Shimura varieties X “ tXKu

indexed by neat open compact subgroup K Ď HpAf q. Each XK is a smooth quasi-projective scheme
of dimension m´ 1 over F Ď C, and is projective when V is anisotropic (e.g., when F0 ‰ Q, by the
signature condition). It has complex uniformization

XKpCq “ HpF0qzrDˆHpAf q{Ks,

where D is the hermitian symmetric domain associated to UpV8q given by the space of negative
complex lines in V bF C. We have isomorphisms

D » tz P Cm´1 : |z| ă 1u »
Upm´ 1, 1q

Upm´ 1q ˆUp1q
.

In particular, XK can be written as a union of arithmetic quotients of complex balls.
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As in §2, V denotes an incoherent hermitian space of rank m over AF . Say V is totally definite if
V has signature pm, 0q at all real places. If V is totally definite, then for any embedding σ : F ãÑ C,
we have a unique standard indefinite hermitian space V , depending on σ, such that Vv has signature
pm´1, 1q at the real place of F0 induced by σ, and Vv » Vv at all other places of F0. By the theory
of conjugation of Shimura varieties, the Shimura variety XK associated to varying V for varying
choices of σ are all conjugate, and thus can be intrinsically defined over F (without being viewed
as a subfield of C). In other words, for any totally definite incoherent hermitian space V over
AF , we obtain a system of unitary Shimura varieties X “ tXKu canonically defined over F (cf.
[Zha19, Gro21]).

From the above discussion the following dichotomy picture emerges:

‚ when studying the geometric invariants of XK (over the algebraically closed field C), a choice of
the embedding σ : F ãÑ C is involved. The coherent space V pAq associated to V should play a
canonical role and special values of analytic quantities ought to appear.

‚ when studying the arithmetic invariants of XK (over the number field F ), no choice of the
embedding σ : F ãÑ C is involved and the incoherent space V should play a canonical role and
special derivatives of analytic quantities ought to appear.

Remark 3.1.1. By the Langlands philosophy, the motivic L-function associated to the étale co-
homology of XK should be factorized into a product of automorphic L-functions for automorphic
representations π of HpAq (see Morel’s article [Mor23] in these proceedings for more details). When
V is standard indefinite, the L-function appearing should be the standard L-function of π. This
suggests the terminology and its relevance for our goal (2.5.0.1). When V has more general signature
combinations, for the corresponding Shimura varieties one expects to see Langlands L-functions as-
sociated to more complicated representations of the dual group of H “ UpV q (cf. [Mor23, Example
3.7 (2)]).

Remark 3.1.2. We remark that XK is a Shimura variety of abelian type (rather than of PEL
or Hodge type). Unlike Shimura varieties of PEL type associated to unitary similitude groups, it
lacks a good moduli description in terms of abelian varieties with additional structures and thus
it is technically more difficult to study. Nevertheless, its étale cohomology and L-function will be
computed in terms of automorphic forms in the forthcoming work of Kisin–Shin–Zhu [KSZ], with the
help of the endoscopic classification for unitary groups due to Mok [Mok15] and Kaletha–Minguez–
Shin–White [KMSW14].

3.2. Special cycles. Assume that V is standard indefinite and let V be the associated totally
definite incoherent space. Let Vf :“ V bF0 Af » V bA Af . For any y P V with py, yq ą 0, i.e.,
with totally positive norm, its orthogonal complement Vy Ď V is a standard indefinite hermitian
space rank m ´ 1 over F . Let Hy :“ UpVyq, a subgroup of H “ UpV q and Xy be the system of
unitary Shimura varieties associated to Hy. We define the special divisor ZpyqK to be the Shimura
subvariety

ZpyqK :“ pXyqKXHypAf q Ñ XK .
9



More generally, for any x P Vf with px, xq P Fą0, there exists y P V and h P HpAf q such that
y “ hx. Define the special divisor ZpxqK to be the Hecke translate of a Shimura subvariety

ZpxqK :“ pXyqhKh´1XHypAf q Ñ XhKh´1
¨h
ÝÑ XK .

For any n ď dimXK and any x “ px1, . . . , xnq P Vnf with px,xq P HermnpF0qą0, define the special
cycle (of codimension n)

(3.2.0.1) ZpxqK “ Zpx1qK X ¨ ¨ ¨ X ZpxnqK Ñ XK ,

here X denotes the fiber product over XK , whose image cycle defines an algebraic cycle of codimen-
sion n on XK . It only depends on the F -span Vx of tx1, . . . , xnu in Vnf and we write ZpVxqK :“

ZpxqK .
More generally, when px,xq P HermnpF0qě0 but is singular, the intersection (3.2.0.1) is improper,

i.e., has the wrong codimension. Let LK be the tautological line bundle on XK , with complex
uniformization

LKpCq “ HpF0qzrLˆHpAf q{Ks,

where L is the tautological line bundle on D Ď PpV bF Cq. The tautological line bundle natu-
rally appears when computing improper intersections: for example if px, xq ą 0, then the excess
intersection formula implies that

ZpxqK ¨ ZpxqK “ ZpxqK ¨ c1pL_Kq P CH2pXKq.

Here c1pL_Kq P CH1pXKq is the first Chern class of the dual line bundle of LK . This motivates us
to define

ZpxqK :“ ZpVxqK ¨ c1pL_Kqn´dimF Vx P CHnpXKq,

which is an element in the Chow group of correct codimension. In particular, when x “ 0 P Vnf , we
have ZpxqK “ c1pL_Kqn P CHnpXKq.

For a K-invariant Schwartz function ϕ P S pVnf qK and T P HermnpF0qě0, define the weighted
special cycle

ZpT, ϕqK “
ÿ

xPKzVn
f

px,xq“T

ϕpxqZpxqK P CHnpXKqC.

