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Abstract. Given an elliptic curve E over Q, a celebrated conjecture of Goldfeld asserts that a
positive proportion of its quadratic twists should have analytic rank 0 (resp. 1). We show this
conjecture holds whenever E has a rational 3-isogeny. We also prove the analogous result for the
sextic twists of j-invariant 0 curves (Mordell curves). To prove these results, we establish a general
criterion for the non-triviality of the p-adic logarithm of Heegner points at an Eisenstein prime p,
in terms of the relative p-class numbers of certain number fields and then apply this criterion to
the special case p = 3. As a by-product, we also prove the 3-part of the Birch and Swinnerton-Dyer
conjecture for many elliptic curves of j-invariant 0.

1. Introduction

1.1. Goldfeld’s conjecture. Let E be an elliptic curve over Q. We denote by ran(E) its analytic
rank. By the theorem of Gross–Zagier and Kolyvagin, the rank part of the Birch and Swinnerton-
Dyer conjecture holds whenever ran(E) ∈ {0, 1}. One can ask the following natural question: how
is ran(E) distributed when E varies in families? The simplest (1-parameter) family is given by the
quadratic twists family of a given curve E. For a fundamental discriminant d, we denote by E(d) the
quadratic twist of E by Q(

√
d). The celebrated conjecture of Goldfeld [Gol79] asserts that ran(E(d))

tends to be as low as possible (compatible with the sign of the function equation). Namely in the
quadratic twists family {E(d)}, ran should be 0 (resp. 1) for 50% of d’s. Although ran ≥ 2 occurs
infinitely often, its occurrence should be sparse and accounts for only 0% of d’s. More precisely,

Conjecture 1.1 (Goldfeld). Let

Nr(E,X) = {|d| < X : ran(E(d)) = r}.

Then for r ∈ {0, 1},

Nr(E,X) ∼ 1

2

∑
|d|<X

1, X →∞.

Here d runs over all fundamental discriminants.

Goldfeld’s conjecture is widely open: we do not yet know a single example E for which Conjecture
1.1 is valid. One can instead consider the following weak version (replacing 50% by any positive
proportion):

Conjecture 1.2 (Weak Goldfeld). For r ∈ {0, 1}, Nr(E,X)� X.
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Remark 1.3. Heath-Brown ([HB04, Thm. 4]) proved Conjecture 1.2 conditional on GRH. Recently,
Smith [Smi17] has announced a proof (conditional on BSD) of Conjecture 1.1 for curves with full
rational 2-torsion by vastly generalizing the works of Heath-Brown [HB94] and Kane [Kan13].

Remark 1.4. Katz–Sarnak [KS99] conjectured the analogue of Conjecture 1.1 for the 2-parameter
family {EA,B : y2 = x3 +Ax+B} of all elliptic curves over Q. The weak version in this case is now
known unconditionally due to the recent work of Bhargava–Skinner–W. Zhang [BSZ14]. However,
their method does not directly apply to quadratic twists families.

The curve E = X0(19) is the first known example for which Conjecture 1.2 is valid (see James
[Jam98] for r = 0 and Vatsal [Vat98] for r = 1). Later many authors have verified Conjecture 1.2
for infinitely many curves E (see [Vat99], [BJK09] and [Kri16]) using various methods. However,
all these examples are a bit special, as they are all covered by our first main result:

Theorem 1.5 (Theorem 4.7). The weak Goldfeld Conjecture is true for any E with a rational
3-isogeny.

In fact, in Theorem 4.7 we prove the same result for any abelian variety A/Q of GL2-type with
a rational 3-isogeny.

Remark 1.6. Theorem 1.5 gives so far the most general results for Conjecture 1.2. There is only one
known example for which Conjecture 1.2 is valid and is not covered by Theorem 1.5: the congruent
number curve E : y2 = x3 − x (due to the recent work of Smith [Smi16] and Tian–Yuan–S. Zhang
[TYZ14]).

Remark 1.7. For explicit lower bounds for the proportion in Theorems 1.5, see the more precise
statements in Theorems 4.4, 4.5, Proposition 4.8, and Example 4.10.

For an elliptic curve E of j-invariant 0 (resp. 1728), one can also consider its cubic or sextic (resp.
quartic) twists family. The weak Goldfeld conjecture in these cases asserts that for r ∈ {0, 1}, a
positive proportion of (higher) twists should have analytic rank r. Our second main result verifies
the weak Goldfeld conjecture for the sextic twists family. More precisely, consider the elliptic curve

E = X0(27) : y2 = x3 − 432

of j-invariant 0 (isomorphic to the Fermat cubic X3 + Y 3 = 1). For a 6th-power-free integer d, we
denote by

Ed : y2 = x3 − 432d

the d-th sextic twist of E. These Ed’s are also known as Mordell curves.

Theorem 1.8 (Corollary 5.8). The weak Goldfeld conjecture is true for the sextic twists family
{Ed}. In fact, Ed has analytic rank 0 (resp. 1) for at least 1/6 of fundamental discriminants d.

Remark 1.9. For a wide class of elliptic curves of j-invariant 0, we can also construct many (in
fact � X/ log7/8X) cubic twists of analytic rank 0 (resp. 1). However, these cubic twists do not
have positive density. See the more precise statement in Theorem 6.1 and Example 6.3.

Remark 1.10. In a recent work, Bhargava–Elkies–Shnidman [BES16] prove the analogue of Theo-
rem 1.8 for 3-Selmer ranks 0,1, by determining the exact average size of 3-isogeny Selmer groups (its
boundness was first proved by Fouvry [Fou93]). The same method also works for quadratic twists
family of elliptic curves and GL2-type abelian varieties with a 3-isogeny ([BKLS17], [Shn17]). We
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remark that their method however does not have the same implication for analytic rank r = 0, 1 (or
algebraic rank 1), since the p-converse to the theorem of Gross–Zagier and Kolyvagin is not known
for p an additive and Eisenstein prime.

Remark 1.11. Recently, Browning [Bro17] has used Theorem 1.8 as key input in his argument to
show that a positive proportion (when ordered by height) of smooth projective cubic surfaces of the
form f(x0, x1) = g(x2, x3), where f, g are binary cubic forms over Q, have a Q-rational point.

1.2. Heegner points at Eisenstein primes. The above results on weak Goldfeld conjecture are
applications of a more general p-adic criterion for non-triviality of Heegner points on E (applied
to p = 3). To be more precise, let E/Q be an elliptic curve of conductor N . Let K = Q(

√
dK)

denote an imaginary quadratic field of fundamental discriminant dK . We assume that K satisfies
the Heegner hypothesis for N :

each prime factor ` of N is split in K.

For simplicity, we also assume that dK 6= −3,−4 so that O×K = {±1}, and that dK is odd (i.e.
dK ≡ 1 (mod 4)). We denote by P ∈ E(K) the corresponding Heegner point, defined up to sign
and torsion with respect to a fixed modular parametrization πE : X0(N)→ E (see [Gro84]). Let

f(q) =

∞∑
n=1

an(E)qn ∈ Snew
2 (Γ0(N))

be the normalized newform associated to E. Let ωE ∈ Ω1
E/Q := H0(E/Q,Ω1) such that

π∗E(ωE) = f(q) · dq/q.

We denote by logωE the formal logarithm associated to ωE . Notice ωE may differ from the Néron
differential by a scalar when E is not the optimal curve in its isogeny class.

For a finite order Galois character ψ : GQ := Gal(Q/Q)→ Q×, we abuse notation and denote by
ψ : (Z/fZ)× → C× the corresponding Dirichlet character, where f is its conductor. The generalized
(first) Bernoulli number is defined to be

(1) B1,ψ :=
1

f

f∑
m=1

ψ(m)m.

Let εK be the quadratic character associated to K. We consider the even Dirichlet character

ψ0 :=

{
ψ, if ψ is even,
ψεK , if ψ is odd.

Now suppose p is an Eisenstein prime for E (i.e., E[p] is a reducible GQ-representation, or
equivalently, E admits a rational p-isogeny), we prove the following criterion for the non-triviality
of the p-adic logarithm of Heegner points, in terms of the p-indivisibility of Bernoulli numbers.

Theorem 1.12 (Theorem 2.1). Let E/Q be an elliptic curve of conductor N . Suppose p is an odd
prime such that E[p] is a reducible GQ-representation. Write E[p]ss ∼= Fp(ψ)⊕ Fp(ψ−1ω), for some
character ψ : GQ → Aut(Fp) ∼= µp−1 and the mod p cyclotomic character ω. Assume that

(1) ψ(p) 6= 1 and (ψ−1ω)(p) 6= 1.
(2) E has no primes of split multiplicative reduction.
(3) If ` 6= p is an additive prime for E, then ψ(`) 6= 1 and (ψ−1ω)(`) 6= 1.
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Let K be an imaginary quadratic field satisfying the Heegner hypothesis for N . Let P ∈ E(K) be
the associated Heegner point. Assume p splits in K. Assume

B1,ψ−1
0 εK

·B1,ψ0ω−1 6= 0 (mod p).

Then
|Ẽns(Fp)|

p
· logωE P 6= 0 (mod p).

In particular, P ∈ E(K) is of infinite order and E/K has analytic and algebraic rank 1.

In fact, this is a specialization of the most general form of our main result given in Theorem 2.1,
which addresses abelian varieties of GL2-type over Q.

Remark 1.13. When E/Q has CM by Q(
√
−p) (of class number 1), Rubin [Rub83] proved a mod

p congruence formula between the algebraic part of L(E, 1) and certain Bernoulli numbers. Notice
that E admits a p-isogeny (multiplication by

√
−p), Theorem 1.12 specializes to provide a mod p

congruence between the p-adic logarithm of the Heegner point on E and certain Bernoulli numbers,
which can be viewed as a generalization of Rubin’s formula from the rank 0 case to the rank 1 case.

Notice that the two odd Dirichlet characters ψ−10 εK and ψ0ω
−1 cut out two abelian CM fields (of

degree dividing p−1). When the relative p-class numbers of these two CM fields are trivial, it follows
from the relative class number formula that the two Bernoulli numbers in Theorem 1.12 are nonzero
mod p (see §3), hence we conclude ran(E/K) = 1. When p = 3, the relative p-class numbers
becomes the 3-class numbers of two quadratic fields. Our final ingredient to finish the proof of
Theorems 1.5 and 1.12 is Davenport–Heilbronn’s theorem ([DH71]) (enhanced by Nakagawa–Horie
[NH88] with congruence conditions), which allows one to find a positive proportion of twists such
that both 3-class numbers in question are trivial.

1.3. A by-product: the 3-part of the BSD conjecture. The Birch and Swinnerton-Dyer
conjecture predicts the precise formula

(2)
L(r)(E/Q, 1)

r!Ω(E/Q)R(E/Q)
=

∏
p cp(E/Q) · |Ш(E/Q)|

|E(Q)tor|2

for the leading coefficient of the Taylor expansion of L(E/Q, s) at s = 1 (here r = ran(E)) in terms
of various important arithmetic invariants of E (see [Gro11] for detailed definitions). When r ≤ 1,
both sides of the BSD formula (2) are known to be positive rational numbers. To prove that (2) is
indeed an equality, it suffices to prove that it is an equality up to a p-adic unit, for each prime p.
This is known as the p-part of the BSD formula (BSD(p) for short). Much progress has been made
recently, but only in the case p is semi-stable and non-Eisenstein. We establish the following new
results on BSD(3) for many sextic twists Ed : y2 = x3 − 432d, in the case p = 3 is additive and
Eisenstein.

Theorem 1.14 (Theorem 5.10). Suppose K is an imaginary quadratic field satisfies the Heegner
hypothesis for 3d. Assume that

(1) d is a fundamental discriminant.
(2) d ≡ 2, 3, 5, 8 (mod 9).
(3) If d > 0, h3(−3d) = h3(dKd) = 1. If d < 0, h3(d) = h3(−3dKd) = 1.
(4) The Manin constant of Ed is coprime to 3.
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Then ran(Ed/K) = 1 and BSD(3) holds for Ed/K. (Here h3(D) denotes the 3-class number of
Q(
√
D).)

Remark 1.15. Since the curve Ed has complex multiplication by Q(
√
−3), we already know that

BSD(p) holds for Ed/Q if p 6= 2, 3 (when r = 0) and if p 6= 2, 3 is a prime of good reduction or
potentially good ordinary reduction (when r = 1) thanks to the works [Rub91], [PR87], [Kob13],
[PR04], [LLT16]. When r = 0, we also know BSD(3) for some quadratic twists of the two curves
X0(27) and X0(36) of j-invariant 0, using explicit weight 3/2 modular forms ([Nek90], [Ono98],
[Jam99]).

1.4. Comparison with previous methods establishing the weak Goldfeld conjecture.

(1) The work of James [Jam98] on weak Goldfeld for r = 0 uses Waldspurger’s formula relating
coefficients of weight 3/2 modular forms and quadratic twists L-values (see also Nekovář [Nek90],
Ono–Skinner [OS98]). Our proof does not use any half-integral weight modular forms.

