CONGRUENCES BETWEEN HEEGNER POINTS AND QUADRATIC TWISTS OF ELLIPTIC CURVES

DANIEL KRIZ AND CHAO LI

Abstract. We establish a congruence formula between \(p \)-adic logarithms of Heegner points for two elliptic curves with the same mod \(p \) Galois representation. As a first application, we use the congruence formula when \(p = 2 \) to explicitly construct many quadratic twists of analytic rank zero (resp. one) for a wide class of elliptic curves \(E \). We show that the number of twists of \(E \) up to twisting discriminant \(X \) of analytic rank zero (resp. one) is \(\gg X/\log^{5/6} X \), improving the current best general bound towards Goldfeld’s conjecture due to Ono–Skinner (resp. Perelli–Pomykala). We also prove the 2-part of the Birch and Swinnerton-Dyer conjecture for many rank zero and rank one twists of \(E \), which was only recently established for specific CM elliptic curves \(E \).

1. Introduction

1.1. Congruences between \(p \)-adic logarithms of Heegner points. The idea of using congruences to study special values of \(L \)-functions is an old one and has proved to be effective in the study of the arithmetic of elliptic curves. To mention a recent instance, the first and second reciprocity laws of Bertolini–Darmon [BD05] can be viewed as the arithmetic incarnation of a congruence between two \(L \)-functions, one of which has root number \(-1\) and the other \(+1\). These two reciprocity laws play a key role in the recent breakthrough of Bhargava, Skinner and W. Zhang [BSZ14] establishing that a majority of elliptic curves over \(\mathbb{Q} \) satisfy the rank part of the Birch and Swinnerton-Dyer conjecture.

The first main goal of this article is to provide yet another instance of congruences between special values of \(L \)-functions. We consider the case when both of the \(L \)-functions in the congruence have root number \(-1\). This time, the arithmetic incarnation of the special values is provided by the \(p \)-adic logarithm of Heegner points, as considered by Bertolini–Darmon–Prasanna [BDP13] and Liu–S. Zhang–W. Zhang [LZZ15].

Let us be more precise. Let \(E/\mathbb{Q} \) be an elliptic curve of conductor \(N \). Throughout this article, we will use \(K = \mathbb{Q}(\sqrt{d_K}) \) to denote an imaginary quadratic field of fundamental discriminant \(d_K \) satisfying the Heegner hypothesis for \(N \):

\[
\text{each prime factor } \ell \text{ of } N \text{ is split in } K.
\]

We denote by \(P \in E(K) \) the corresponding Heegner point, defined up to sign and torsion with respect to a fixed modular parametrization \(\pi_E : X_0(N) \rightarrow E \) (see [Gro84]). Let

\[
f(q) = \sum_{n=1}^{\infty} a_n(E)q^n \in S_{\text{new}}^2(\Gamma_0(N))
\]
be the normalized newform associated to \(E \). Let \(\omega_E \in \Omega_{E/Q}^1 := H^0(E/Q, \Omega^1) \) such that
\[
\pi_E^*(\omega_E) = f(q) \cdot dq/q.
\]
We denote by \(\log_{\omega_E} \) the formal logarithm associated to \(\omega_E \). Notice \(\omega_E \) may differ from the Néron differential by a scalar when \(E \) is not the optimal curve in its isogeny class.

Throughout this article, we fix an algebraic closure \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \), and an algebraic closure \(\overline{\mathbb{Q}_p} \) of \(\mathbb{Q}_p \) (which is equivalent to fixing a prime of \(\overline{\mathbb{Q}} \) above \(p \)). View all number fields, i.e. finite extensions \(L/\mathbb{Q} \), as subfields \(L \subset \overline{\mathbb{Q}} \). Let \(\mathbb{C}_p \) denote the \(p \)-adic completion of \(\overline{\mathbb{Q}_p} \), and let \(L_p \) denote the \(p \)-adic completion of \(L \subset \mathbb{C}_p \). Now we are ready to state the following main theorem on the congruence between \(p \)-adic logarithms of Heegner points.