3.3. Kudla’s generating function (arithmetic theta function). Define Kudla’s generating
function of special cycles (of codimension n)

(3.3.0.2) Zpτ, ϕqK “
ÿ

TPHermnpF0qě0

ZpT, ϕqK ¨ q
T ,

as a formal generating function valued in CHnpXKqC, where

τ P Hn “ tx` iy : x P HermnpF0,8q, y P HermnpF0,8qą0u

lies in the hermitian half space and qT :“
ś

v|8 e
2πi trTτv . It formally resembles the Fourier expansion

of a holomorphic hermitian modular form on Hn. In fact its modularity is the content of Kudla’s
modularity conjecture (see Conjecture 4.1.1).
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More adelically, define

Zpg, ϕqK :“
ÿ

TPHermnpF0qě0

ZpT, ωf pgf qϕqK ¨ ω8pg8qϕ8pT q, g P GpAq

as a formal sum valued in CHnpXKqC. Here ϕ8 P S pVn8q is the standard Gaussian function
ϕ8pxq :“

ś

v e
´2π trpx,xq and ω8pg8qϕ8pT q makes sense as ω8pg8qϕ8 factors through the moment

map x ÞÑ px,xq. It is the adelization of (3.3.0.2) and agrees with the formal Fourier expansion of

(3.3.0.3) Zpg, ϕqK “
ÿ

xPKzVnf

ωpgqpϕb ϕ8qpxq ¨ ZpxqK ,

where for x P Vnf we interpret ϕ8pxq as ϕ8ppx,xqq if px,xq P HermnpF0qě0 and 0 otherwise.
Moreover Zpg, ϕqK is compatible under pullback by natural projection morphisms when varying
K Ď HpAf q and thus defines a formal sum

Zpg, ϕq :“ pZpg, ϕqKqK

valued in CHnpXqC :“ lim
ÝÑKĎHpAf q

CHnpXKqC.
Notice the analogy between the classical theta function (2.2.0.1) and Kudla’s generating function

(3.3.0.3), except two crucial modifications:

(1) the automorphic forms space A pHpAqq (second variable) is replaced by CHnpXq for the system
of Shimura varieties X associated to H.

(2) the holomorphy of Zpg, ϕq forces us to fix ϕ8 to be the Gaussian function, and ϕ8 lives on the
totally definite incoherent space V rather than the standard indefinite space V (which matches
the dichotomy philosophy as discussed in §3.1).

In this way one should view Kudla’s generating function as an arithmetic theta function.

3.4. Geometric modularity. We can extract geometric invariants of an element Z P CHnpXKq by
taking its Betti cohomology class rZs P H2npXKpCq,Zq of the complex manifold XKpCq. In partic-
ular, we obtain from the arithmetic theta function Zpg, ϕqK a geometric theta function rZpg, ϕqKs
valued in H2npXKpCq,Cq. Its Fourier coefficients encodes the information about the geometric inter-
section numbers of special cycles. The classical theorem of Kudla–Millson shows that this geometric
theta function is indeed modular. In other words, there are many hidden symmetry and relations
between these geometric invariants of special cycles.

More precisely, denote by AmpGpAqq Ă A pGpAqq the adelization of the space of holomorphic
hermitian modular forms on Hn of parallel weight m, that is, the space spanned by automorphic
forms φ on GpAq such that φ8 is in the minimal K-type of a discrete representation of weight
ppm´ kχq{2, pm` kχq{2q of GpF0,8q as defined on [Liu11a, Page 854].

Theorem 3.4.1 (Geometric modularity). The formal generating function rZpg, ϕqKs converges
absolutely and defines an element in AmpGpAqq bH2npXKpCq,Cq.

This theorem is proved in Kudla–Millson [KM90]. In fact [KM90] proves a much more general
theorem, applicable to the generating function of special cohomology classes for locally symmetric

11



spaces associated to any Upp, qq or Opp, qq. The proof replies on the Kudla–Millson Schwartz forms
([KM86, KM87])

ϕKM,v0 P S pV n
v0q b Ωn,npDq,

where v0 is the real place of F0 induced by the fixed embedding σ : F ãÑ C , and Ωa,bpDq is the space
of smooth differential forms on D of type pa, bq. The Schwartz form ϕKM,v0 is Hv0pRq-invariant and
closed at any x P V n

v0 . Define

rϕ8 “ ϕKM,v0 b
â

v|8,v‰v0

ϕv P S pV n
8q b Ωn,npDq,

where ϕv P S pV n
v q is the Gaussian function. Define

(3.4.1.1) rϕV :“ ϕb rϕ8 P S pV pAqnq b Ωn,npDq

and the Kudla–Millson theta function

θKMpg, h, ϕq :“
ÿ

xPV n

ωpgqrϕV ph´1xq, g P GpAq, h P HpAf q,

which gives a closed pn, nq-form on XKpCq at any g P GpAq. By the Poisson summation formula one
can prove that θKMpg, h, ϕq defines a (nonholomorphic) automorphic form valued in closed pn, nq-
forms on XKpCq. [KM90] further proves that it represents the (holomorphic) geometric theta series
rZpg, ϕqKs in H2npXKpCq,Cq (in particular, the nonholomorphic terms in θKMpg, h, ϕq are exact
forms) and obtains the theorem.

Remark 3.4.2. The remarkable discovery that generating function involving intersection numbers
of algebraic cycles are modular originates from the work of Hirzebruch–Zagier [HZ76] on Hilbert
modular surfaces, and is one of the inspirations for Kudla’s work (cf. the introduction of [KM90,
Kud97a]).

3.5. Geometric theta lifting. Analogous to §2.2, using rZpg, ϕqs as an integral kernel allows one
to lift automorphic forms on G to cohomology classes on XpCq. For φ P AmpGpAqq, define the
geometric theta lift or Kudla–Millson lift θKM

ϕ pφq to be the Petersson inner product

θKM
ϕ pφqK :“ xrZpg, ϕqKs, φyG “

ż

rGs
rZpg, ϕqsφpgqdg P H2npXKpCq,Cq.

When varying K Ď HpAf q it defines a class

θKM
ϕ pφq :“ pθKM

ϕ pφqKqK P H2npXpCq,Cq :“ lim
ÝÑ

KĎHpAf q
H2npXKpCq,Cq.

Let π be a cuspidal automorphic representation of GpAq. Assume that π XAmpGpAqq ‰ 0, which
forces that π8 is a holomorphic discrete series of a particular weight (cf. [Liu11a, p.852]). Then we
obtain an GpAf q ˆHpAf q-equivariant linear map

θKM : S pVnf q b π_ Ñ H2npXpCq,Cq, pϕ, φ̄q ÞÝÑ θKM
ϕ pφq.

Define the geometric theta lift ΘKM
V pπq Ď H2npXpCq,Cq of π to be its image (here θKM

ϕ pφq is
understood to be 0 if φ R AmpGpAqq).
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3.6. Geometric Siegel–Weil formula. To relate the geometric theta series to Eisenstein series,
we need to extract numerical invariants from cohomology classes. To that end, assume that V is
anisotropic, thus XK is projective and we have a degree map deg : H2 dimXK pXK ,Cq Ñ C. For any
n ď dimXK “ m´ 1, define the geometric volume

vol : H2npXKpCq,Cq Ñ C, rZs ÞÝÑ degprZs Y rc1pL_KqsdimXK´nq.