(2) When N is a prime different from p, Mazur in his seminal paper [Maz79] proved a congruence
formula at an Eisenstein prime above p, between the algebraic part of L(J0(N), χ, 1) and a
quantity involving generalized Bernoulli numbers attached to χ, for certain odd Dirichlet char-
acters χ. This was later generalized by Vatsal [Vat99] for more general N and used to prove
weak Goldfeld for r = 0 for infinitely many elliptic curves.

(3) When N is a prime different from p, Mazur [Maz79] also constructed a point of infinite order
on the Eisenstein quotient of J0(N), when certain quadratic class number is not divisible by
p. This was later generalized by Gross [Gro84, II] to more general N , and became the starting
point of the work of Vatsal [Vat98] and Byeon–Jeon–Kim [BJK09] on weak Goldfeld for r = 1.

(4) Our main congruence at Eisenstein primes (see §2.9) through which Theorem 1.12 is established
can be viewed as a vast generalization of Mazur’s congruence from J0(N) to any elliptic curve
with a p-isogeny and to both rank 0 and rank 1 case. To achieve this, instead of working with
L-functions directly, we use the p-adic logarithm of Heegner points as the p-adic incarnation of
L-values (or L-derivatives).

(5) The recent work [Kri16] also uses p-adic logarithm of Heegner points. As we have pointed out,
the crucial difference is that our proof uses a direct method of p-adic integration, and does not
rely on the deep p-adic Gross–Zagier formula of [BDP13]. This is the key observation to remove
all technical hypothesis appeared in previous works, which in particular makes the application
to the sextic twists family possible.

(6) Although the methods are completely different, the final appearance of Davenport–Heilbronn
type theorem is a common feature in all previous works ([Jam98], [Vat98], [Vat99], [BJK09],
[Kri16]), and also ours.

1.5. Strategy of the proof. The proof of Theorem 1.12 (and the more general version Theorem
2.1) relies on the main congruence identity (§2.9) between the p-adic logarithm of Heegner points
and a product of two Bernoulli numbers.

The starting point is that the prime p being Eisenstein produces a congruence between the
modular form f and a weight 2 Eisenstein series g, away from the bad primes. We then apply certain
Hecke operators (which we call stabilization operators) in order to produce a modified Eisenstein
series g(N) whose entire q-expansion g(N)(q) is congruent to f(q). Applying another p-stabilization
operator and the Atkin-Serre derivatives θj , we obtain a p-adically continuously varying system
of congruences θjf (p)(q) ≡ θjg(pN)(q) (mod p). By the q-expansion principle and our assumption
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that p splits in K, we can sum this congruence over CM points to obtain a congruence between a
normalized CM period sum and a p-adic Katz L-value times certain Euler factors at bad primes.

Taking j → −1 (p-adically), the CM period sums converge to the p-adic logarithm of the Heegner
point times an Euler factor at p, by Coleman’s integration. The Katz L-values converge to a product
of two Bernoulli numbers, by Gross’s factorization. We finally arrive at the main congruence identity.

1.6. Structure of the paper. In §2, we establish the non-triviality criterion for Heegner points
at Eisenstein primes, in terms of p-indivisibility of Bernoulli numbers (Theorem 1.12). In §3, we
explain the relation between the Bernoulli numbers and relative class numbers. In §4, we combine
our criterion and the Nakagawa–Horie theorem to prove the weak Goldfeld conjecture for abelian
varieties of GL2-type with a 3-isogeny (Theorem 4.7). In §5, we give applications to the sextic
twists family (Theorems 1.8 and 1.14). Finally, in §6, we give an application to cubic twists families
(Theorem 6.1).

1.7. Acknowledgments. We are grateful to M. Bhargava, D. Goldfeld, B. Gross, B. Mazur, K.
Prasanna, P. Sarnak, A. Shnidman, C. Skinner, E. Urban, X. Wan, A. Wiles and S. Zhang for
helpful conversations or comments. The examples in this article are computed using Sage ([Sag16]).

2. Heegner points at Eisenstein primes

In this section, we carry out the p-adic integration which makes up the heart of Theorem 1.12. In
the course of our argument, we recall certain Hecke operators from [KL16, Section 2] which we refer
to as “stabilization operators”. These operators will be used to modify q-expansions at bad primes
to translate an isomorphism of mod p Galois representations to a system of congruences of p-adic
modular forms. We begin by recalling some notation which will be used throughout this section.

2.1. Notations and conventions. Fix an algebraic closure Q of Q, and view all number fields L
as embedded L ⊂ Q. Let hL denote the class number of L, and let Z denote the integral closure
of Z in Q. Fix an algebraic closure Qp of Qp (which amounts to fixing a prime of Q above p). Let
Cp be the p-adic completion of Qp, and let Lp denote the p-adic completion of L ⊂ Cp. For any
integers a, b, let (a, b) denote their (positive) greatest common divisor. Given ideals a, b ⊂ OL, let
(a, b) denote their greatest common divisor.

All Dirichlet (i.e. finite order) characters ψ : A×Q → Q× will be primitive, and we denote the
conductor by f(ψ), which as an ideal in Z identified with its unique positive generator. We may
equivalently view ψ as a character ψ : (Z/f(ψ))× → Q× via

ψ(x mod f(ψ)) =
∏
`-f(ψ)

ψ`(x) =
∏
`|f(ψ)

ψ−1` (x)

where ψ` : Q×` → Q× is the local character at `. Following convention, we extend ψ to Z/f(ψ)→ Q,
defining ψ(a) = 0 if (a, f(ψ)) 6= 1. Given Dirichlet character ψ1 and ψ2, we let ψ1ψ2 denote the
unique primitive Dirichlet character such that ψ1ψ2(a) = ψ1(a)ψ2(a) for all a ∈ Z with (a, f(ψ)) = 1.
Given a prime p, let f(ψ)p denotes the p-primary part of f(ψ) and let f(ψ)(p) denote the prime-to-p
part of f(ψ).

We define the Gauss sum g(ψ) of ψ and local Gauss sums g`(ψ) as in [Kri16, Section 1]. We
will often identify a Dirichlet character ψ : A×Q → Q× with its associated Galois character ψ :

Gal(Q/Q) → Q× via the (inverse of the) Artin reciprocity map Gal(Q/Q) → Gal(Q/Q)ab ∼−→ Ẑ×,
using the arithmetic normalization (i.e. the normalization where Frob`, the Frobenius conjugacy
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class at `, gets sent to the idéle which is ` at the place of Z corresponding to ` and 1 at all other
places). Throughout, for a given p, let ω : Gal(Q/Q)→ µp−1 denote the mod p cyclotomic character.
Let NQ : A×Q → C× denote the norm character, normalized to have infinity type −1. For a number
field K, let NmK/Q : A×K → A×Q denote the idèlic norm, and let NK := NQ ◦ NmK/Q : A×K → C×.
Suppose we are given an imaginary quadratic field K with fundamental discriminant dK . Let
εK : (Z/dK)× → µ2 be the quadratic character associated with K. For any Dirichlet character ψ
over Q, let

ψ0 :=

{
ψ, if ψ even,
ψεK , if ψ odd.

Throughout, let E/Q be an elliptic curve of conductor N = NsplitNnonsplitNadd, where Nsplit is
only divisible by primes of split multiplicative reduction, Nnonsplit is only divisible by primes of
nonsplit multiplicative reduction, and Nadd is only divisible by primes of additive reduction.

Finally, for any number field L, let hL denote its class number. For any non-square integer D,
we denote by h3(D) := |Cl(Q(

√
D))[3]| the 3-class number of the quadratic field Q(

√
D).

2.2. Main theorem. We will show, by direct p-adic integration, the following generalization of
Theorem 13 of loc. cit.1Our generalization, in particular, does not require p - N .

The most general form of our result will address GL2-type abelian varieties attached to normalized
newforms of weight 2. Let f ∈ S2(Γ0(N)) be a normalized newform, with associated q-expansion
at ∞ given by

∑∞
n=1 anq

n. Suppose λ is the prime above p in the ring of integers of the number
field Ef generated by the Hecke eigenvalues of f which is fixed by our above choice of embeddings
Ef ⊂ Q ↪→ Qp. Henceforth, let Fλ denote the residue field of Ef at λ. Let ρf be the semisimple
λ-adic GQ-representation associated with f , and let ρ̄f denote its mod λ reduction. We let Af
denote the GL2-type abelian variety associated with f by Eichler-Shimura theory (defined uniquely
up to isogeny over Q). In the rest of the article, when we say A is an abelian variety of GL2-type,
we always mean A is chosen in its isogeny class so that A admits an action by the ring of integers
of Ef . Let πf : J0(N) → A be a modular parametrization. Let ωf := f(q)dqq ∈ Ω1

X0(N)/Q, and let
ωA ∈ Ω1

A/Q be such that π∗fωA = ωf .
Henceforth, write N = N+N−N0, where

(1) `|N+ =⇒ a` ≡ ψ(`) (mod λ),
(2) `|N− =⇒ a` ≡ ψ−1(`)` (mod λ),
(3) `|N0 =⇒ a` ≡ 0 (mod λ).

When ρ̄f is reducible, such a decomposition always exists, by Theorem 34 of loc. cit. When f

is attached to an elliptic curve E/Q, for example, we can take N+ = Nsplit, N− = Nnonsplit and
N0 = Nadd, where

(1) `|Nsplit =⇒ E has split multiplicative reduction at `,
(2) `|N− =⇒ E has nonsplit multiplicative bad reduction at `,
(3) `|N0 =⇒ E has additive bad reduction at `.

Theorem 2.1. Let A/Q be an abelian variety of GL2-type (satisfying our assumptions above).
Assume that A[λ] is reducible, or equivalently, A[λ]ss ∼= Fλ(ψ) ⊕ Fλ(ψ−1ω), for some character

1Here our generalization also corrects a self-contained typo in the statement of Theorem 13 in loc. cit., where part
of condition (3) was mistranscribed from Theorem 7 in loc. cit.: “` 6≡ −1 mod p” should be “` 6≡ ψ(`) mod p”.
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ψ : Gal(Q/Q) → F×λ . Let K be an imaginary quadratic field satisfying the Heegner hypothesis for
N . Suppose p splits in K. Suppose further that either the following conditions hold
(1) ψ(p) 6= 1 and (ψ−1ω)(p) 6= 1,
(2) N+ = 1,
(3) 8 - f(ψ0) if p = 2, and p2 - f(ψ0) if p > 2,
(4) ` 6= p, `|N0 implies either ψ(`) 6= 1 and ` 6≡ ψ(`) (mod λ), or ψ(`) = 0,
(5) p - B1,ψ−1

0 εK
·B1,ψ0ω−1,

or the following conditions hold
(1) ψ = 1,
(2) p|N ,
(3) `|N, ` 6= p implies `||N, ` ≡ −1 (mod p), ` 6≡ 1 (mod p)

(4) ordλ

(
p−1
2p logp α

)
= 0,

where α ∈ O×K and (α) = phK , α is its complex conjugate, and logp is the Iwasawa p-adic logarithm.
Let P ∈ A(K) be the associated Heegner point. Then

1 + p− ap
p

· logωA P 6= 0 (mod pOKp).

In particular, P ∈ A(K) is of infinite order and A/K has analytic and algebraic rank dimA.

Remark 2.2. Suppose that ψ 6= 1, and A = E is an elliptic curve (so that λ = p). Then one
can show that condition (3) for the case ψ 6= 1 in the statement of Theorem 2.1, by the following
argument.

If p = 2, then ψ0 = 1 and f(ψ0) = 1. If p = 3, then ψ0 : Gal(Q/Q) → µ2 is quadratic, and so
9 - f(ψ0) (since f(ψ0) is squarefree outside of 2). If p ≥ 5, then since E[p]ss ∼= Fp(ψ)⊕Fp(ψ−1ω), then
f(ψ) ·f(ψ−1ω)|N . Since p splits in K, f(εK)p = 1, and so f(ψ0)p = f(ψ)p. Since f(ω) = p, we have
f(ψ−1ω)p = f(ψ−1)p = f(ψ)p, and hence f(ψ)2p|N . Now assume for the sake of contradiction that
p2|f(ψ0). Then since p2|f(ψ0)p = f(ψ)p, we have p4|f(ψ)2p|N . However since N is the conductor of
E/Q and p ≥ 5, we have ordp(N) ≤ 2, a contradiction.

Remark 2.3. When p = 2 and A = E is an elliptic curve, we must have ψ = 1 (since ψ :

Gal(Q/Q)→ µp−1 = {1}). Note also that by (3) of the second part of Theorem 2.1, in this case N
must be a power of 2.

Remark 2.4. Suppose p = 3, and that the GL2-type abelian variety A/Q has a 3-isogeny defined
over Q (i.e., Fλ ∼= F3). Then ψ is necessarily quadratic as is ψ0, and so 9 - f(ψ0), and condition (3)
in the case ψ 6= 1 of the statement of Theorem 2.1 is satisfied.