Theorem 1.1. Let \(E \) and \(E' \) be two elliptic curves over \(\mathbb{Q} \) of conductors \(N \) and \(N' \) respectively. Suppose \(p \) is a prime such that there is an isomorphism of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \)-representations
\[
E[p^m] \cong E'[p^m]
\]
for some \(m \geq 1 \). Let \(K \) be an imaginary quadratic field satisfying the Heegner hypothesis for both \(N \) and \(N' \). Let \(P \in E(K) \) and \(P' \in E'(K) \) be the Heegner points. Assume \(p \) is split in \(K \). Then we have
\[
\left(\prod_{\ell \mid pNN'/M} \left| \tilde{E}^\text{ns}(\mathbb{F}_\ell) \right|_{\ell} \right) \cdot \log_{\omega_E} P = \pm \left(\prod_{\ell \mid pNN'/M} \left| \tilde{E}^\text{ns}(\mathbb{F}_\ell) \right|_{\ell} \right) \cdot \log_{\omega_{E'}} P' \pmod{p^m \mathcal{O}_{K_p}}.
\]
Here
\[
M = \prod_{\ell \mid NN'} a_{\ell}(E) a_{\ell}(E') \pmod{p^m}.
\]

Remark 1.2. Recall that \(\tilde{E}^\text{ns}(\mathbb{F}_\ell) \) denotes the number of \(\mathbb{F}_\ell \)-points of the nonsingular part of the mod \(\ell \) reduction of \(E \), which is \(\ell + 1 - a_\ell(E) \) if \(\ell \nmid N \), \(\ell \equiv \pm 1 \pmod{\ell} \) if \(\ell \mid N \) and \(\ell \) if \(\ell^2 \mid N \). Not surprisingly, the factors in the above congruence can be understood as the result of removing the Euler factors of \(L(E,1) \) and \(L(E',1) \) at bad primes.

Remark 1.3. The same type of congruence holds for modular forms of weight \(k \geq 2 \), where the \(p \)-adic logarithm of Heegner points is replaced by the \(p \)-adic Abel–Jacobi image of generalized Heegner cycles defined in [BDP13]. Here we only treat the case of Heegner points for brevity. We stress that the proof of Theorem 1.1 (and its higher weight generalization) is direct and does not use the deep \(p \)-adic Gross–Zagier formula of [BDP13] (see 1.4.1).

Remark 1.4. When \(p \) is large enough, the Frey–Mazur conjecture asserts that elliptic curves over \(\mathbb{Q} \) with isomorphic mod \(p \) Galois representation must be isogenous, which would in particular imply that Theorem 1.1 holds for large enough \(p \). On the other hand, when \(p \) is small (say \(p \leq 17 \)), one can find non-isogenous elliptic curves with the same mod \(p \) Galois representation. For example, see the work of Rubin and Silverberg [RS01], [RS95], [Sil97] for explicit families of elliptic curves with a given mod 2, 3, 4 or 5 Galois representation.

As a first application of the congruence between Heegner points provided by Theorem 1.1, we investigate a special case: the quadratic twists family of a given elliptic curve without rational 2-torsion. We exploit the fact that quadratic twisting gives rise to the same mod 2 Galois representation. Using the congruence of Heegner points mod 2, we deduce new results towards Goldfeld’s conjecture and the 2-part of the BSD conjecture.
Further applications, including to quadratic twists of elliptic curves with rational 2-torsion, to families sharing the same mod 3, 4, 5 Galois representation and to families of elliptic curves of \(j\)-invariant 0 or 1728, will be given in a future work.

1.2. Application to Goldfeld’s conjecture. In the remaining of the introduction, we assume

\[E(Q)[2] = 0, \text{ or equivalently, } \text{Gal}(Q(E[2])/Q)) \cong S_3 \text{ or } \mathbb{Z}/3\mathbb{Z}. \]

Notice that this assumption is mild and is satisfied by 100% of all elliptic curves (when ordered by naive height).