In particular when n “ 0 we obtain the geometric volume volprXKsq of the Shimura variety XK .
Define the normalized geometric volume

vol6 : H2npXKpCq,Cq Ñ C, rZs ÞÝÑ
volprZsq

volprXKsq{2
.

The Haar measure on HpAf q such that K has volume pvolprXKsq{2q
´1 can be viewed as an analogue

of the Tamagawa measure on HpAq (cf. [LL21, Footnote 11]), hence the normalization. Then
vol6prZpg, ϕqKsq is independent of the choice of K and can be viewed as a geometric analogue of
the theta integral (2.3.0.3) and produces a GpAf q-equivariant distribution analogous to (2.3.0.4)

(3.6.0.1) vol6 : S pVnf q Ñ A pGpAqq, ϕ ÞÝÑ vol6rZp´, ϕqs.

On the other hand, for any ϕ P S pVnf qK , the Schwartz form rϕV in (3.4.1.1) gives an element
ϕV P S pV pAqnqq b Ωp0,0qpDq such that

rϕV ^ ΩdimX´n “ ϕV ¨ ΩdimX ,

where Ω P Ωp1,1qpDq is the first Cherm form of L_. Evaluation of ϕV at the base point of D gives
a Schwartz function in S pV pAqnq, which we still denote by ϕV by abuse of notation. Hence we
obtain a coherent Siegel Eisenstein series Epg, s, ϕV q on GpAq.

Theorem 3.6.1 (Geometric Siegel–Weil formula). Assume that V is anisotropic. Assume that
n ď dimXK “ m´ 1. Then for any ϕ P S pVnf q, the following identity holds

κ ¨ vol6prZpg, ϕqs “ Epg, s0, ϕ
V q.

Here s0 “ pm´ nq{2, κ “ 1{2 are the constants in the Siegel–Weil formula (Theorem 2.3.1) for the
pair pV,W q.

This is [Kud04, (4.4)] (see also [Kud03, Theorem 4.23]) for orthogonal Shimura varieties. We
refer to [Dun22, §2.2] for an exposition of the proof for the unitary Shimura variety XK . As
a consequence, the geometric volumes of the special cycles ZpT, ϕqK are related to the Fourier
coefficients of the Eisenstein series Epg, s0, ϕ

V q.. The geometric Siegel–Weil formula holds more
generally for non-projective XK under Weil’s convergence condition, although the geometric volume
lacks a cohomological interpretation as above (see [Kud04, Theorem 4.1]).

3.7. Geometric inner product formula. To finish the geometric story, we introduce a geometric
analogue of the Petersson inner product on rHs. Further assume that 2n ď dimXK . Define the
(normalized) geometric inner product

x , yXKpCq : H2npXKpCq,Cq ˆH2npXKpCq,Cq Ñ C, prZ1s, rZ2sq ÞÝÑ vol6prZ1s Y rZ2sq.
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It is again compatible when varying K and thus gives an inner product x , yXpCq on H2npXpCq,Cq.
Combining the geometric Siegel–Weil formula and the Rallis inner product formula we obtain the
following.

Theorem 3.7.1 (Geometric inner product formula). Assume that V is anisotropic. Assume that
2n ď dimXK “ m ´ 1. Let π be a cuspidal automorphic representation of GpAq such that π X
AmpGpAqq ‰ 0. Then for any φi “ bvφi,v P π XAmpGpAqq, ϕi “ bvϕi,v P S pVnf q (i “ 1, 2),

κ ¨ xθKM
ϕ1
pφ1q, θ

KM
ϕ2
pφ2qyXpCq “

Lps0 ` 1{2, π ˆ χq

b2nps0q
¨
ź

v

Z6vps0, φ1,v, φ2,v, ϕ
V
1,v, ϕ

V
2,vq.

Here s0 “ pm ´ 2nq{2, κ “ 1{2 are the constants in the Siegel–Weil formula (Theorem 2.3.1) for
the pair pV,W ˝q.

Example 3.7.2. In the special case 2n “ m´ 1, each θKM
ϕi pφiq is the cohomology class of a middle

dimensional cycle on XpCq and the geometric inner product relates their geometric intersection
number to the near central value Lp1, π ˆ χq at s0 “ 1{2.

Kudla–Millson’s theory of geometric theta correspondence [KM90], as extended by Funke–Millson
to nontrivial coefficients [FM06] and compactifications of non-compactXK (e.g. [FM14]), have many
applications to the cohomology of Shimura varieties and more general locally symmetric spaces. For
example, Bergeron–Millson–Moeglin [BMM16] proved the Hodge conjecture and the Tate conjecture
for the arithmetic ball quotients XK , in codimension ď 1

3 dimXK or ě 2
3 dimXK , and geometric

theta lifting is a key ingredient in the proof to generate many Hodge/Tate classes using special
cycles in these degrees far away from the middle degree. Analogous to the classical theory, the
geometric inner product formula and its variants (e.g. [BF10, Theorem 1.1]) are useful to prove
nonvanishing results on geometric theta lifting.

4. Arithmetic theta correspondence

4.1. Arithmetic modularity conjecture and Arithmetic theta lifting. The modularity of
classical and geometric theta functions motivates Kudla s arithmetic modularity conjecture [Kud04,
Problem 1].

Conjecture 4.1.1 (Arithmetic modularity). The formal generating function Zpg, ϕqK converges
absolutely and defines an element in AmpGpAqq b CHnpXKqC.

The formulation in the unitary case can be found in Liu [Liu11a], who also proved the case n “ 1

and reduce the n ą 1 case to the convergence. Recently Xia [Xia22] proved the desired convergence
when F “ Qp

?
´dq for d “ 1, 2, 3, 7, 11, and thus established Conjecture 4.1.1 in these cases.