Remark 2.5. Note that when p = 3 and ψ is quadratic, condition (3) in case ψ 6= 1 of the statement
of Theorem 2.1 is equivalent to

• `|Nadd, ` ≡ 1 (mod 3) implies that ψ(`) = −1, and
• ` 6= 3, `|Nadd, ` ≡ 2 (mod 3) implies that ψ(`) = 0.

2.3. Stabilization operators. Here, we recall the definition of “stabilization operators”, as in
[KL16, §2.3]. We will use Katz’s notion of p-adic modular forms as rules on the moduli space of
isomorphism classes of ordinary test triples (see [KL16, Definition 2.1 and 2.2]). Let M̃p-adic

k (Γ0(N))

denote the space of weak p-adic modular forms of level N and Mp-adic
k (Γ0(N)) the space of p-adic

modular forms of level N , respectively. (See the paragraph after Definition 3.2 in loc. cit.) Note
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that Mp-adic
k (Γ0(N)) ⊂ M̃p-adic

k (Γ0(N)). Fix N# ∈ Z>0 such that N |N# (so that we may view
F ∈Mp-adic

k (Γ0(N
#))) and suppose that ` is a prime such that `2|N#. Let V` be as defined in §3.3

of loc. cit.
Now we define the stabilization operators as operations on rules on the moduli space of isomor-

phism classes of test triples. Let F ∈ M̃p-adic
k (Γ0(N)) and henceforth suppose N is the minimal

level of F . View F ∈ M̃p-adic
k (Γ0(N

#)), and let a`(F ) denote the coefficient of the q` term in the
q-expansion F (q). Then up to permutation there is a unique pair of numbers (α`(F ), β`(F )) ∈ C2

p

such that α`(F ) + β`(F ) = a`(F ), α`(F )β`(F ) = `k−1. We henceforth fix an ordered pair (α`, β`).

Definition 2.6. When ` - N , we define the (`)+-stabilization of F as

(3) F (`)+ = F − β`(F )V ∗` F,

the (`)−-stabilization of F as

(4) F (`)− = F − α`(F )V ∗` F,

and the (`)0-stabilization for F as

(5) F (`)0 = F − a`(F )V ∗` F + `k−1V ∗` V
∗
` F.

We have F (`)∗ ∈Mp-adic
k (Γ0(N

#)) for ∗ ∈ {+,−, 0}. On q-expansions, we have

F (`)+(q) := F (q)− β`(F )F (q`),

F (`)−(q) := F (q)− α`(F )F (q`),

F (`)0(q) := F (q)− a`(F )F (q`) + `k−1F (q`
2
).

It follows that if F is a Tn-eigenform where ` - n, then F (`)∗ is still an eigenform for Tn. If F is
a T`-eigenform, one verifies by direct computation that a`(F (`)+) = α`(F ), a`(F (`)−) = β`(F ), and
a`(F

(`)0) = 0.
When `|N , we define the (`)0-stabilization of F as

(6) F (`)0 = F − a`(F )V ∗` F.

Again, we have F (`)0 ∈Mp-adic
k (Γ0(N

#)). On q-expansions, we have

F (`)0(q) := F (q)− a`(F )F (q`).

It follows that if F is a Un-eigenform where ` - n, then F (`)0 is still an eigenform for Un. If F is a
U`-eigenform, one verifies by direct computation that a`(F (`)0) = 0.

Note that for `1 6= `2, the stabilization operators F 7→ F (`1)∗ and F 7→ F (`2)∗ commute. Then
for pairwise coprime integers with prime factorizations N+ =

∏
i `
ei
i , N− =

∏
j `
ej , N0 =

∏
m `

em
m ,

we define the (N+, N−, N0)-stabilization of F as

F (N+,N−,N0) := F
∏
i(`i)

+
∏
j(`j)

−∏
m(`m)0 .

9



2.4. Stabilization operators at CM points. Let K be an imaginary quadratic field satisfying
the Heegner hypothesis with respect to N#. Assume that p splits in K, and let p be prime above p
determined by the embedding K ⊂ Cp. Let N# ⊂ OK be a fixed ideal such that O/N# = Z/N#,
and if p|N#, we assume that p|N#. Let A/OCp be an elliptic curve with CM by OK . By the theory
of complex multiplication and Deuring’s theorem, (A,A[N#], ω) is an ordinary test triple over OCp .

Given an ideal a ⊂ OK , we define Aa = A/A[a], an elliptic curve over OCp which has CM by
OK . Let φa : A → Aa denote the canonical projection. Note that there is an induced action of
prime-to-N# integral ideals a ⊂ OK on the set of triples (A,A[N#], ω) given by of isomorphism
classes [(A,A[N#], ω)], given by

a ? (A,A[N#], ω) = (Aa, Aa[N
#], ωa)

where ωa ∈ Ω1
Aa/Cp is the unique differential such that φ∗aωa = ω. Note that this action descends to

an action on the set of isomorphism classes of triples [(A,A[N#], ω)] given by a ? [(A,A[N#], ω)] =

[a ? (A,A[N#], ω)]. Letting N = (N#, N), also note that for any N′ ⊂ OK with norm N ′ and
N|N′|N#, the Shimura reciprocity law also induces an action of prime-to-N′ integral ideals on CM
test triples and isomorphism classes of ordinary CM test triples of level N ′.

The following is Lemma 2.6 of [KL16].

Lemma 2.7. Suppose F ∈ M̃p-adic
k (Γ0(N

#)), and let χ : A×K → C×p be a p-adic Hecke character
such χ is unramified (at all finite places of K), and χ∞(α) = αk for any α ∈ K×. Let {a} be a full
set of integral representatives of C`(OK) where each a is prime to N#. If ` - N , we have∑

[a]∈C`(OK)

χ−1(a)F (`)+(a ? (A,A[N#], ω))

=
(
1− β`(F )χ−1(v)

) ∑
[a]∈C`(OK)

χ−1(a)F (a ? (A,A[N#], ω)),

∑
[a]∈C`(OK)

χ−1(a)F (`)−(a ? (A,A[N#], ω))

=
(
1− α`(F )χ−1(v)

) ∑
[a]∈C`(OK)

χ−1(a)F (a ? (A,A[N#], ω)),

∑
[a]∈C`(OK)

χ−1(a)F (`)0(a ? (A,A[N#], ω))

=

(
1− a`(F )χ−1(v) +

χ−2(v)

`

) ∑
[a]∈C`(OK)

χ−1(a)F (a ? (A,A[N#], ω))

and if `|N , we have ∑
[a]∈C`(OK)

χ−1(a)F (`)0(a ? (A,A[N#], ω))

=
(
1− a`(F )χ−1(v)

) ∑
[a]∈C`(OK)

χ−1(a)F (a ? (A,A[N#], ω)).
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2.5. The Eisenstein congruence. We may assume without loss of generality that ψ 6= ω (oth-
erwise, interchange ψ and ψ−1ω). As in the proof of Theorem 13 in [Kri16], the argument relies
on establishing an Eisenstein congruence. More precisely, let f ∈ S2(Γ0(N)) be the normalized
newform associated with A by modularity, and let Af be the GL2-type abelian variety associated
with f by Eichler-Shimura theory, so that A is isogenous with Af by Faltings’ isogeny theorem. Also
suppose (without loss of generality) that Af satisfies our assumptions stated just before Theorem
2.1. Recall the weight 2 Eisenstein series E2,ψ defined by the q-expansion (at ∞)

E2,ψ(q) := δ(ψ)
L(−1, ψ)

2
+
∞∑
n=1

σψ,ψ
−1

(n)qn

where δ(ψ) = 1 if ψ = 1 and δ(ψ) = 0 otherwise, and

σψ,ψ
−1

(n) =
∑
0<d|n

ψ(n/d)ψ−1(d)d.

This determines a Γ0(f(ψ)2)-level algebraic modular form of weight 2, in Katz’s sense (see [Kat76,
Chapter II]).

Note that the minimal level of E2,ψ is f(ψ)2. With respect to this level, take N# as in §2.6 to be
N# = lcm`|N (`2, f(ψ)). We now consider E2,ψ as a form of level N# and let E(N+,N−,N0)

2,ψ denote
the (N+, N−, N0)-stabilization of E2,ψ, with the choices α` = ψ(`) and β` = ψ−1(`)` as in Definition
2.6. . Thus, viewing f and E(N+,N−,N0)

2,ψ as a p-adic Γ0(N)-level modular forms over OCp , we have

θjf(q) ≡ θjE(N+,N−,N0)
2,ψ (q) (mod λOCp)

for all j ≥ 1.
Let A0 be a fixed elliptic curve with complex multiplication by OK , and fix an ideal N ⊂ OK

such that OK/N = Z/N and p|N if p|N . Since p is split in K, the q-expansion principle implies that
the above congruences of q-expansions translate to congruences on points corresponding to curves
with CM by OK . Let Pf ∈ Af (K) denote the Heegner point associated with Af . As is explained in
§2 of [KL16], by a generalization of Coleman’s theorem ([LZZ15, Proposition A.1], see also [KL16,
Theorem 2.8]), this implies that (for any generator ω ∈ Ω1

A0/OCp
)

1 + p− ap
p

· logωA P =
1 + p− ap

p
· logωAf

Pf

=
∑

[a]∈C`(OK)

θ−1f (1,1,p)(a ? (A0, A0[N], ω))

≡
∑

[a]∈C`(OK)

θ−1E
(N+,N−,pN0)
2,ψ (a ? (A0, A0[N], ω))

=
∏

`|N+,` 6=p

(
1− ψ−1(`)

) ∏
`|N−,` 6=p

(
1− ψ(`)

`

) ∏
`|N0,` 6=p

(
1− ψ−1(`)

)(
1− ψ(`)

`

)
·

∑
[a]∈C`(OK)

θ−1E
(1,1,p)
2,ψ (a ? (A0, A0[N], ω)) (mod λOCp)

(7)

where the final equality follows from Lemma 2.7, applied to successive stabilizations of E2,ψ.
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2.6. CM period of Eisenstein series. To evaluate (7) further, we need to study the period∑
[a]∈C`(OK)

θ−1E
(1,1,p)
2,ψ (a ? (A0, A0[N], ω)) (mod λOCp).

We will show that this period is interpolated by the Katz p-adic L-function. Indeed, let χj be the
unramified Hecke character of infinity type (hKj,−hKj) defined on ideals by

χj(a) = (α/α)j

where (α) = ahK , and hK is the class number of K. Let p denote the prime ideal of OK which is
the complex conjugate of p. For the remainder of the proof, in a slight abuse of notation, unless
otherwise stated let NK denote the p-adic Hecke character associated with the algebraic Hecke
character giving rise to the complex Hecke character NK : K×\A×K → C×. Then by looking at
q-expansions and invoking the q-expansion principle, it is apparent that the above sum is given by∑

[a]∈C`(OK)

θ−1E
(1,1,p)
2,ψ (a ? (A0, A0[N], ω))

= lim
j→0

∑
[a]∈C`(OK)

(χ−1j NhKjK )(a)θ−1+hKjE
(1,1,p)
2,ψ (a ? (A0, A0[N], ω))

= lim
j→0

(1− ψ−1(p)χ−1j (p))(1− ψ(p)(χ−1j NK)(p))

·
∑

[a]∈C`(OK)

(χ−1j NhKjK )(a)θ−1+hKjE2,ψ(a ? (A0, A0[N], ω))

(8)

since χ−1j NhKjK → 1 as j → 0 = (0, 0) ∈ Z/(p − 1) × Zp; here the last equality again follows from
Lemma 2.7 applied to F = E2,ψ.

2.7. The Katz p-adic L-function. We will now show that the terms in the above limit are
interpolated by the Katz p-adic L-function (restricted to the anticyclotomic line). Let f|N such that
O/f = Z/f(ψ). Choose a good integral model A0 of A0 at p, choose an identification ι : Â0

∼−→ Ĝm

(unique up to Z×p ), and let ωcan := ι∗ duu where u is the coordinate on Ĝm. This choice of ωcan

determines p-adic and complex periods Ωp and Ω∞ as in Section 3 of [Kri16]. As an intermediate
step to establishing the p-adic interpolation, we have the following identity of algebraic values.

Lemma 2.8. We have the following identity of values in Q for j ≥ 1:∑
[a]∈C`(OK)

(χ−1j NhKjK )(a)θ−1+hKjE2,ψ(a ? (A0, A0[N], ωcan))

=

(
Ωp

Ω∞

)2hKj

·
f(ψ)2Γ(1 + hkj)ψ

−1(−
√
dK)(χ−1j NK)(f)

(2πi)1+hKjg(ψ−1)(
√
dK)−1+hKj

L((ψ ◦NmK/Q)χ−1j NK , 0)

where ψ−1(−
√
dK) denotes the Dirichlet character ψ−1 evaluated at the unique class b ∈ (Z/f(ψ))×

such that b +
√
dK ≡ 0 (mod f). (In particular, note that the above complex-analytic calculation

does not use the assumptions p > 2 or p - f(ψ).)