Now we restrict our attention to the following well-chosen set of twisting discriminants.

Definition 1.5. Given an imaginary quadratic field \(K \) satisfying the Heegner hypothesis for \(N \), we define the set \(S \) consisting of primes \(\ell \nmid 2N \) such that

1. \(\ell \) splits in \(K \).
2. \(\text{Frob}_\ell \in \text{Gal}(Q(E[2])/Q) \) has order 3.

We define \(N \) to be the set of all integers \(d \equiv 1 \pmod{4} \) such that \(|d| \) is a square-free product of primes in \(S \).

Remark 1.6. By Chebotarev’s density theorem, the set of primes \(S \) has Dirichlet density \(\frac{1}{6} = \frac{1}{2} \cdot \frac{1}{3} \) or \(\frac{1}{3} = \frac{1}{2} \cdot \frac{2}{3} \) depending on \(\text{Gal}(Q(E[2])/Q)) \cong S_3 \) or \(\mathbb{Z}/3\mathbb{Z} \). In particular, there are infinitely many elements of \(N \) with \(k \) prime factors for any fixed \(k \geq 1 \).

For \(d \in N \), we consider \(E(d)/Q \), the quadratic twist of \(E/Q \) by \(Q(\sqrt{d}) \). Since \(d \equiv 1 \pmod{4} \), we know that 2 is unramified in \(Q(\sqrt{d}) \) and \(E(d)/Q \) has conductor \(Nd^2 \). Hence \(K \) also satisfies the Heegner hypothesis for \(Nd^2 \). Let \(P(d) \in E(d)(K) \) be the corresponding Heegner point. Since

\[E[2] \cong E(d)[2], \]

we can apply Theorem 1.1 to \(E \) and \(E(d), p = 2 \) and obtain the following theorem.

Theorem 1.7. Suppose \(E/Q \) is an elliptic curve with \(E(Q)[2] = 0 \). Let \(K \) be an imaginary quadratic field satisfying the Heegner hypothesis for \(N \). Assume

\[
\text{2 splits in } K \text{ and } \frac{\hat{E}^{\ns}(F_2)}{2} \cdot \log_{E(d)}(P) \equiv 0 \pmod{2}.
\]

Then for any \(d \in N \):

1. We have

\[
\frac{\hat{E}^{\ns}(F_2)}{2} \cdot \log_{E(d)}(P) \equiv 0 \pmod{2}.
\]

In particular, \(P(d) \in E(d)(K) \) is of infinite order and \(E(d)/K \) has both algebraic and analytic rank one.

2. The rank part of the BSD conjecture is true for \(E(d)/Q \) and \(E(d+K)/Q \). One of them has both algebraic and analytic rank one and the other has both algebraic and analytic rank zero.

3. \(E(d)/Q \) (resp. \(E(d-K)/Q \)) has the same rank as \(E/Q \) if and only if \(\chi_d(-N) = 1 \) (resp. \(\chi_d(-N) = -1 \)), where \(\chi_d \) is the quadratic character associated to \(Q(\sqrt{d})/Q \).

Remark 1.8. Assumption \(\text{[\textcircled{2}]} \) imposes several constraints on \(E/Q \) (see 1.4.3), but it is satisfied for a wide class of elliptic curves. See \(\text{[\textcircled{2}]} \) for examples.
From this we will deduce that there are "many" rank zero and rank one twists of the elliptic curve considered in Theorem 1.7. To put things in context, for a given elliptic curve E/\mathbb{Q}, we let

$$N_r(E, X) = \# \{d : |d| < X, \text{ord}_{s=1} L(E^{(d)}, s) = r \},$$

where d runs over fundamental discriminants of quadratic fields. The celebrated conjecture of Goldfeld [Gol79] (see also Katz–Sarnak [KS99]) asserts that for $r = 0, 1$,

$$N_r(E, X) \sim \frac{1}{2} \sum_{|d| < X} 1, \quad X \to \infty.$$

Remark 1.9. Very little is known about Goldfeld’s conjecture. The weak Goldfeld conjecture,