Remark 4.1.2. Kudla’s arithmetic modularity conjecture was originally formulated for orthogonal
Shimura varieties over Q ([Kud97a],[Kud04, Problem 1]). In this case, Borcherds [Bor99] proved
the conjecture for the divisor case n “ 1. The special case of Heegner points on modular curves
dates back to the classical work of Gross–Kohnen–Zagier [GKZ87] (see [Li23, Example 6.4.1] for an
explicit example). Zhang [Zha09] proved the modularity for general n assuming the absolute conver-
gence of the series. Bruinier–Westerholt-Raum [BWR15] proved the desired convergence and hence
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established Kudla’s modularity conjecture for orthogonal Shimura varieties over Q. For orthogonal
Shimura varieties over totally real fields, Yuan–Zhang–Zhang [YZZ09] proved the modularity for
n “ 1 (see also Bruinier [Bru12] for a different proof) and reduce the n ą 1 case to the convergence.
More recently, Bruinier–Zemel [BZ22] has extended the modularity to toroidal compactifications
of orthogonal Shimura varieties when n “ 1 (see also Engel–Greer–Tayou [EGT23] for a different
proof). For more general classes of orthogonal and unitary Shimura varieties (indefinite at pos-
sibly multiple archimedean places), the modularity conjecture is proved assuming the conjectural
injectivity of the Abel–Jacobi maps by Kudla [Kud21] and Maeda [Mae21, Mae22].

Assume Conjecture 4.1.1. Analogous to (2.2.0.2), we obtain an arithmetic theta distribution

Z : S pVnf q Ñ A pGpAqq b CHnpXqC, ϕ ÞÝÑ Zp´, ϕq.

It is GpAf q ˆHpAf q-equivariant, where HpAf q acts on CHnpXqC via the Hecke correspondences.
Analogous to §3.5, using Zpg, ϕq as an integral kernel allows one to lift automorphic forms on G to
algebraic cycles on X. For φ P AmpGpAqq, define the arithmetic theta lift Θϕpφq to be the Petersson
inner product

ΘϕpφqK :“ xZpg, ϕqK , φyG “

ż

rGs
Zpg, ϕqφpgqdg P CHnpXKqC.

When varying K Ď HpAf q it defines a class

Θϕpφq :“ pΘϕpφqKqK P CHnpXqC.

Let π be a cuspidal automorphic representation of GpAq and assume that πXAmpGpAqq ‰ 0. Then
we obtain an GpAf q ˆHpAf q-equivariant linear map

Θ : S pVnf q b π_ Ñ CHnpXqC, pϕ, φ̄q ÞÝÑ Θϕpφq,

and define the arithmetic theta lift ΘVpπq Ď CHnpXqC of π to be its image. Again here Θϕpφq is
understood to be 0 if φ R AmpGpAqq. In particular, Θ can be viewed as an element

Θ P HomHpAf qppS pVnf q b π_f qGpAf q,CHnpXqCq.

Notice that pS pVnf q b π_f qGpAf q is nothing but the classical theta lift Θpπf q :“ bv-8ΘVvpπvq of πf ,
thus we may view the arithmetic theta lift as an element of the Θpπf q-isotypic part of CHnpXqC,

Θ P HomHpAf qpΘpπf q,CHnpXqCq.

4.2. Special cycles on integral models. Kudla [Kud04, Problem 4] also proposed the modularity
problem in the arithmetic Chow group yCH

n
pXKq, where arithmetic intersection theory takes place

(see [GS90, BGKK07] and also [Sou92]), of a suitable (compactified) regular integral model XK (of
a variant) of XK . For the purpose of this article, it suffices to know that elements in yCH

n
pXKq can

be represented by pZ “ pZ, pgZ,σqσ:F ãÑCq, where

(1) Z is codimension n cycle on XK .

(2) gZ,σ is a Green current for ZσpCq.
15



The data Z (resp. pgZ,σqσ:F ãÑC) encodes information at finite places (resp. infinite places) for
arithmetic intersection theory.

The problem [Kud04, Problem 4] seeks to define canonically an explicit arithmetic generating
function pZpτ, ϕq valued in yCH

n
pX qC which lifts Zpτ, ϕq under the restriction map

yCH
n
pX q Ñ CHnpXq,

and such that pZpτ, ϕq is modular.
To define the integral model and special cycles on it, it is more convenient to work with a related

unitary Shimura variety with an explicit moduli interpretation after [KR14, BHK`20a, RSZ20].
Define a torus ZQ “ tz P ResF {QGm : NmF {F0

pzq P Gmu. Fix a CM type Φ Ď HompF,Qq of
F . Then associated to rH :“ ZQ ˆ ResF0{QH there is a natural Shimura datum p rH, th

rH
uq of PEL

type ([LZ22a, §11.1]). Assume that KZQ Ď ZQpAf q is the unique maximal open compact subgroup.
Then the associated Shimura variety ShK “ ShK

ZQˆKp
rH, th

rH
uq is of dimension n ´ 1 and has a

canonical model over its reflex field E. Moreover. ShK can be identified as the product of the base
change pXKqE and a 0-dimensional Shimura variety of PEL type ([LL21, Lemma 5.2]).

Assume that K “
ś

v-8Kv Ď HpAf q and Kv Ď HpF0,vq is given by

‚ the stabilizer of a self-dual or almost self-dual lattice Λv Ď Vv if v is inert in F ,

‚ the stabilizer of a self-dual lattice Λv Ď Vv if v is ramified in F ,

‚ a principal congruence subgroup of HvpF0,vq » GLnpF0,vq if v is split in F .

Let Vram (resp. Vasd) be the set of finite places v of F0 such that v is ramified in F (resp. v

is inert in F and Λv is almost self-dual). Further assume that all places of E above Vram Y Vasd

are unramified over F . Then we obtain a global regular integral model XK of ShK over OE after
Rapoport–Smithling–Zhang [RSZ20] (see [LZ22a, §14.1-14.2] for the construction and more precise
technical assumptions) , which is semistable at all places of E above Vram Y Vasd. When KG is the
stabilizer of a global self-dual lattice, the regular integral model XK recovers that in [BHK`20a]
if F0 “ Q. Let ϕ P S pVnf qK be a factorizable Schwartz function such that ϕv “ 1pΛvqn at all v
nonsplit in F . Let T P HermnpF0q be nonsingular. Associated to pT, ϕq we have an arithmetic
special cycle ZpT, ϕqK over XK ([LZ22a, §14.3]).

4.3. Modularity in arithmetic Chow groups. The integral model XK and ZpT, ϕqK are con-
structed as the moduli spaces of certain abelian varieties with additional structures. To describe
them more precisely, in this subsection we consider the special case F0 “ Q (so E “ F is an
imaginary quadratic field), n “ 1 and there is a global self-dual hermitian lattice Λ such that
Λv “ Λ bOF0 OF0,v and ϕv “ 1Λv at all finite places v. In this special case, the special cycles are
indexed by T P HermnpOF0qě0 “ Zě0. Assume that F {F0 is unramified at 2 for simplicity.