Proof. View the algebraic modular form E2,ψ as a modular form over C, and evaluate at CM triples
(A0, A0[N], 2πidz) as a triple over C by considering the uniquely determined complex uniformization
C/(Zτ + Z) ∼= A0 for some τ in the complex upper half-plane, and identifying A0[N] with 1

NZ ⊂
12



C/(Zτ + Z). By plugging ψ1 = ψ−12 = ψ and u = t = f, N′ = f2 into Proposition 36 of loc. cit., we
have the complex identity∑

[a]∈C`(OK)

(χ−1j NhKjK )(a)∂−1+hKjE2,ψ(a ? (A0, A0[N], 2πidz))

=
f(ψ)2Γ(1 + hkj)ψ

−1(−
√
dK)(χ−1j NK)(f)

(2πi)1+hKjg(ψ−1)(
√
dK)−1+hKj

L((ψ ◦NmK/Q)χ−1j NK , 0)

(9)

where ∂ is the complex Maass-Shimura operator, and NK : K×\A×K → C× is the complex norm
character over K. By definition of Ωp and Ω∞, we have

2πidz =
Ωp

Ω∞
· ωcan.

By Proposition 21 of loc. cit., we have the equality of algebraic values

∂−1+hkjE2(a ? (A0, A0[N], ωcan)) = θ−1+hkjE2(a ? (A0, A0[N], ωcan))

for all j ≥ 1. Moreover, since NK(a) ∈ Z, we can identify this value of NK with the value of its
p-adic avatar, which again we also denote by NK , at a. Applying these identities to the identity of
complex numbers (9), we get the desired identity of algebraic numbers. �

We now apply the interpolation property of the Katz p-adic L-function (see [HT93, Theorem II])
to our situation, taking the normalization as in [Gro80], thus arriving at the identity

LKatz
p ((ψ ◦NmK/Q)χ−1j NK , 0) = 4 · Localp((ψ ◦NmK/Q)χ−1j NK)

(
Ωp

Ω∞

)2hKj

·
(

2πi√
DK

)−1+hKj
Γ(1 + hKj)(1− ψ(p)(χ−1j NK)(p))(1− ψ(p)χ−1j (p))L((ψ ◦NmK/Q)χ−1j NK , 0)

(10)

for all j ≥ 1, where Localp(χ) = Localp(χ,Σ, δ) is defined as in [Kat78, 5.2.26] with Σ = {p} and
δ =

√
dK/2 (or as denoted Wp(λ) in [HT93, 0.10]). For any prime `, let ψ`(−

√
dK) denote the

value ψ`(b), where again b ∈ Z is any integer such that b +
√
dK ∈ f. By directly plugging in

χ = (ψ ◦NmK/Q)χ−1j NK into the definition of Localp, we have

Localp((ψ ◦NmK/Q)χ−1j NK) = ψp(−
√
dK)

f(ψ)p
gp(ψ)

.

Plugging (10) into the identity in Lemma 2.8, we have for all j ≥ 1

(1− ψ−1(p)χ−1j (p))(1−ψ(p)(χ−1j NK)(p))
∑

[a]∈C`(OK)

(χ−1j NhKjK )(a)θ−1+hKjE2,ψ(a ? (A0, A0[N], ωcan))

=
f(ψ)(p) · f(ψ) · (χ−1j NK)(f)

4(
∏
`|f(ψ)(p) ψ

−1
` (−

√
dK)g`(ψ))(2πi)2hKj

LKatz
p ((ψ ◦NmK/Q)χ−1j NK , 0).

Taking the limit j → 0 = (0, 0) ∈ Z/(p− 1)× Zp, noting that χ−1j NK → NK and NK(f) = f(ψ)−1,
and applying (8), we have
(11)∑
[a]∈C`(OK)

θ−1E
(1,1,p)
2,ψ (a?(A0, A0[N], ωcan)) =

f(ψ)(p)

4(
∏
`|f(ψ)(p) ψ

−1
` (−

√
dK)g`(ψ))

LKatz
p ((ψ◦NmK/Q)NK , 0).
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2.8. Gross’s factorization theorem. We now evaluate the Katz p-adic L-value on the right-hand
side of (11).

Lemma 2.9. We have, for ψ 6= 1,∑
[a]∈C`(OK)

θ−1E
(1,1,p)
2,ψ (a ? (A0, A0[N], ωcan))

= ±1

4
(1− ψ−1(p))(1− (ψω−1)(p))B1,ψ−1

0 εK
B1,ψ0ω−1 (mod pOCp)

and for ψ = 1, ∑
[a]∈C`(OK)

θ−1E
(1,1,p)
2,1 (a ? (A0, A0[N], ωcan)) ≡ p− 1

2p
logp α (mod pOCp)

where α ∈ OK such that (α) = phK .

Proof. Applying Gross’s factorization theorem (see [Gro80], and [Kri16, Theorem 28] for the exten-
sion to the general auxiliary conductor case), we have

(12)
f(ψ)(p)

(
∏
`|f(ψ)(p) ψ

−1
` (−

√
dK)g`(ψ))

LKatz
p ((ψ ◦NmK/Q)NK , 0) = ±Lp(ψ−10 εKω, 0)Lp(ψ0, 1)

where Lp(·, s) denotes the Kubota-Leopoldt p-adic L-function; here the sign of ±1 is uniquely
determined, as in loc. cit., by the special value formula due to Katz used in Gross’s proof (the term
on the left-hand side of the statement in loc. cit. already incorporates this sign). We now evaluate
each Kubota-Leopoldt factor in the above identity. Using the fact that εK(p) = 1 since p splits in
K, by the interpolation property of the Kubota-Leopoldt p-adic L-function we have

(13) Lp(ψ
−1
0 εK , 0) = −(1− ψ−1(p))B1,ψ−1

0 εK
.

Now if by condition (3) in the case ψ 6= 1 of the statement of the theorem, we know that
Lp(ψ0,m) ≡ Lp(ψ0, n) (mod pOCp) for all m,n ∈ Z by [Was97, Corollary 5.13]. Thus

(14) Lp(ψ0, 1) ≡ Lp(ψ0, 0) = −(1− (ψω−1)(p))B1,ψ0ω−1 (mod pOCp).

Combining (12), (13), and (14), we get

f(ψ)(p)∏
`|f(ψ)(p) ψ

−1
` (−

√
dK)g`(ψ)

LKatz
p ((ψ ◦NmK/Q)NK , 0)

≡ ±(1− ψ−1(p))(1− (ψω−1)(p))B1,ψ−1
0 εK

B1,ψ0ω−1 (mod pOCp)

(15)

when ψ 6= 1.
Now suppose ψ = 1. In particular f(ψ) = f(ψ)(p) = 1. By the functional equation for the Katz

p-adic L-function (e.g. see [HT93, Theorem II]), since ŇK = N−1K NK = 1 is the dual Hecke character
of NK , we have

LKatz
p (NK , 0) = LKatz

p (1, 0).

By a standard special value formula (e.g. see [Gro80, Section 5, Formulas 1]), we have

LKatz
p (1, 0) =

4

|O×K |
· p− 1

p
logp(α)
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and so

(16) LKatz
p (NK , 0) =

4

|O×K |
· p− 1

p
logp(α) = 2 · p− 1

p
logp(α)

since we assume dK < −4 and hence |O×K | = 2.
Now plugging in (15) into (11) when ψ 6= 1, and (16) into (11) when ψ = 1, we establish the

lemma. �

2.9. The proof of Theorem 2.1. Putting together (7) and Lemma (2.9), we arrive at our main
congruence identities. If ψ 6= 1 we have

1 + p− ap
p

· logωA P ≡ ±
∏

`|N+,` 6=p

(
1− ψ−1(`)

) ∏
`|N−,` 6=p

(
1− ψ(`)

`

) ∏
`|N0,`6=p

(
1− ψ−1(`)

)(
1− ψ(`)

`

)

·1
4

(1− ψ−1(p))(1− (ψω−1)(p))B1,ψ−1
0 εK

B1,ψ0ω−1 (mod λOCp).

(17)

Now the statement for ψ 6= 1 in theorem 2.1 immediately follows from studying when the right-hand
side of the congruence vanishes mod p. If ψ = 1 we have
(18)
1 + p− ap

p
·logωA P ≡

{∏
`|N−,` 6=p

(
1− 1

`

)
· p−12p logp α (mod λOCp), if `|N+N0 =⇒ ` = p,

0 (mod λOCp), if ∃` 6= p such that `|N+N0,

where (α) = phK and logp is the Iwasawa p-adic logarithm (i.e. the locally analytic function defined
by the usual power series log(1 + x) = x− x2

2 + x3

3 − . . ., and then uniquely extended to all of C×p
by defining logp p = 0).

We now finish the proof of Theorem 2.1 with the following lemma.

Lemma 2.10. The right-hand side of (18) does not vanish mod p if any only if
(1) `|N, ` 6= p implies `||N, ` ≡ −1 (mod p), ` 6≡ 1 (mod p),
(2) ordλ

(
p−1
2p logp α

)
= 0..

We also have that the non-vanishing of the right-hand side of (18) mod p implies p|N , and so the
right-hand side of (18) does not vanish mod p if and only if p|N and (1) and (2) hold.

Proof. We first study when

(19)
∏

`|N−,`6=p

(
1− 1

`

)
· p− 1

2p
logp α

vanishes mod λ. Clearly (19) does not vanish mod λ if and only if each of its factors does not vanish
mod λ. Then

∏
`|N−,`6=p

(
1− 1

`

)
does not vanish mod λ if and only if

(20) `|N−, ` 6= p =⇒ ` 6≡ 1 (mod p).

Hence (19) does not vanish mod p if and only if (20) and (2) in the statement of the lemma hold.
If the right-hand side of (18) does not vanish, then we have `|N+N0 =⇒ ` = p, the right-hand

side of (18) equals (19) mod p, and (20) holds. Thus (1) and (2) in the statement of the lemma
hold.

If (1) and (2) in the statement of the lemma hold, then since by definition `|N− =⇒ ` ≡ ±1

(mod p), we have that (20) holds. So (19) does not vanish mod p. Now if `|N+N0 and ` 6= p,
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then by (1) in the statement of the lemma, we have `||N, ` 6≡ 1 (mod p). Hence ` - N0, ` - N+, a
contradiction. So we have `|N+N0 =⇒ ` = p, and so the right-hand side of (18) equals (19) mod
p, which does not vanish mod p.

Thus we have shown that the non-vanishing of the right-hand side of (18) mod p is equivalent to
(1) and (2) in the statement of the lemma.

Now we show the second part of the theorem. Suppose that the right-hand side of (18) does not
vanish. In particular, we have `|N+N0 =⇒ ` = p and that the right-hand side of (18) equals (19)
mod p. If p - N , then we thus have N+N0 = 1. We now show a contradiction, considering the cases
p = 2 and p ≥ 3 separately.

Suppose p = 2. Then since 2 - N− = N 6= 1 (where N 6= 1 follows because E is an elliptic curve
over Q), we have that there exists `|N− with ` ≡ 1 (mod 2). Hence

(21)
∏

`|N−,` 6=p

(
1− 1

`

)
≡ 0 (mod p)

and the right-hand side of (18) vanishes mod p, a contradiction.
Suppose p > 2. Note that

(22) (Nsplit, N−) =
∏

`|N−,`≡1 (mod p)

`.

Since N0 = Nadd (because they are both the squarefull parts of N), we have Nadd = N0 = 1. By
[Yoo15, Theorem 2.2], we know that NsplitNadd 6= 1, and hence Nsplit 6= 1. Since N+ = 1, we
therefore have that 1 6= Nsplit|N−. By (22), we thus have that there is some `|N− such that ` ≡ 1

(mod p). In particular we have (21) once again, and so the right-hand side of (18) vanishes mod p,
a contradiction. �

Remark 2.11. Note that our proof uses a direct method of p-adic integration, and does not go
through the construction of the Bertolini–Darmon–Prasanna (BDP) p-adic L-function as in the proof
of the main theorem of loc. cit. In particular, it does not recover the more general congruence of
the BDP and Katz p-adic L-functions established when p is of good reduction established in [Kri16]
(also for higher weight newforms). We expect that our method should extend to higher weight
newforms, in particular establishing congruences between images of generalized Heegner cycles under
appropriate p-adic Abel-Jacobi images and quantities involving higher Bernoulli numbers and Euler
factors, without using the deep BDP formula.

3. Bernoulli numbers and relative class numbers

When p = 3 and A has a 3-isogeny defined over Q, all Dirichlet characters in Theorem 2.1 are
quadratic. Note that for an odd quadratic character ψ over Q, by the analytic class number formula
we have

(23) B1,ψ = −2
hKψ
|O×Kψ |

where Kψ is the imaginary quadratic field associated with ψ. So the 3-indivisibility criteria of
the theorem becomes a question of 3-indivisibility of quadratic class numbers. This fact will be
employed in our applications to Goldfeld’s conjecture.

More generally, for p ≥ 3, we can find a sufficient condition for non-vanishing mod p of the
Bernoulli numbers B1,ψ−1

0 εK
B1,ψ0ω−1 in terms of non-vanishing mod p of the relative class numbers
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of the abelian CM fields of degrees dividing p−1 cut out by ψ−10 εK and ψ0ω
−1. Let us first observe

the following simple lemma.