$$N_r(E, X) \gg X, \quad r = 0, 1,$$

i.e., that a positive proportion of quadratic twists of E/\mathbb{Q} have rank $r = 0, 1$, is now known for any curve with reducible mod 3 representation $E[3]$ (see [KL16]), and for the congruent number curve ([Smi16]). Previously, the weak Goldfeld conjecture was established for a large class of E with rational 3-torsion (see [Jam98], [Vat98a] for specific examples, and [Vat99], [BJK09] and [Kri16] for large infinite families of examples). We remark that Heath-Brown [HB04] proved the weak Goldfeld conjecture conditional on GRH. We also remark that [BSZ14] establishes that a positive proportion have analytic rank $r = 0, 1$ for the family of all elliptic curves over \mathbb{Q} (or more generally, families defined by congruence conditions), which however does not apply to quadratic twists families.

When $r = 0$, the best unconditional result towards Goldfeld’s conjecture is due to Ono–Skinner [OS98]: they showed that for any elliptic curve E/\mathbb{Q},

$$N_0(E, X) \gg \frac{X}{\log X}.$$

When $E(\mathbb{Q})[2] = 0$, Ono [Ono01] improved this result to

$$N_0(E, X) \gg \frac{X}{\log^{1-\alpha} X},$$

for some $0 < \alpha < 1$ depending on E. When $r = 1$, even less is known. The best general result is due to Perelli–Pomykala [PP97] using analytic methods: they showed that for any $\varepsilon > 0$,

$$N_1(E, X) \gg X^{1-\varepsilon}.$$

Now we are ready to state following consequence towards Goldfeld’s conjecture for the elliptic curves under consideration, improving the current general bounds mentioned above.

Theorem 1.10. Let E/\mathbb{Q} be an elliptic curve with $E(\mathbb{Q})[2] = 0$. Assume there is an imaginary quadratic field K satisfying the Heegner hypothesis for N and Assumption \star. Then for $r = 0, 1$, we have

$$N_r(E, X) \gg \begin{cases} X & \text{if } \text{Gal}(Q(E[2])/\mathbb{Q}) \cong S_3, \\ \frac{X}{\log^{5/6} X} & \text{if } \text{Gal}(Q(E[2])/\mathbb{Q}) \cong \mathbb{Z}/3\mathbb{Z} \end{cases}.$$

Remark 1.11. Mazur–Rubin [MR10] proved similar results for the number of twists of 2-Selmer rank 0, 1. We remark that it however does not have the same implication for analytic rank $r = 0, 1$ (or algebraic rank 1), since the p-converse to the theorem of Gross–Zagier and Kolyvagin for $p = 2$ is not known.
Remark 1.12. For certain elliptic curves with $E(\mathbb{Q})[2] = \mathbb{Z}/2\mathbb{Z}$, the work of Coates–Y. Li–Tian–Zhai [CLTZ15] also improves the current bounds, using a generalization of the classical method of Heegner and Birch for prime twists.

1.3. Application to the 2-part of the BSD conjecture. The BSD conjecture predicts the precise formula
\[
L^{(r)}(E/\mathbb{Q}, 1) = \prod_p c_p(E/\mathbb{Q}) \cdot |\Sha(E/\mathbb{Q})|
\]
for the leading coefficient of the Taylor expansion of $L(E/\mathbb{Q}, s)$ at $s = 1$ (here r denotes the analytic rank) in terms of various important arithmetic invariants of E (see [Gro11] for detailed definitions).

The odd-part of the BSD conjecture has recently been established in great generality when $r \leq 1$, but very little (beyond numerical verification) is known concerning the 2-part of the BSD conjecture (BSD(2) for short). A notable exception is Tian’s breakthrough [Tia14] on the congruent number problem, which establishes BSD(2) for many quadratic twists of $X_0(32)$ when $r \leq 1$. Coates outlined a program ([Coa13, p.35]) generalizing Tian’s method for establishing BSD(2) for many quadratic twists of a general elliptic curve when $r \leq 1$, which has succeeded for two more examples $X_0(49)$ ([CLTZ15]) and $X_0(36)$ ([CCL16]). We remark that all these three examples are CM with rational 2-torsion.