Define an integral model XK of ShK over OF as follows. For an OF -scheme S, we consider XKpSq
to be the groupoid of tuples pA0, ι0, λ0, A, ι, λ,FAq, where

(1) A0 (resp. A) is an abelian scheme over S.

(2) ι0 (resp. ι) is an action of OF on A0 (resp. A).

(3) λ0 (resp. λ) is a principal polarization of A0 (resp. A).
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(4) FA Ď LieA is an OF -stable OS-module local direct summand of rank m´ 1.

We require that

(1) OF acts on the OS-module LieA0 via the structure morphism OF ãÑ OS . This is the Kottwitz
condition of signature p1, 0q:

detpT ´ ι0paq|LieA0q “ T ´ a P OSrT s

for a P OF .

(2) FA satisfies the Krämer condition: OF acts on FA via the structure morphism and acts on
the line bundle LieA{FA via the conjugate of the structure morphism. This implies (and in
characteristic 0 is equivalent to) the Kottwitz condition of signature pm´ 1, 1q:

detpT ´ ιpaq|LieAq “ pT ´ aqm´1pT ´ āqq P OSrT s

for a P OF .

(3) The Rosati involution on EndA0 (resp. EndA) induces the conjugation on OF via ι0 (resp. ι).

(4) At every geometric point s of S, there is an isomorphism of hermitian OF,`-modules

HomOF pT`A0,s, T`Asq » HomOF pΛ0,Λq b Z`

for any prime ` different from the residue characteristic of s. Here Λ0 is a fixed self-dual
hermitian lattice of rank 1 over OF . Notice that HomOF pΛ0,Λq has a natural hermitian module
structure given by px, yq :“ y_ ˝ x P EndOF pΛ0q Ď F and similarly for the left-hand-side.

Then the functor S ÞÑ XKpSq is represented by a Deligne–Mumford stack XK regular over SpecOF .
The extra data pA0, ι0, λ0q of a CM elliptic curve allows us to consider a motivic version of the

lattice Λ. For pA0, ι0, λ0, A, ι, λ,FAq P XKpSq, define the module of special homomorphisms to be

ΛpA0, Aq :“ HomOF pA0, Aq,

equipped with a natural hermitian form px, yq P OF is given by

pA0
x
ÝÑ A

λ
ÝÑ A_

y_
ÝÝÑ A_0

λ´1
0
ÝÝÑ A0q P EndOF pA0q “ ι0pOF q » OF .

When T ą 0, define the special divisor ZpT, ϕqK by requiring an additional special homomor-
phism of norm T . More precisely, the functor S ÞÑ tpA0, ι0, λ0, A, ι, λ,FA, xqu, where
(1) pA0, ι0, λ0, A, ι, λ,FAq P XKpSq,

(2) x P ΛpA0, Aq such that px, xq “ T ,

is represented by a Deligne–Mumford stack ZpT, ϕqK , which is finite and unramified over XK . It
extends to a compactified special divisor Z˚pT, ϕqK on the canonical toroidal compactification X ˚K
by taking the Zariski closure. [BHK`20a] further defines a total special divisor ZtotpT, ϕqK by
adding an explicit boundary divisor to Z˚pT, ϕqK ([BHK`20a, (1.1.3)]). Using regularized theta
lifts of harmonic Maass forms, ZtotpT, ϕqK is equipped with an automorphic Green function with
log-log singularities along the boundary (([BHK`20a, §7.2])), hence defines an element in

pZtotpT, ϕqK PyCH
1
pX ˚Kq.
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When T “ 0, define

pZtotp0, ϕqK “ pL_K ` pExc,´ log |discpF q|q PyCH
1
pX ˚Kq

where pL_K is the metrized dual tautological line bundle over X ˚K , Exc is an effective vertical divi-
sor supported above Vram equipped with the constant Green function ´ log |discpF q|. Define the
generating function in arithmetic Chow groups

pZtotpτ, ϕqK :“
ÿ

Tě0

pZtotpT, ϕqK ¨ q
T ,

as a formal generating function valued in yCH
1
pX ˚Kq, where τ P H1 lies in the usual upper half plane.

Theorem 4.3.1 (Modularity in arithmetic Chow groups: the divisor case). The formal generating
function pZtotpτ, ϕqK defines an elliptic modular form valued in yCH

1
pX ˚Kq of weight m, level |discF |

and character ηm.

This is proved in Bruinier–Howard–Kudla–Rapoport–Yang [BHK`20a, Theorem B]. Analogous to
§4.1, Theorem 4.3.1 allows us to construct arithmetic theta lifts valued inyCH

1
pX ˚Kq. As applications,

[BHK`20b, Theorems A,B] prove formulas relating the arithmetic intersection of these arithmetic
theta lifts and small/big CM points to the central derivative of certain convolution L-functions of
two elliptic modular forms, generalizing the Gross–Zagier formula [GZ86].

Remark 4.3.2. One can also use Kudla’s Green function [BHK`20a, (7.4.1)] in place of the auto-
morphic Green function to define an arithmetic divisor pZtotpy, T, ϕqK P yCH

1
pX ˚Kq depending on a

parameter y “ Impτq P Rą0 (here T is also allowed to be ă 0, in which case the divisor is supported
at the archimedean fiber). Then the generating function

ÿ

TPZ

pZtotpy, T, ϕqK ¨ q
T

becomes a nonholomorphic modular form ([BHK`20a, Theorem 7.4.1]. This is a consequence of
Theorem 4.3.1 and the modularity of the difference of the two generating functions due to Ehlen–
Sankaran [ES18].

Remark 4.3.3. The proof of Theorem 4.3.1 uses the arithmetic theory of Borcherds products, which
requires the assumption F0 “ Q. For F0 ‰ Q, a version of Theorem 4.3.1 is proved in Qiu [Qiu22]
by a different method and formulation. A version of Theorem 4.3.1 is proved in Howard–Madapusi
Pera [HMP20] for (open) orthogonal Shimura varieties over Q.

Remark 4.3.4. The generating functions of arithmetic divisors have also found many applications
outside the Kudla program. To name some recent arithmetic applications:

(1) Theorem 4.3.1 is used in Zhang’s proof of the arithmetic fundamental lemma overQp in [Zha21a].
Variants over general totally real fields also play a key role for the arithmetic fundamental lemma
over p-adic fields in Mihatsch–Zhang [MZ21] and the arithmetic transfer conjecture in Z. Zhang
[Zha21b], within the framework of the arithmetic Gan–Gross–Prasad conjectures for unitary
groups. We refer to Zhang’s article in these proceedings for more details.
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(2) The arithmetic modularity in [HMP20] is used in Shankar–Shankar–Tang–Tayou [SSTT22] on
the Picard rank jumps of K3 surfaces over number fields.