Lemma 3.1. Suppose ψ : (Z/f)× → µp−1 is a Dirichlet character, and assume ψ−1 6= ω, or
equivalently, assume there exists some a ∈ (Z/f)× such that ψ(a)a 6≡ 1 (mod pZ[µp−1]). Then

ordp(B1,ψ) ≥ 0.

Proof. By our assumption, there exists some a ∈ (Z/f)× such that ψ(a)a 6≡ 1 (mod pZ[µp−1]).
Then we have

f∑
m=1

ψ(m)m ≡
f∑

m=1

ψ(am)am = ψ(a)a

f∑
m=1

ψ(m)m (mod pZ[µp−1])

=⇒ (1− ψ(a)a) ·
f∑

m=1

ψ(m)m ≡ 0 (mod pZ) =⇒
f∑

m=1

ψ(m)m ≡ 0 (mod pZ[µp−1]).

Now our conclusion follows from the formula for the Bernoulli numbers (1). �

For an odd Dirichlet character ψ, let Kψ denote the abelian CM field cut out by ψ. Consider the
relative class number h−Kψ = hKψ/hK+

ψ
, where K+

ψ is the maximal totally real subfield of Kψ. The
relative class number formula ([Was97, 4.17]) gives

(24) h−Kψ = Q · w ·
∏
χodd

(
−1

2
B1,χ

)
where χ runs over all odd characters of Gal(Kψ/Q), w is the number of roots of unity in Kψ and
Q = 1 or 2 (see [Was97, 4.12]). By Lemma 3.1, assuming that ψ−1 6≡ ω, we see that we have the
following divisibility of numbers in Zp[ψ]:

(25) p - h−Kψ =⇒ p - B1,ψ.

Lemma 3.2. Suppose ψ : Gal(Q/Q) → µp−1 is a Dirichlet character and K is an imaginary
quadratic field such that f(ψ) is prime to dK and p - dK . As long as ψ 6= 1 or ω, we have

p - h−Kψ0εK · h
−
K
ψ−1
0 ω

=⇒ p - B1,ψ0εK ·B1,ψ−1
0 ω.

Proof. If ψ is even, then ψ0εK = ψεK is ramified at some place outside p and so is not equal to ω,
and ψ−10 ω = ψ−1ω is not equal to ω if and only if ψ 6= 1. Hence (ψ−10 εK)−1 (mod p) = ψ0εK 6= ω,
and (ψ0ω

−1)−1 = ψ−1ω 6= ω if and only if ψ 6= 1. If ψ is odd, then ψ0εK = ψ is not equal to ω if
and only if ψ 6= ω, and ψ−10 ω = ψ−1εKω is ramified at some place outside p and so is not equal to
ω. Hence (ψ−10 εK)−1 = ψ0εK 6= ω unless ψ = ω, and (ψ0ω

−1)−1 = ψ−1εKω 6= ω.
Now the lemma follows from (25). �

Corollary 3.3. Suppose we are in the setting of Theorem 2.1. Then p - h−Kψ0εK · h
−
K
ψ−1
0 ω

implies

condition (4) of the theorem.

Proof. Condition (1) in the statement of Theorem 2.1 in particular implies ψ 6= 1 or ω. Now the
statement follows from Lemma (3.2). �
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4. Goldfeld’s conjecture for abelian varieties over Q of GL2-type with a
rational 3-isogeny

The goal in this section is to prove Theorem 1.5. We will need some Davenport-Heilbronn type
class number divisibility results due to Nakagawa–Horie and Taya. For any x ≥ 0, let K+(x)

denote the set of real quadratic fields k with fundamental discriminant dk < x and K−(x) the set
of imaginary quadratic fields k with fundamental discriminant |dk| < x. Let m and M be positive
integers, and let

K+(x,m,M) := {k ∈ K+(x) : dk ≡ m (mod M)},

K−(x,m,M) := {k ∈ K−(x) : dk ≡ m (mod M)}.

Recall that we let h3(d) denote the 3-primary part of the class number of Q(
√
d), and let Φ : Z>0 →

Z>0 denote the Euler totient function. We introduce the following terminology for convenience.

Definition 4.1. We say that positive integers m and M comprise a valid pair (m,M) if both of
the following properties hold:

(1) if ` is an odd prime number dividing (m,M), then `2 divides M but not m, and
(2) if M is even, then

(a) 4|M and m ≡ 1 (mod 4), or
(b) 16|M and m ≡ 8 or 12 (mod 16).

Horie and Nakagawa proved the following.

Theorem 4.2 ([NH88]). We have

|K+(x,m,M)| ∼ |K−(x,m,M)| ∼ 3x

π2Φ(M)

∏
`|M

q

`+ 1
(x→∞).

Suppose furthermore that (m,M) is a valid pair. Then∑
k∈K+(x,m,M)

h3(dk) ∼
4

3
|K+(x,m,M)| (x→∞),

∑
k∈K−(x,m,M)

h3(dk) ∼ 2|K−(x,m,M)| (x→∞).

Here f(x) ∼ g(x) (x→∞) means that limx→∞
f(x)
g(x) = 1, ` ranges over primes dividing M , q = 4

if ` = 2, and q = ` otherwise.

Now put

K+
∗ (x,m,M) := {k ∈ K+(x,m,M) : h3(dk) = 1},

K−∗ (x,m,M) := {k ∈ K−(x,m,M) : h3(dk) = 1}.

Taya [Tay00] proves the following bound using Theorem 4.2.
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Proposition 4.3. Suppose (m,M) is a valid pair. Then

lim
x→∞

|K+
∗ (x,m,M)|
|K+(x, 1, 1)|

≥ 5

6Φ(M)

∏
`|M

q

`+ 1
,

lim
x→∞

|K−∗ (x,m,M)|
|K−(x, 1, 1)|

≥ 1

2Φ(M)

∏
`|M

q

`+ 1
.

In particular, the of real (resp. imaginary) quadratic fields k such that dk ≡ m (mod M) and
h3(dk) = 1 has positive density in the set of all real (resp. imaginary) quadratic fields.

Proof. This follows from the trivial bounds K+
∗ (x,m,M) + 3(K+(x,m,M) − K+

∗ (x,m,M)) ≤∑
k∈K+(x,m,M) h3(dk) and K

−
∗ (x,m,M)+3(K−(x,m,M)−K−∗ (x,m,M)) ≤

∑
k∈K+(x,m,M) h3(dk),

and the asymptotic formulas from Theorem 4.2. �

We have the following positive density result.

Theorem 4.4. Suppose A/Q is any GL2-type abelian variety of conductor N = N+N−N0 which has
a rational 3-isogeny. Let d be the fundamental discriminant corresponding to the quadratic character
ψ. Suppose that
(1) ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1;
(2) ` 6= 3, `|Nsplit implies ψ(`) = −1;
(3) ` 6= 3, `|Nnonsplit implies ψ(`) = 1;
(4) `|Nadd, ` ≡ 1 (mod 3) implies ψ(`) = −1 or 0;
(5) `|Nadd, ` ≡ 2 (mod 3) implies ψ(`) = 0.
Let

(26) d0 :=


d, d > 0,

−3d, d < 0, d 6≡ 0 (mod 3),

−d/3, (mod M) d < 0, d ≡ 0 (mod 3),

let

r(A) :=


1, 2 - lcm(N, d2),

2, 2||lcm(N, d2),

ord2(lcm(N, d2, 16))− 1, 4|lcm(N, d2),

and let

s3(d) :=

{
0, d > 0, d 6≡ 0 (mod 3), or d < 0, d ≡ 0 (mod 3),

1, d > 0, d ≡ 0 (mod 3), or d < 0, d 6≡ 0 (mod 3).

Then a proportion of at least

(27)
d0

2r(A)+s3(d) · 3
∏

`|NsplitNnonsplit,`-d,` odd,` 6=3

1

2

∏
`|Nadd,`-d,` odd,` 6=3

1

2

∏
`|d,` odd,` 6=3

1

2`

∏
`|3N

q

`+ 1

of all imaginary quadratic fields K have the following properties:
(1) dK is odd,
(2) K satisfies the Heegner hypothesis with respect to 3N ,
(3) h3(d0dK) = 1.
If furthermore, we impose the assumption on A that
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(6) h3(−3d) = 1 if ψ(−1) = 1, and h3(d) = 1 if ψ(−1) = −1

then at least the same proportion (27) of all imaginary quadratic fields K have:
(1) dK is odd,
(2) K satisfies the Heegner hypothesis with respect to 3N , and
(3) the Heegner point P ∈ A(K) is non-torsion.

Proof. We will apply Proposition 4.3, as well as Theorem 2.1. Let N ′ denote the prime-to-3 part of
N . We first divide into two cases (a) and (b) regarding d, corresponding to
(a) d > 0 and d 6≡ 0 (mod 3), or d < 0 and d ≡ 0 (mod 3);
(b) d > 0 and d ≡ 0 (mod 3), or d < 0 and d 6≡ 0 (mod 3).
We then define a positive integer M as follows:
(1) In case (a), let

M =


3 · lcm(N ′, d2, 4), 2 - lcm(N ′, d2),

3 · lcm(N ′, d2, 8), 2||lcm(N ′, d2),

3 · lcm(N ′, d2, 16), 4|lcm(N ′, d2).

(2) In case (b), let

M =


9 · lcm(N ′, d2, 4), 2 - lcm(N ′, d2),

9 · lcm(N ′, d2, 8), 2||lcm(N ′, d2),

9 · lcm(N ′, d2, 16), 4|lcm(N ′, d2).

Using the Chinese remainder theorem, choose a positive integer m such that
(1) m ≡ 2 (mod 3) in case (a), or m ≡ 3 (mod 9) in case (b),
(2) ` odd prime, ` 6= 3, `|Nsplit =⇒ m

d0
≡ [quadratic residue unit] (mod `), and 2|Nsplit =⇒ m

d0
≡

1 (mod 8),
(3) ` odd prime, ` 6= 3, `|Nnonsplit =⇒ m

d0
≡ [quadratic residue unit] (mod `), and 2|Nnonsplit =⇒

m
d0
≡ 1 (mod 8),

(4) ` prime, ` ≡ 1 (mod 3), `|Nadd, ` - d =⇒ m
d0
≡ [quadratic residue unit] (mod `), and ` ≡ 1

(mod 3), `|Nadd =⇒ m ≡ =⇒ m
d0
≡ [quadratic residue unit] (mod `),

(5) ` prime, ` odd, ` ≡ 2 (mod 3), `|Nadd (which by our assumptions implies `|d) =⇒ m ≡ 0

(mod `) where m
d0
≡ [quadratic residue unit] (mod `), and 2|Nadd =⇒ m ≡ d (mod 16),

and furthermore, if 2 - N , then suppose m ≡ d (mod 4).
Suppose K is any imaginary quadratic field such that d0dK ≡ m (mod M). Then the congruence

conditions corresponding to (1)-(5) above, along with assumptions (1)-(5) in the statement of the
theorem, imply
(1) 3 splits in K,
(2) ` 6= 3, `|Nsplit =⇒ ` splits in K,
(3) ` 6= 3, `|Nnonsplit =⇒ ` splits in K,
(4) ` prime, ` ≡ 1 (mod 3), `|Nadd =⇒ ` splits in K,
(5) ` prime, ` ≡ 2 (mod 3), `|Nadd =⇒ ` splits in K,
and dK ≡ 1 (mod 4) (i.e. dK is odd). Hence K satisfies the Heegner hypothesis with respect to
3N .

Moreover, the congruence conditions above imply that (m,M) is a valid pair (see Definition 4.1),
and the assumptions (4)-(5) in the statement of the theorem imply that (jd, d2) is also a valid pair
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whenever (j, d) = 1. Thus, by Proposition 4.3, for any d0|M ,

(28) lim
x→∞

|K−∗ (x,m,M)|
|K−(x/d0, 1, 1)|

≥ d0
2Φ(M)

∏
`|M

q

`+ 1
.

The left-hand side of (28) is the proportion of imaginary quadraticK satisfying d0dK ≡ m (mod M)

and h3(d0dK) = 1. Moreover, notice that there are∏
`|NsplitNnonsplit,`-d,` odd,` 6=3

`− 1

2

∏
`|Nadd,`-d,` odd,`6=3

`(`− 1)

2

∏
`|d,` odd,`6=3

`− 1

2

choices for residue classes of m mod M . Combining all the above and summing over each valid
residue classmmodM , we immediately obtain our lower bound (33) for the proportion of imaginary
quadratic fields K such that (1) dK is odd, (2) K satisfies the Heegner hypothesis with respect to
3N , and (3) h3(d0dK) = 1. This proves the part of the theorem before assumption (6) is introduced
in the statement.

If we assume that A satisfies assumption (6) in the statement of the theorem, then for all K as
above, we see that A, p = 3 and K satisfy all the assumptions of Theorem 2.1 (see Remarks 2.4
and 2.5), thus implying that P is non-torsion. The final part of the theorem now follows.

�

Similarly, we have the following positive density result for producing A which satisfy the assump-
tions of Theorem 4.4.

Theorem 4.5. Suppose (N1, N2, N3) is a triple of pairwise coprime integers such that N1N2 is
square-free, N3 is square-full and N1N2N3 = N . Let

r :=

{
0, 2 - N,
2, 2|N.

Then a proportion of at least
1

2r · 3
∏

`|N1N2,` odd,`6=3

1

2

∏
`|N3,` odd,` 6=3

1

`

∏
`|N, 6̀=3

q

`+ 1

of even (resp. odd) quadratic characters ψ corresponding to real (resp. imaginary) quadratic fields
Q(
√
d), where the d > 0 (resp. d < 0) are fundamental discriminants, satisfy

(1) ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1;
(2) ` 6= 3, `|N1 implies ψ(`) = −1;
(3) ` 6= 3, `|N2 implies ψ(`) = 1;
(4) ` 6= 3, `|N3, ` ≡ 1 (mod 3) implies ψ(`) = 0;
(5) ` 6= 3, `|N3, ` ≡ 2 (mod 3) implies ψ(`) = 0;
(6) h3(−3d) = 1 (resp. h3(d) = 1).
Moreover, we have that for any i ∈ {2, 3, 5, 8},

• 1/4 of the above fundamental discriminants d > 0 (resp. d < 0) satisfy d ≡ i (mod 9).

Proof. We will apply Proposition 4.3. Using the Chinese remainder theorem, choose a positive
integer m which satisfies the following congruence conditions:
(1) m ≡ 3 (mod 9) or m ≡ 2 (mod 3),
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(2) ` odd prime, ` 6= 3, `|N1 =⇒ m ≡ −3[quadratic non-residue] (mod `), and 2|N1 =⇒ m ≡ 1

(mod 8),
(3) ` odd prime, ` 6= 3, `|N2 =⇒ m ≡ −3[quadratic residue unit] (mod `), and 2|N2 =⇒ m ≡ 5

(mod 8),
(4) ` odd prime, ` 6= 3, `|N3, ` ≡ 1 (mod 3) =⇒ m ≡ 0 (mod `) and m 6≡ 0 (mod `2),
(5) ` odd prime, ` 6= 3, `|N3, ` ≡ 2 (mod 3) =⇒ m ≡ 0 (mod `) and m 6≡ 0 (mod `2), and

2|N3 =⇒ m ≡ 8 or 12 (mod 16).

Let N ′ denote the prime-to-3 part of N . Given such an m, let a positive integer M be defined as
follows:

• If m ≡ 3 (mod 9), let

M =


9N ′, 2 - N,
9 · lcm(N ′, 8), 2||N,
9 · lcm(N ′, 16), 4|N.

• If m ≡ 2 (mod 3), let

M =


3N ′, 2 - N,
3 · lcm(N ′, 8), 2||N,
3 · lcm(N ′, 16), 4|N.

If m ≡ 2 (mod 3), suppose d is a fundamental discriminant with

• d > 0, d ≡ 0 (mod 3), and −d/3 ≡ m (mod M), or
• d < 0, d 6≡ 0 (mod 3), and d ≡ m (mod M).

If m ≡ 3 (mod 9), suppose d is a fundamental discriminant with

• d > 0, d 6≡ 0 (mod 3), and −3d ≡ m (mod M), or
• d < 0, d ≡ 0 (mod 3), and d ≡ m (mod M).

Let ψ be the quadratic character associated with d. Then the congruence conditions on m

corresponding to (1)-(5) above imply

(1) ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1;
(2) ` 6= 3 prime, `|N1 =⇒ ψ(`) = −1;
(3) ` 6= 3 prime, `|N2 =⇒ ψ(`) = 1;
(4) ` 6= 3 prime, `|N3, ` ≡ 1 (mod 3) =⇒ ψ(`) = 0;
(5) ` 6= 3 prime, `|N3, ` ≡ 2 (mod 3) =⇒ ψ(`) = 0.

Thus ψ satisfies the desired congruence conditions (1)-(5) in the statement of the theorem. Now we
address (6). The congruence conditions (1)-(5) above imply that (m,M) is a valid pair. Thus, by
Proposition 4.3, if m ≡ 2 (mod 3) with corresponding M as defined above, then

(29) lim
x→∞

|K−∗ (x,m,M)|
|K+(3x, 3, 9)|+ |K+(3x, 6, 9)|

≥ 1

6Φ(M)

∏
`|M,` 6=3

q

`+ 1

where the left-hand side of (29) is the proportion of d > 0 which satisfy d ≡ 0 (mod 3) and
−d/3 ≡ m (mod M) and h3(−3d) = h3(−d/3) = 1, and

(30) lim
x→∞

|K−∗ (x,m,M)|
|K−(x, 1, 3)|+ |K−(x, 2, 3)|

≥ 1

2Φ(M)

∏
`|M, 6̀=3

q

`+ 1
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where the left-hand side of (30) is the proportion of d < 0 which satisfy d 6≡ 0 (mod 3), d ≡ m

(mod M) and h3(d) = 1. Similarly by Proposition 4.3, if m ≡ 3 (mod 9) with corresponding M as
defined above, then

(31) lim
x→∞

|K−∗ (x,m,M)|
|K+(x/3, 1, 3)|+ |K+(x/3, 2, 3)|

≥ 3

2Φ(M)

∏
`|M, 6̀=3

q

`+ 1

where the left-hand side of (31) is the proportion of d > 0 which satisfy d 6≡ 0 (mod 3), −3d ≡ m

(mod M) and h3(−3d) = 1, and

(32) lim
x→∞

|K−∗ (x,m,M)|
|K−(x, 1, 3)|+ |K−(x, 2, 3)|

≥ 1

2Φ(M)

∏
`|M, 6̀=3

q

`+ 1

where the left-hand side of (32) is the proportion of d < 0 which satisfy d ≡ 0 (mod 3), d ≡ m

(mod M) and h3(d) = 1.
Moreover, in each case, we have∏

`|N1,` odd,` 6=3

`− 1

2

∏
`|N2,` odd,` 6=3

`− 1

2

·
∏

`|N3,` odd,`≡1 (mod 3)

(`− 1)
∏

`|N3,` odd,`≡2 (mod 3)

(`− 1)
∏

if 2|N3

2

choices of residue classes m mod M which satisfy congruence conditions (1)-(5). Combining all
the above and summing over each these residue class m mod M , we immediately obtain our lower
bounds for the proportions of desired d > 0 from (30) and desired d < 0 from (31).

The final part of the theorem follows by directly counting the number of residue classes m mod
M which force d ≡ i (mod 9) for i ∈ {2, 3, 5, 8}. �

Remark 4.6. Let λ be the prime above p = 3 fixed in the beginning of §2.2. Suppose for A as
above, A[λ]ss ∼= Fλ⊕Fλ(ω). For a fundamental discriminant d, let A(d) denote the quadratic twist of
A by d. Note that for each d produced by Theorem 4.5, Theorem 4.4 shows that there is a positive
proportion of imaginary quadratic K satisfying the Heegner hypothesis with respect to Nd2 such
that the corresponding Heegner point P ∈ A(d)(K) is non-torsion. In particular, for each such d

there is at least one K such that P ∈ A(d)(K) is non-torsion. Thus ran(A(d)) = dimA · 1−w(A
(d))

2 .

Theorem 4.7. The weak Goldfeld Conjecture is true for any abelian variety A/Q of GL2-type with
a rational 3-isogeny. Namely, there is a positive proportion of quadratic twists of A/Q of analytic
rank 0 (resp. analytic rank equal to dimA).

Proof. Suppose A has a 3-isogeny defined over Q and that (without loss of generality) A satisfies
our assumptions stated before Theorem 2.1, i.e. A[λ]ss ∼= Fλ(ψ) ⊕ Fλ(ψ−1ω) for some quadratic
character ψ : Gal(Q/Q) → µ2. Twisting by the quadratic character ψ−1, we may assume without
loss of generality that A[λ]ss ∼= Fλ ⊕ Fλ(ω).

Let d be a fundamental discriminant corresponding to a quadratic character ψ in the family of d
produced by Theorem 4.5 (with the integers N1 = N+, N2 = N− and N3 = N0 as in our setting).
In particular, A(d)[λ]ss ∼= Fλ(ψ) ⊕ Fλ(ψ−1ω) satisfies the assumptions of Theorem 4.4, including
assumption (6). Hence, we can apply Theorem 4.4 to A(d) to conclude that a positive proportion
of imaginary quadratic fields K satisfy the Heegner hypothesis with respect to 3Nd2 and have that
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the associated Heegner point P ∈ A(d)(K) is non-torsion. Since w(A(d))w(A(ddK)) = w(A/K) = −1

(the last equality following from the Heegner hypothesis), we have that each such K satisfies

ran(A(ddK)) = dimA · 1 + w(A(d))

2
.

Hence there are a positive proportion of quadratic twists of A with rank dimA · 1+w(A
(d))

2 , and in
fact by Theorem 4.4, a lower bound for this proportion is given by

(33)
d0

2r(A
(d))+s3(d) · 3

∏
`|NsplitNnonsplit,

`-d,` odd,` 6=3

1

2

∏
`|Naddd

2,

`-d,` odd, 6̀=3

1

2

∏
`|d, odd,`6=3

1

2`

∏
`|3Nd2

q

`+ 1

in the notation of the statement of the theorem.
Now choose any K as produced by Theorem 4.4 for A(d), so that w(A(ddK)) = −w(A(d)). In

particular, dK is odd and prime to 3Nd. Then by construction h3(ddK) = 1 if d > 0 and
h3(−3ddK) = 1 if d < 0, and so A(ddK)[λ]ss ∼= Fλ(ψεK) ⊕ Fλ((ψεK)−1ω) satisfies all of the as-
sumptions (including (6)) of Theorem 4.4. Hence, we can apply Theorem 4.4 to A(ddK) to conclude
that a positive proportion of imaginary quadratic fields K ′ satisfy the Heegner hypothesis with re-
spect to 3Nd2d2K and have that the associated Heegner point P ∈ A(ddK)(K ′) is non-torsion. Since
w(A(ddK))w(A(ddKdK′ )) = w(A(ddK)/K ′) = −1, we have that each such K ′ satisfies

(34) ran(A(ddKdK′ )) = dimA · 1 + w(A(ddK))

2
= dimA · 1− w(A(d))

2
.

Hence there are a positive proportion of quadratic twists of A with rank dimA · 1−w(A
(d))

2 , and in
fact by Theorem 4.4, a lower bound for this proportion is given by

(ddK)0

2r(A
(ddK ))+s3(ddK) · 3

∏
`|NsplitNnonsplit,

`-ddK,` odd,` 6=3

1

2

∏
`|Nadd(ddK )2,

`-ddK,` odd,` 6=3

1

2

∏
`|ddK , odd,`6=3

1

2`

∏
`|3N(ddK)2

q

`+ 1

in the notation of the statement of the theorem. (Note that in fact r(A(ddK)) = r(A(d)) since dK is
odd.) �

Suppose now A = E is an elliptic curve over Q, and so λ = 3. When E is semistable, we have
E[3]ss ∼= F3⊕F3(ω) for the following reason: Suppose E[3]ss ∼= F3(ψ)⊕F3(ψ

−1ω) for some quadratic
character ψ. Then ψ cannot be ramified at any `||N since the corresponding admissible GL2(Q`)

representation is Steinberg of conductor `, but if ψ was ramified at ` it would force the conductor to
be divisible by `2 by the above description of E[3]ss. Hence ψ is a quadratic character only possibly
ramified at 3 and hence must be either 1 or ω.

Now we can use Theorem 4.5 to compute explicit lower bounds on the proportion of rank 0 and
rank 1 quadratic twists.

Proposition 4.8. Let E/Q be semistable and suppose that E has a rational 3-isogeny.
If 3 - N , then in the notation of Theorem 4.5 (with N1 = Nsplit, N2 = Nnonsplit, and N3 = Nadd =

1, at least

(35)
1

2r · 3
∏

`|N,` odd,` 6=3

1

2

∏
`|N, 6̀=3

q

`+ 1

of d > 0 (resp. d < 0) have ran(E(d)) = 1 (resp. ran(E(d)) = 0).
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If 3|N , then:
(1) If 3 is of split multiplicative reduction, then at least

(36)
1

2r · 3
∏

`|N,` odd,` 6=3

1

2

∏
`|N, 6̀=3

q

`+ 1

of d > 0 (resp. d < 0) have ran(E(d)) = 1 (resp. ran(E(d)) = 0).
(2) If 3 is of nonsplit multiplicative reduction, then at least

(37)
1

2r+2 · 3
∏

`|N,` odd,` 6=3

1

2

∏
`|N, 6̀=3

q

`+ 1

of d > 0 (resp. d < 0) have ran(E(d)) = 0 (resp. ran(E(d)) = 1), and at least

(38)
1

2r+2

∏
`|N,` odd,`6=3

1

2

∏
`|N, 6̀=3

q

`+ 1

of d > 0 (resp. d < 0) have ran(E(d)) = 1 (resp. ran(E(d)) = 0).