(3) The proof of the averaged Colmez conjecture in Andreatta–Goren–Howard–Madapusi Pera
[AGHMP18] relies on relating arithmetic intersection of special divisors on orthogonal Shimura
varities and big CM points to central derivatives of certain L-functions.

Remark 4.3.5. The modularity problem in arithmetic Chow groups [Kud04, Problem 4] remains
open in higher codimension n ą 1. When n ą 1, even when T ą 0 the special cycle ZpT, ϕq in
general has the wrong codimension due to improper intersection in positive characteristics, and the
consideration of derived intersection is necessary to obtain the correct class pZpT, ϕq in arithmetic
Chow groups. It is also subtle to find the correction terms at places of bad reduction and at
boundary (both issues already appear when n “ 1) and to find the correct construction of Green
currents to ensure modularity.

The recent works of Howard–Madapusi [HM22] and Madapusi [Mad22] address some of these
issues when n ą 1. [HM22] defines the special cycles of any codimension on the integral model of
(open) Shimura varieties for orthogonal groups over Q and proves the modularity of their generating
series. [Mad22] uses methods from derived algebraic geometry to define special cycles on the integral
model of more general Hodge type Shimura varieties with good reduction, which recovers those
constructed using more classical methods in [HM22].

4.4. Arithmetic Siegel–Weil formula. If the arithmetic theta function pZpτ, ϕq PyCH
n
pXKq can

be constructed, then we may apply the arithmetic volume

xvol : yCH
n
pXKq Ñ C, pZ ÞÝÑydegp pZ ¨ pc1p pL_KqqdimXK´nq

and try to relate xvolp pZpτ, ϕqq to the special derivatives of Siegel Eisenstein series. However, as
discussed in Remark 4.3.5 the definition of pZpτ, ϕq is rather subtle when n ą 1. Moreover, the
special derivatives are nonholomorphic modular forms, and thus for comparison it is better to
construct nonholomorphic generating function (also including terms indexed by T R HermnpF0qě0,
cf. Remark 4.3.2).

In this subsection we assume that m “ n, so s0 “ 0 and κ “ 1 in the Siegel–Weil formula for
the pair pV,W q. In this special case, the arithmetic volume is simply the arithmetic degree and we
can define the nonsingular terms in the generating function in a more explicit way. Even for T ą 0

terms, the relation to Siegel Eisenstein series is more complicated due to contribution at places of
bad reduction, a phenomenon first discovered by Kudla–Rapoport [KR00] via explicit computation
in the context of Shimura curves uniformized by the Drinfeld p-adic half plane.

For nonzero t1, . . . , tn P F0 and ϕ1, ¨ ¨ ¨ , ϕn P S pVf qK such that ϕv “ 1Λv at all v nonsplit in F ,
we have a natural decomposition (cf. [KR14, (11.2)]),

(4.4.0.1) Zpt1, ϕ1qK X ¨ ¨ ¨ X Zptn, ϕnqqK “
ğ

TPHermnpF0q

ZpT, ϕqK ,

here X denotes taking fiber product over XK , the indexes T have diagonal entries t1, . . . , tn, and
ϕ “ bni“1ϕi. For v - 8 and ν a place of E over v, define the local arithmetic intersection number

(4.4.0.2) IntT,νpϕq :“ χpZpT, ϕqK ,OZpt1,ϕ1qK
bL ¨ ¨ ¨ bL OZptn,ϕnqK q ¨ log qν ,
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where qν denotes the size of the residue field kν of Eν , OZpti,ϕiqK denotes the structure sheaf of
the special divisor pZpti, ϕiqKqOEν , b

L denotes the derived tensor product of coherent sheaves on
pXKqOEν , and χ denotes the Euler–Poincaré characteristic (an alternating sum of lengths of OEν -
modules). Notice that the derived tensor product OZpt1,ϕ1qK

bL ¨ ¨ ¨ bLOZptn,ϕnqK has the structure
of a complex of OZpt1,ϕ1qKX¨¨¨XZptn,φnqK -modules, hence has a natural decomposition by support
according to the decomposition (4.4.0.1). Define

IntT,vpϕq :“
1

rE : F0s
¨
ÿ

ν|v

IntT,νpϕq.

Using the star product of Kudla’s Green functions, we can also define its local arithmetic in-
tersection number IntT,vpy, ϕq at infinite places ([LZ22a, §15.3]), which depends on a parameter
y P HermnpF0,8qą0. Combining all the local arithmetic numbers together, define the global arith-
metic intersection number, or the (normalized) arithmetic degree of the special cycle ZpT, ϕqK

(4.4.0.3) ydegT py, ϕq :“
1

volprShKsq{2

¨

˝

ÿ

v-8
IntT,vpϕq `

ÿ

v|8

IntT,vpy, ϕq

˛

‚.

We form the generating function of arithmetic degrees

ydegpτ, ϕq :“
ÿ

TPHermnpF0q
detT‰0

ydegT py, ϕqq
T .

On the other hand, associated to

ϕV :“ ϕb ϕ8 P S pVnq,

where ϕ8 is the Gaussian function, we obtain a classical incoherent Eisenstein series Epτ, s, ϕVq

([LZ22a, §12.4], this terminology originates from Kudla [Kud97b, §2]). The central value Epτ, 0, ϕVq “

0 by the incoherence. We thus consider its central derivative

Eis1pτ, ϕq :“
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

Epτ, s, ϕVq.

To match the arithmetic degree, we need to modify Eis1pτ, ϕq by central values of coherent
Eisenstein series at places of bad reduction. For v P Vram Y Vasd, let vV be the coherent hermitian
space over AF nearby V at v, namely pvVqw » Vw exactly for all places w ‰ v. For any vertex
lattice Λt,v Ď p

vVqv of type t, the Schwartz function ϕv b1pΛt,vqn bϕ8 P S ppvVqnq gives a classical
coherent Eisenstein series Epτ, s, ϕv b 1pΛt,vqn b ϕ8q. Define the (normalized) central values

vEistpτ, ϕq :“
volpKG,vq

volpKΛt,vq
¨ Epτ, 0, ϕv b 1pΛt,vqn b ϕ8q.