Proof. First we apply Theorem 4.5 to N1 = Nsplit, N2 = Nnonsplit, and N3 = Nadd = 1. For any d
produced by the theorem, Remark 4.6 implies that

(39) ran(E(d)) =
1− w(E(d))

2
.

Let d be any fundamental discriminant produced by Theorem 4.5. By the properties of the d
produced in Theorem 4.5, the corresponding local characters ψ` for satisfy the implications

(40) `|N, ` - d =⇒ `||N =⇒ ψ`(`)w`(E) = −ψ`(`)a`(E) = −ψ(`)a`(E) = 1

(where the last chain of equalities follows since for `||N , w`(E) = −a`(E)), and furthermore since
N = NsplitNnonsplit (since we assume that E is semistable),

(41) `|(N, d) =⇒ ` = 3.

We now calculate w(E(d)) using (40) and (41). Since E is semistable, the global root number
w(E(d)) is computed via changes to local root numbers w`(E) under the quadratic twist by d as
follows (see [Bal14, Table 1]):
(1) if ` - Nd, then w`(E(d)) = w`(E) = 1;
(2) if `|N, ` - d, then w`(E(d)) = ψ`(`)w`(E) = 1;
(3) if ` - N, `|d then w`(E(d)) = ψ`(−1)w`(E) = ψ`(−1);
(4) if `|(N, d), then ` = 3 and w3(E

(d)) = −ψ3(−1)w3(E);
(5) w∞(E(d)) = w∞(E) = −1.

Hence

(42) w(E(d)) = −ψ(−1)

 ∏
if 3|(N,d)

−w3(E)

 .

If 3 - N , then we have 3 - (N, d), and so w(E(d)) = −ψ(−1). Thus, by (39) and the lower bound
given in the statement of Theorem 4.5, in the notation of the theorem we have that at least

(43)
1

2r · 3
∏

`|N,` odd,` 6=3

1

2

∏
`|N, 6̀=3

q

`+ 1
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of d > 0 have ran(E(d)) = 1, and at least the same proportion of d < 0 have ran(E(d)) = 0.
If 3|N , then

w(E(d)) =


−ψ(−1), 3 - d,
−ψ(−1), 3|d, 3 is of split multiplicative reduction (i.e. w3(E) = −1),
ψ(−1), 3|d, 3 is of nonsplit multiplicative reduction (i.e. w3(E) = 1).

The desired bounds in this case follow again from (39), the lower bound given in the statement of
Theorem 4.5 and the final part of that theorem. �

Remark 4.9. It is most likely possible to refine the casework in the proofs of Theorems 4.5 and
4.4 in order to achieve better lower bounds of twists with ranks 0 or 1.

Example 4.10. Consider the elliptic curve

E = 19a1 : y2 + y = x3 + x2 − 9x− 15

in Cremona’s labeling. Then E(Q) ∼= Z/3Z, so we take p = 3 and obtain E[3]ss = F3 ⊕ F3(ω).
Notice that N = Nsplit = 19 and the root number w(E) = +1. Consider the set of fundamental
discriminant d > 0 (resp. d < 0) such that

(1) ψd(3) 6= 1 and (ψdω)(3) 6= 1.
(2) ψd(19) = −1.
(3) h3(−3d) = 1 (resp. h3(d) = 1).

The first few such d > 0 are

d = 8, 12, 21, 41, 53, 56, 65, 84, 89, 129, 164, 165, 185, 189, · · ·

and the first few such d < 0 are

d = −4,−7,−24,−28,−43,−55,−63,−115,−123,−159,−163,−168,−172,−175,−187,−195, · · ·

Notice that the root number w(E(d)) = ψd(−19) = −1 (resp. +1), we know from Theorem 4.4 that

ran(E(d)) =

{
0, d < 0,

1, d > 0.

The explicit lower bounds in Proposition 4.8 show that at least 19
120 = 15.833% of real quadratic

twists of E have rank 1, and at least 19
120 = 15.833% of imaginary quadratic twists of E have rank

0 (compare the lower bound 19
240 = 7.917% in [Jam98, p. 640]).

5. The sextic twists family

5.1. The curves Ed. In this section we consider the elliptic curve of j-invariant 0,

E = 27a1 = X0(27) : y2 = x3 − 432.

We remind the reader that E has CM by the ring of integers Z[ζ3] of Q(
√
−3) and is isomorphic to

the Fermat cubic curve X3 + Y 3 = 1 via the transformation

X =
36− y

6x
, Y =

36 + y

6x
.
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Definition 5.1. For d ∈ Z, we denote Ed the d-th sextic twist of E,

Ed : y2 = x3 − 432d.

Notice that the d-th quadratic twist E(d) of E is given by

Ed3 = E(d) : y2 = x3 − 432d3,

and the d-th cubic twist of E is given by

Ed2 : y2 = x3 − 432d2.

Remark 5.2. The cubic twist Ed2 is isomorphic to the curve X3 + Y 3 = d and its rational points
provide solutions to the classical sum of two cubes problem. These equations have a long history,
see [ZK87, §1] or [Wat07, §1] for an overview.

Lemma 5.3. We have an isomorphism of GQ-representations

Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω).

Here ψd : GQ → Aut(F3) = {±1} is the quadratic character associated to the extension Q(
√
d)/Q

and ω = ψ−3 : GQ → Aut(F3) = {±1}.

Proof. Notice that under cubic twisting the associated modular forms are congruent mod (ζ3 − 1).
Since the Hecke eigenvalues are integers, we know that the associated modular forms are indeed
congruent mod 3. Hence cubic twisting does not change the semi-simplification of the mod 3 Galois
representations. Notice that Ed ∼= Ed7 is the d4-th sextic twist of the curve Ed3 , which is the same
as the d2-cubic twist of the quadratic twist E(d). Since E(Q)[3] ∼= Z/3Z, we have an exact sequence
of GQ-modules,

0→ F3 → E[3]→ F3(ω)→ 0.

Hence we have an exact sequence of GQ-modules

0→ F3(ψd)→ E(d)[3]→ F3(ψdω)→ 0.

The result then follows. �

Lemma 5.4. Assume that:
(1) d is a fundamental discriminant.
(2) d ≡ 0 (mod 3).
Then the root number of Ed is given by

w(Ed) =

{
− sign(d), d ≡ 3 (mod 9),

sign(d), d ≡ 6 (mod 9).

Proof. We use the closed formula for the local root numbers w`(Ed) in [Liv95, §9].
(1) Since d is a fundamental discriminant, we have either d ≡ 1 (mod 4), or d = 4d′ for some d′ ≡ 3

(mod 4), or d = 8d′ for some d′ ≡ 1 (mod 4). In the first case we have −432d = 24 · (−27d),
with 2 - (−27d). In the second case we have −432d = 26 · (−27d′), and in the third case we
have −432d = 27 · (−27d′), with 2 - (−27d′). The local root number formula gives

(44) w2(Ed) =

{
+1, 2 - d or 4||d,
−1, 8||d.
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(2) Let d = 3d′. Then −432d = 34 · (−16d′), with 3 - −16d′. Since the exponent of 3 is 4, which is
≡ 1 (mod 3), we know that w3(Ed) = +1.

(3) Notice that if 2 - d or 4||d, then the number of prime factors `|d such that ` ≥ 5 and ` ≡ 2

(mod 3) is odd if and only if |d′| ≡ 2 (mod 3). Similarly, if 8||d, then the number of prime
factors `|d such that ` ≥ 5 and ` ≡ 2 (mod 3) is odd if and only if |d′| ≡ 1 (mod 3). It follows
that if d′ ≡ 1 (mod 3), then∏

`≥5
w`(Ed) =

{
sign(d), 2 - d or 4||d,
− sign(d), 8||d.

If d′ ≡ 2 (mod 3), then the product of the local root numbers

(45)
∏
`≥5

w`(Ed) =

{
− sign(d), 2 - d or 4||d,
sign(d), 8||d.

Now the result follows from the product formula w(Ed) = −w2(Ed)w3(Ed)
∏
`≥5w`(Ed). �

Lemma 5.5. Assume that:
(1) d is a fundamental discriminant.
(2) d ≡ 2 (mod 3).
Then the root number of Ed is given by

w(Ed) =

{
sign(d), d ≡ 2 (mod 9),

− sign(d), d ≡ 5, 8 (mod 9).

Proof. The proof is similar to Lemma 5.4 using [Liv95, §9].
(1) Since d is a fundamental discriminant, we again have the formula (44).
(2) Notice that −432d = 33 · (−16d). Its prime-to-3 part −16d satisfies −16d ≡ ±2, 1 (mod 9) if

and only if d ≡ ±1, 5 (mod 9). It follows that the local root number

w3(Ed) =

{
+1, d ≡ 2 (mod 9),

−1, d ≡ 5, 8 (mod 9).

(3) Since d ≡ 2 (mod 3), we again have the formula (45).
Now the result again follows from the product formula. �

5.2. Weak Goldfeld conjecture for {Ed}. Since Ed is CM, we know that its conductor N(Ed) =

Nadd(Ed). When d is a fundamental discriminant, the curve Ed has additive reduction exactly at
the prime factors of 3d.

Theorem 5.6. Let K = Q(
√
dK) be an imaginary quadratic field satisfying the Heegner hypothesis

with respect to 3d. Let Pd ∈ Ed(K) be the associated Heegner point. Assume that:
(1) d is a fundamental discriminant.
(2) d ≡ 2 (mod 3) or d ≡ 3 (mod 9).
(3) If d > 0, then h3(−3d) = h3(dKd) = 1. If d < 0, then h3(d) = h3(−3dKd) = 1.
Then

(46) logωEd
Pd 6≡ 0 (mod 3).

In particular, Pd is of infinite order and Ed/K has both analytic and algebraic rank one.
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Proof. It follows by applying Theorem 2.1 for p = 3 and noticing that |Ẽns
d (F3)| = 3 since Ed has

additive reduction at 3. It remains to check that all the assumptions of Theorem 2.1 are satisfied. By
Lemma 5.3, we have E[3] is reducible with ψ = ψd. The condition that ψ(3) 6= 1 and (ψ−1ω)(3) 6= 1

is equivalent to that d ≡ 2 (mod 3) or d ≡ 3 (mod 9). For ` 6= 3 and `|Nadd(Ed), we have `|d, so
ψd(`) = 0. Finally, the requirement on the trivial 3-class numbers is exactly the assumption that
3 - B1,ψ−1

0 εK
B1,ψ0ω−1 by noticing that

(ψd)0 =

{
ψd, d > 0,

ψdKd, d < 0,

and using the formula for the Bernoulli numbers (23) (see also Corollary 3.3). �

Corollary 5.7. Assume we are in the situation of Theorem 5.6.

(1) If d > 0 and d ≡ 2 (mod 9), or d < 0 and d ≡ 3, 5, 8 (mod 9), then

ran(Ed/Q) = 0, ran(E
(dK)
d /Q) = 1.

(2) If d < 0 and d ≡ 2 (mod 9), or d > 0 and d ≡ 3, 5, 8 (mod 9), then

ran(Ed/Q) = 1, ran(E
(dK)
d /Q) = 0.

Proof. It follows immediately from Theorem 5.6 using the root number calculation in Lemmas 5.4
and 5.5. �

Corollary 5.8. The weak Goldfeld’s conjecture holds for the sextic twists family {Ed}. In fact, Ed
has analytic rank 0 (resp. 1) for at least 1/6 of fundamental discriminants d.

Proof. By Theorem 4.5, at least 1/3 of all (positive or negative) fundamental discriminants d satisfy
the assumptions of Theorem 5.6, and by Remark 4.6, for each of these d there is at least one
imaginary quadratic field K satisfying the Heegner hypothesis with respect to 3d and such that
h3(dKd) = 1 if d > 0 and h3(−3dKd) = 1 if d < 0. Thus d and K satisfy all of the assumptions
of Theorem 5.6. The final part of Theorem 4.5 implies that 1/4 of the fundamental discriminants
d considered above (which in turn comprise 1/3 of all fundamental discriminants) satisfy d ≡ i

(mod 9), for each i ∈ {2, 3, 5, 8}. Moreover 1/2 of these d give ran(Ed) = 0 (resp. 1) by Corollary
5.7. The desired density 1/6 then follows. �

Remark 5.9. One can also obtain ran(Ed) ∈ {0, 1} for many d’s which are not fundamental dis-
criminants. From the proof of Theorem 5.6 one sees that the fundamental discriminant assumption
can be relaxed by allowing the exponent of prime factors of d to be 3 or 5 (all we use is that Q(

√
d)

is ramified exactly at the prime factors of d). We assume d is a fundamental discriminant only to
simplify the root number computation in Lemmas 5.4 and 5.5.