Define the modified central derivative

BEispτ, ϕq :“ Eis1pτ, ϕq ` p´1qn
ÿ

vPVramYVasd

vEispτ, ϕq.
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Here vEispτ, ϕq is an explicitQ-linear combination of vEistpτ, ϕq for certain t’s as defined in [HLSY23].
It has a decomposition into Fourier coefficients

BEispτ, ϕq “
ÿ

TPHermnpF0q

BEisT pτ, ϕq.

Now we can state the arithmetic Siegel–Weil formula, which is an identity between the arithmetic
degrees and the modified central derivative of the incoherent Eisenstein series.

Theorem 4.4.1 (Arithmetic Siegel–Weil formula: nonsingular terms). Assume that F {F0 is split
at all places above 2. Let ϕ P S pVnf qK be a factorizable Schwartz function such that ϕv “ 1pΛvqn at
all v nonsplit in F . Let T P HermnpF0q be nonsingular. Then

ydegT py, ϕqq
T “ p´1qn ¨ BEisT pτ, ϕq.

Further assume that ϕ is nonsingular ([LZ22a, §12.3]) at two places split in F . Then

ydegpτ, ϕq “ p´1qn ¨ BEispτ, ϕq.

In particular, ydegpτ, ϕq is a nonholomorphic hermitian modular form on Hn.

The proof of this theorem boils down to a local arithmetic Siegel–Weil formula computing
IntT,vpϕq at each place v nonsplit in F :

(1) At v | 8, this is the archimedean arithmetic Siegel–Weil formula proved by Liu [Liu11a] and
Garcia–Sankaran [GS19] independently.

(2) At v - 8 inert in F such that Λv is self-dual, this is the content of the Kudla–Rapoport conjecture
([KR14, Conjecture 11.10]), proved by Zhang and the author [LZ22a]. We refer to [Li23, §5] for
an exposition. An analogous theorem is also proved for orthogonal Shimura varieties over Q at
a place of good reduction [LZ22b].

(3) At v - 8 inert in F such that Λv is almost self-dual, this is a variant of the Kudla–Rapoport
conjecture formulated and proved by Zhang and the author [LZ22a].

(4) At v - 8 ramified in F such that Λv is self-dual, this is the Kudla–Rapoport conjecture for
Krämer models formulated by He–Shi–Yang [HSY23] and proved by He–Shi–Yang and the
author [HLSY23].

Remark 4.4.2. The precise formulation of the singular part of the arithmetic Siegel–Weil [Kud04,
Problem 6] remains an open problem. As a special case, the constant term of the arithmetic
Siegel–Weil formula should roughly relate the arithmetic volume of XK to logarithmic derivatives
of Dirichlet L-functions. Such an explicit arithmetic volume formula is proved by Bruinier–Howard
[BH21], though a precise comparison with the constant term of BEispτ, ϕq is yet to be formulated
and established.

Remark 4.4.3. In contrast to the classical and geometric Siegel–Weil formula, in Theorem 4.4.1
the choice of K Ď HpAf q is fixed at all nonsplit places v in order to construct a regular integral
model XK , which prevents us from formulating a full adelic version of the arithmetic Siegel–Weil
formula. Nevertheless, the flexibility at split places (due to the regular integral models with Drinfeld
level structure) allow us to choose ϕ to be nonsingular at split places to kill all singular terms on
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both sides. This extra flexibility is crucial for applications such as the arithmetic inner product
formula, via making use of the multiplicity one result of the doubling method and bypassing the
need for proving the singular part of the arithmetic Siegel–Weil formula.

A related open problem is to formulate and prove an arithmetic Siegel–Weil formula when the
level K is more general at nonsplit places. For minuscule parahoric levels at inert places, such a
formulation can be found in Cho [Cho22].

Remark 4.4.4. Over function fields, the recent work of Feng–Yun–Zhang [FYZ24] proved a higher
Siegel–Weil formula for unitary groups in the unramified setting, which relates nonsingular coeffi-
cients of the r-th derivative of Siegel Eisenstein series and intersection numbers of special cycles on
moduli spaces of Drinfeld shtukas with r legs. The case r “ 0 (resp. r “ 1) can be viewed as an
analogue of the Siegel–Weil formula (resp. the arithmetic Siegel–Weil formula). Over number fields,
however, no analogue of such a higher Siegel–Weil formula is currently known when r ą 1. Feng–
Yun–Zhang [FYZ21] further defined higher theta series over function fields (including all singular
terms), using both classical and derived algebraic geometry, and conjectured their modularity (see
Feng–Harris’s article [FH23, §4] in these proceedings for more details).

4.5. Arithmetic inner product formula. In this subsection we come back to the equal rank
situation consider in §2.5 and assume that m “ 2n, so we can take χ to be the trivial character,
and s0 “ 0, κ “ 1 in the Siegel–Weil formula for the pair pV,W ˝q. Assume εpπq “ ´1 so V “ Vπ
is incoherent. In this case we may use the Beilinson–Bloch height pairing to define an arithmetic
inner product between arithmetic theta lifts.

To this end, assume that V is anisotropic, thus XK is projective. Let CHnpXKq
0 Ď CHnpXKq

be the subgroup of cohomologically trivial cycles. Since dimXK “ 2n ´ 1 we have a (conditional)
symmetric bilinear height pairing

x , yBB : CHnpXKq
0 ˆ CHnpXKq

0 Ñ R,

constructed Beilinson [Bei87] and Bloch [Blo84]. It generalizes the Neron–Tate height pairing when
n “ 1. When n ą 1, the Beilinson–Bloch height pairing is only defined assuming certain conjectures
on algebraic cycles on XK (see [Bei87, Conjectures 2.2.1 and 2.2.3]). This important technical issue
is addressed in [LL21, LL22] so that the left-hand-side of (4.5.2.1) in Theorem 4.5.2 can be defined
unconditionally, but we will intentionally ignore it for the purpose of this article. Then we naturally
obtain an inner product on CHnpXKq

0
C and define the (normalized) arithmetic inner product

x , yXK : CHnpXKq
0
C ˆ CHnpXKq

0
C Ñ C, pZ1, Z2q ÞÝÑ

xZ1, Z2yBB

volprXKsq{2
,

which also gives a well-defined inner product x , yX on CHnpXq0C.

Assumption 4.5.1. We impose the following (mild) local assumptions on F {F0 and π.

(1) F {F0 is split at all 2-adic places and F0 ‰ Q. If v - 8 is ramified in F , then v is unramified
over Q. Assume that F {Q is Galois or contains an imaginary quadratic field (for simplicity).

(2) For v|8, πv is the holomorphic discrete series with Harish-Chandra parameter tm´1
2 , m´3

2 ,

. . . , ´m`3
2 , ´m`1

2 u.
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(3) For v - 8, πv is tempered.

(4) For v - 8 ramified in F , πv is spherical with respect to the stabilizer of O2n
Fv
.

(5) For v - 8 inert in F , πv is unramified or almost unramified ([Liu22]) with respect to the stabilizer
of O2n

Fv
. If πv is almost unramified, then v is unramified over Q.

Under Assumption 4.5.1, the arithmetic theta lift Θϕpφq is in fact cohomologically trivial and thus
ΘVpπq Ď CHnpXq0C (see [LL21, Proposition 6.10]) and we can apply the arithmetic inner product.

Theorem 4.5.2 (Arithmetic inner product formula). Let π be a cuspidal automorphic representa-
tion of GpAq satisfying Assumption 4.5.1. Assume that εpπq “ ´1. Assume that Kudla’s modularity
Conjecture 4.1.1 holds. Then for any φi “ bvφi,v P πXAmpGpAqq, ϕi “ bvϕi,v P S pVnf q (i “ 1, 2),

(4.5.2.1) xΘϕ1pφ1q,Θϕ2pφ2qyX “
L1p1{2, πq

b2np0q
¨
ź

v

Z6vp0, φ1,v, φ2,v, ϕ
V
1,v, ϕ

V
2,vq.

In particular,
L1p1{2, πq ‰ 0 ùñ ΘVpπq ‰ 0,

and the converse also holds if x , yX is nondegenerate.

This is proved by Liu and the author in [LL21, LL22]. The conjectural arithmetic inner product
formula was formulated (in the orthogonal case) by Kudla [Kud97b] using the Gillet–Soulé height
and in more generality by Liu [Liu11a] using the Beilinson–Bloch height. This theorem verifies
(under local assumptions) the conjecture formulated by Liu (who also completely proved the case
n “ 1 in [Liu11b]).

Remark 4.5.3. The formula can further be made explicit by computing the local doubling zeta
integrals. For example, if

‚ π is unramified or almost unramified at all finite places,

‚ φ P π is a holomorphic newform such that pφ, φqπ “ 1,

‚ ϕv is the characteristic function of self-dual or almost self-dual lattices at all finite places v.

Then we have

(4.5.3.1) xΘϕpφq,ΘϕpφqyX “ p´1qn
L1p1{2, πq

b2np0q
CrF0:Qs
n

ź

vPSπ

qn´1
v pqv ` 1q

pq2n´1
v ` 1qpq2n

v ´ 1q
,

where Cn “ 2´2nπn
2 Γp1q¨¨¨Γpnq

Γpn`1q¨¨¨Γp2nq is an archimedean doubling zeta integral computed by Eischen–Liu
[EL20] and Sπ “ tv inert : πv almost unramifiedu.

Notice that the Grand Riemann Hypothesis predicts that L1p1{2, πq ě 0, while Beilinson’s Hodge
index conjecture ([Bei87, Conjecture 5.5]) predicts that p´1qnxΘϕpφq,ΘϕpφqyX ě 0. It is a good
reality check that these two (big) conjectures are compatible with (4.5.3.1).

The arithmetic inner product formula can be viewed as a higher dimensional generalization of
the Gross–Zagier formula [GZ86], and has applications to the Beilinson–Bloch conjecture for higher
dimensional Shimura varieties. Without assuming Kudla’s modularity conjecture, we cannot define
Θϕpφq but we may still obtain unconditional nonvanishing results ([LL21, LL22]) on Chow groups
as predicted by the Beilinson–Bloch conjecture (using a proof by contradiction argument).
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Theorem 4.5.4 (Application to the Beilinson–Bloch conjecture). Let π be a cuspidal automorphic
representation of GpAq satisfying Assumption 4.5.1. Let CHnpXq0mπ the localization of CHnpXq0C at
the maximal ideal mπ of the spherical Hecke algebra of HpAf q (away from all ramification) associated
to π. Then the implication

(4.5.4.1) ords“1{2 Lps, πq “ 1 ùñ rank CHnpXq0mπ ě 1

holds when the level subgroup K Ď HpAf q is sufficiently small.

Remark 4.5.5. Disegni–Liu [DL22] proved a p-adic version of the arithmetic inner product formula,
relating the central derivative of the cyclotomic p-adic L-function Lppπq to the p-adic height pairing
([Nek93]) of arithmetic theta lifts. As an application, they proved implications of the form

central order of vanishing of Lppπq is 1 ùñ Bloch–Kato Selmer group H1
f pF, ρπpnqq has rank ě 1,

where ρπ is the Galois representation associated to π. This verifies part of the p-adic Bloch–Kato
conjecture.

Remark 4.5.6. Xue [Xue19] used the arithmetic inner product formula in the case n “ 1 and
the Gan–Gross–Prasad conjecture for Up2qˆUp2q to prove endoscopic cases of the arithmetic Gan–
Gross–Prasad conjecture for Up2qˆUp3q. In general, one also expects a similar relation between the
arithmetic inner product formula for Upmq and endoscopic cases of arithmetic Gan–Gross–Prasad
conjecture for Upmq ˆUpm` 1q.

Remark 4.5.7. Throughout we have assumed the skew-hermitian spaceW has even dimension 2n.
When the skew-hermitian space W has odd dimension, Liu [Liu21] has defined mixed arithmetic
theta lifting and used it to formulate a conjectural arithmetic inner product formula.

4.6. Summary. We end with a summary of the trilogy of theta correspondences in Table 2.

Theta function Siegel–Weil formula Inner product formula

Classical θpg, h, ϕq Ipg, ϕq
¨
“ Epg, s0, ϕq xθϕpφq, θϕpφqyH

¨
“ Lps0 `

1
2 , πq

(§2.2) (Theorem 2.3.1) (Theorem 2.4.1)

Geometric rZpg, ϕqs vol6rZpg, ϕqs
¨
“ Epg, s0, ϕ

V q xθKM
ϕ pφq, θKM

ϕ pφqyXpCq
¨
“ Lps0 `

1
2 , πq

(§3.4) (Theorem 3.6.1) (Theorem 3.7.1)

Arithmetic Zpg, ϕq ydegpτ, ϕq
¨
“ BEispτ, ϕq xΘϕpφq,ΘϕpφqyX

¨
“ L1p1

2 , πq

(§3.3) (Theorem 4.4.1) (Theorem 4.5.2)
Table 2. Summary
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