5.3. The 3-part of the BSD conjecture over K. The goal of this subsection is to prove the
following theorem.

Theorem 5.10. Assume we are in the situation of Theorem 5.6. Assume the Manin constant of
Ed is coprime to 3. Then BSD(3) is true for Ed/K.
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By the Gross–Zagier formula, the BSD conjecture for Ed/K is equivalent to the equality ([GZ86,
V.2.2])

(47) uK · cEd ·
∏

`|N(Ed)

c`(Ed) · |Ш(Ed/K)|1/2 = [Ed(K) : ZPd],

where uK = |O×K/{±1}|, cEd is the Manin constant of Ed/Q, c`(Ed) = [Ed(Q`) : E0
d(Q`)] is the

local Tamagawa number of Ed and [Ed(K) : ZPd] is the index of the Heegner point Pd ∈ Ed(K).
From now on assume we are in the situation of Theorem 5.6. Since 3 splits in K, we know

K 6= Q(
√
−1) or Q(

√
−3), so uK = 1. Therefore the BSD conjecture for Ed/K is equivalent to the

equality

(48)
∏

`|N(Ed)

c`(Ed) · |Ш(Ed/K)|1/2 =
[Ed(K) : ZPd]

cEd
.

We will prove BSD(3) by computing the 3-part of both sides of (48) explicitly.

Lemma 5.11. We have Ed(K)[3] = 0.

Proof. By Lemma 5.3, we have Ed[3]ss ∼= F3(ψd) ⊕ F3(ψdω). Since neither ψd nor ψdω becomes
trivial when restricted to GK , we know that Ed(K)[3] = 0. �

Lemma 5.12. If `|N(Ed) and ` 6= 3 (equivalently, `|d), then 3 - c`(Ed).

Proof. By Lemma 5.3, we have Ed[3]ss ∼= F3(ψd)⊕F3(ψdω). Because ψd and ψdω are both nontrivial
at ` (in fact, ramified at `), we know that Ed(Q`)[3] = 0. Since Ed(Q`) has a pro-`-subgroup (` 6= 3)
of finite index and Ed(Q`) has trivial 3-torsion, we know that 3 - c`(Ed). �

Definition 5.13. Let F be any number field. Let L = {Lv} be a collection of subspaces Lv ⊆
H1(Fv, Ed[3]), where v runs over all places of L. We say L is a collection of local conditions if for
almost all v, we have Lv = H1

ur(Fv, Ed[3]) is the unramified subspace. Notice thatH1(Fv, Ed[3]) = 0,
if v | ∞. We define the Selmer group cut out by the local conditions L to be

H1
L(F,Ed[3]) := {x ∈ H1(F,Ed[3]) : resv(x) ∈ Lv, for all v}.

We will consider the following four types of local conditions:
(1) The Kummer conditions L given by Lv = im

(
E(Fv)/3E(Fv)→ H1(Fv, Ed[3])

)
. The 3-Selmer

group Sel3(Ed/F ) = H1
L(F,Ed[3]) is cut out by the Kummer conditions.

(2) The unramified conditions U given by Uv = H1
ur(Fv, Ed[3]).

(3) The strict conditions S given by Sv = Uv for v - 3 and Sv = 0 for v|3.
(4) The relaxed conditions R given by Rv = Uv for v - 3 and Rv = H1(Fv, Ed[3]) for v|3.

Lemma 5.14. H1
U (K,Ed[3]) = H1

S(K,Ed[3]) = 0.

Proof. By Shapiro’s lemma, we have

H1
U (K,Ed[3]) ∼= H1

U (Q, Ed[3])⊕H1
U (Q, E(dK)

d [3]).

By Lemma 5.3, we have an exact sequence

· · · → H1(Q,F3(ψd))→ H1(Q, Ed[3])→ H1(Q,F3(ψdω))→ · · · .

Restricting to the unramfied Selmer group we obtain a map

H1
U (Q, Ed[3])→ H1(Q,F3(ψdω))
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whose kernel and image consist of everywhere unramfied classes. It follows from class field theory
that

|H1
U (Q, Ed[3])| ≤ h3(d) · h3(−3d).

Similarly, we have
|H1
U (Q, E(dK)

d [3])| ≤ h3(dKd) · h3(−3dKd).

By the assumptions on the 3-class numbers in Theorem 5.6 and Scholz’s reflection theorem ([Sch32],
see also [Was97, 10.2]), we know that the four 3-class numbers appearing above are all trivial. Hence
H1
U (K,Ed[3]) = 0. Since by definition we have

H1
S(K,Ed[3]) ⊆ H1

U (K,Ed[3]),

we also know that H1
S(K,Ed[3]) = 0. �

Lemma 5.15. dimH1
R(K,Ed[3]) = 2.

Proof. It follows from [DDT97, Theorem 2.18] that

(49) dimH1
R(K,Ed[3])− dimH1

S(K,Ed[3]) =
1

2

∑
v|3

dimRv.

Consider v|3. Since 3 is split in K, we know that H1(Kv, Ed[3]) ∼= H1(Q3, Ed[3]). By Lemma 5.3
that Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω). Since ψd(3) 6= 1 and ψdω(3) 6= 1, we know that

H0(Q3, Ed[3]) = H2(Q3, Ed[3]) = 0.

It follows from the Euler characteristic formula that

dimH1(Q3, Ed[3]) = 2.

Namely, dimRv = 2. The result then follows from Lemma 5.14 and the formula (49). �

Lemma 5.16. Sel3(Ed/K) ∼= Z/3Z. In particular, Ш(Ed/K)[3] = 0.

Proof. We claim that Lv = Uv for any v - 3. In fact:
(1) If v - 3d∞, then Ed has good reduction at v and so Lv = H1

ur(Kv, Ed[3]) by [GP12, Lemma 6].
(2) If v|∞, then v is complex and H1(Kv, Ed[3]) = 0. So Lv = H1

ur(Kv, Ed[3]) = 0.
(3) If v|d, then v is split in K and thus Kv

∼= Q`. By Lemma 5.12, c`(E) is coprime to 3. It follows
that Lv = H1

ur(Kv, Ed[3]) by [GP12, Lemma 6].
It follows from the claim that

Sel3(Ed/K) ⊆ H1
R(K,Ed[3]).

So dim Sel3(Ed/K) ≤ 2 by Lemma 5.15.
By the Heegner hypothesis, the root number of Ed/K is −1. Since the 3-parity conjecture is

known for elliptic curves with a 3-isogeny ([DD11, Theorem 1.8]), we know that dim Sel3(Ed/K) is
odd and thus must be 1. Hence Sel3(Ed/K) ∼= Z/3Z as desired. �

Lemma 5.17. We have

c3(Ed) =

{
3, d ≡ 2 (mod 9),

1, d ≡ 3, 5, 8 (mod 9).

In either case we have ord3(c3(Ed)) = ord3

(
[Ed(K):ZPd]

cEd

)
.
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Proof. The first part follows directly from Tate’s algorithm [Sil94, IV.9] (see also the formula in
[Sat86, 0.5]).

Suppose ord3(c3(Ed)) = 0. We need to show that ord3([Ed(K) : ZPd]) = 0. If not, then since
Ed(K)[3] = 0 (Lemma 5.11), we know that there exists some Q ∈ Ed(K) such that 3Q = nPd for
some n coprime to 3. Let ωEd be the Néron differential of Ed and let logEd := logωEd

. By the very
definition of the Manin constant we have cEd · ωEd = ωEd and cEd · logωEd

= logEd . Since cEd is
assumed to be coprime to 3, we have up to a 3-adic unit,

|Ẽns
d (F3)| · logωEd

Pd

3
=
|Ẽns

d (F3)| · logEd Pd

3
= |Ẽns

d (F3)| · logEd(Q).

On the other hand, c3(Ed) · |Ẽns
d (F3)| ·Q lies in the formal group Êd(3OK3) and ord3(c3(Ed)) = 0,

we know that
|Ẽns

d (F3)| · logEd(Q) ∈ 3OK3 ,

which contradicts the formula (46).
Now suppose ord3(c3(Ed)) = 1. The same argument as the previous case shows that we have

ord3([Ed(K) : ZPd]) ≤ 1. It remains to show that

ord3([Ed(K) : ZPd]) 6= 0.

Assume otherwise, then the image of Pd in Ed(K)/3Ed(K) is nontrivial, and hence its image in
Sel3(Ed/K) ∼= Z/3Z is nontrivial. We now analyze its local Kummer image at 3 and derive a
contradiction.

Since c3(Ed) = 3 and Ẽns
d (F3) = Z/3Z, we know that Ed(Q3)/Êd(3Z3) is a group of order 9, so

Ed(Q3)/Êd(3Z3) ∼= Z/9Z or Z/3Z× Z/3Z.

Since dimH1(Q3, Ed[3]) = 2 and the local Kummer condition is a maximal isotropic subspace of
H1(Q3, Ed[3]) under the local Tate pairing, we know that Ed(Q3)/3Ed(Q3) = Z/3Z. So the only
possibility is that

(50) Ed(Q3)/Êd(3Z3) ∼= Z/9Z.

Now by the formula (46), we know that Pd 6∈ Êd(3OK3), but 3Pd ∈ Êd(3OK3). Using K3
∼= Q3 and

(50), we deduce that Pd ∈ 3Ed(K3). So the local image of Pd in Ed(K3)/3Ed(K3) is trivial.
Therefore Sel3(Ed/K) is equal to the strict Selmer groupH1

S(K,Ed[3]), a contradiction to Lemmas
5.14 and 5.16. �

Proof of Theorem 5.10. Theorem 5.10 follows immediately from the equivalent formula (48) and
Lemmas 5.12, 5.16 and 5.17. �

6. Cubic twists families

In this section we consider the elliptic curve Ed/Q : y2 = x3 − 432d of j-invariant 0, where d is
any 6th-power-free integer. Recall that for a cube-free positive integer D, the D-th cubic twist Ed
is the curve EdD2 (cf. Definition 5.1). For r ≥ 0, we define

Cr(Ed, X) = {D < X : D > 0 cube-free, ran(EdD2) = r}

to be the counting function for the number of cubic twists of Ed of analytic rank r. Recall that by
Lemma 5.3, Ed[3]ss ∼= F3(ψd)⊕ F3(ψdω).
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Theorem 6.1. Assume for any prime `|N(Ed), we have ψd(`) 6= 1 and ψdω(`) 6= 1. Assume there
exists an imaginary quadratic field K satisfying the Heegner hypothesis for N(Ed) such that
(1) 3 is split in K.
(2) If d > 0, then h3(−3d) = h3(dKd) = 1. If d < 0, then h3(d) = h3(−3dKd) = 1.
Then for r ∈ {0, 1}, we have

Cr(Ed, X)� X

log7/8(X)
.

Remark 6.2. Notice that when 3 - d is a fundamental discriminant, the conditions ψd(`) 6= 1 and
ψdω(`) 6= 1 for `|N(Ed) are automatically satisfied.

Proof. We consider the following set S consisting of primes ` - 6N(Ed) such that
(1) ` is split in K.
(2) ψd(`) = −1 (` is inert in Q(

√
d)).

(3) ω(`) = 1 (` is split in Q(
√
−3)).

Since our assumption implies that the three quadratic fields K, Q(
√
d) and Q(

√
−3) are linearly

disjoint, we know that the set of primes S has density α = (12)3 = 1
8 by Chebotarev’s density

theorem.
Let N be the set of integers consisting of square-free products of primes in S. Then for any

D ∈ N . We have EdD2 [3]ss ∼= F3(ψd) ⊕ F3(ψdω). For any `|N(EdD2), we have ψd(`) 6= 1 and
ψdω(`) 6= 1 by construction. The imaginary quadratic field K also satisfies the Heegner hypothesis
for N(EdD2). Since the relevant 3-class numbers are trivial, we can apply Theorem 2.1 (p = 3) to
EdD2 and conclude that

ran(EdD2/K) = 1.

The root number w(EdD2) is +1 (resp. −1) for a positive proportion of D ∈ N , so we have for
r ∈ {0, 1},

Cr(Ed, X)� #{D ∈ N : D < X}.
By a standard application of Ikehara’s tauberian theorem (see [KL16, 3.3]), we know that

#{D ∈ N : D < X} ∼ c · X

log1−αX
,

for some c > 0. Here α = 1
8 is the density of the set of primes S. The results then follow. �

Example 6.3. Consider d = 22 ·33 = 108. Then Ed = 144a1 : y2 = x3−1. The field K = Q(
√
−23)

satisfies the Heegner hypothesis for N = 144 and 3 is split in K. We compute the 3-class numbers
h3(−3d) = h3(−1) = 1 and h3(dKd) = h3(−69) = 1. So the assumptions of Theorem 6.1 are
satisfied. The set N in the proof of Theorem 6.1 consists of square-free products of the primes

31, 127, 139, 151, 163, 211, 223, 271, 307, 331, 439, 463, 487, 499, · · ·

Notice that D ∈ N implies that D ≡ 1 (mod 3). One can then compute the root number of the
cubic twist

EdD2 : y2 = x3 −D2

to be

w(EdD2) =

{
+1, D ≡ 1, 4 (mod 9),

−1, D ≡ 7 (mod 9).
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We conclude that for D ∈ N ,

ran(EdD2) =

{
0, D ≡ 1, 4 (mod 9),

1, D ≡ 7 (mod 9).
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