We now can state the following consequence on BSD(2) when $r \leq 1$ for all the quadratic twists under consideration, at least when the local Tamagawa number at 2 is odd.

Theorem 1.13. Let E/\mathbb{Q} be an elliptic curve with $E(\mathbb{Q})[2] = 0$. Assume there is an imaginary quadratic field K satisfying the Heegner hypothesis for N and Assumption \star. Further assume that the local Tamagawa number $c_2(E)$ is odd. If E has additive reduction at 2, further assume its Manin constant is odd.

1. If BSD(2) is true for E/K, then BSD(2) is true for $E^{(d)}/K$, for any $d \in \mathbb{N}$.
2. If BSD(2) is true for E/\mathbb{Q} and $E^{(dK)}/\mathbb{Q}$, then BSD(2) is true for $E^{(d)}/\mathbb{Q}$ and $E^{(d-dK)}/\mathbb{Q}$, for any $d \in \mathbb{N}$ such that $\chi_d(-N) = 1$.

Remark 1.14. BSD(2) for a single elliptic curve (of small conductor) can be proved by numerical calculation when $r \leq 1$ (see [Mil11] for curves of conductor at most 5000). Theorem 1.13 then allows one to deduce BSD(2) for many of its quadratic twists (of arbitrarily large conductor). See §2 for examples.

Remark 1.15. Manin’s conjecture asserts the Manin constant for any optimal curve is 1, which would imply that the Manin constant for E is odd since E is assumed to have no rational 2-torsion. Cremona has proved Manin’s conjecture for all optimal curves of conductor at most 380000 (see [ARS06, Theorem 2.6] and the update at [http://johncremona.github.io/ecdata/#optimality]).

1.4. Remarks on the proofs. We now remark on the strategy of the proofs and explain the content of each section.

1.4.1. The main congruence (Theorem 1.1) is proved in §3. We include a detailed sketch of the proof in §3.1. Since there is no extra difficulty, we prove a slightly more general version (Theorem 3.7) for GL_2-type abelian varieties. From the congruent Galois representations, we deduce that the coefficients of the associated modular forms are congruent away from the bad primes in pNN'/M. After applying suitable stabilization operators at primes in NN'/M, we obtain p-adic...
Theorem 1.7 is proved in §1.1. It follows from the main congruence by showing the extra Euler factors at all primes in the well-chosen set S (Definition 1.5) are all 2-adic units.

1.4.4. The application to BSD(2) over K (Theorem 1.13 (1)) is proved in §5. Under Assumption \bigstar and the assumption that $c_2(E)$ is odd, the Heegner point $P \in E(K)$ is indivisible by 2 (Lemma 5.1), equivalently, all the local Tamagawa numbers of E are odd, and the 2-Selmer group $\text{Sel}_2(E/K)$ has rank one (Corollary 5.2). We are able to deduce that all the local Tamagawa numbers of $E^{(d)}$ are also odd (Lemma 5.3), and $\text{Sel}_2(E^{(d)}/K)$ also has rank one (Lemma 5.6). These are consequences of the primes in the well-chosen set S being silent in the sense of Mazur–Rubin [MR13]. Notice that $\text{Sel}_2(E^{(d)}/K)$ having rank one predicts that $E^{(d)}(K)$ has rank one and $\text{III}(E^{(d)}/K)[2]$ is trivial, though it is not known in general how to show this directly (Remark 1.11). The advantage here is that we know a priori from the mod 2 congruence that the Heegner point $P^{(d)} \in E^{(d)}(K)$ is also indivisible by 2. Hence the prediction is indeed true and implies BSD(2) for $E^{(d)}/K$ (Corollary 5.5).

1.5. Acknowledgments. We are grateful to J. Coates, B. Mazur and W. Zhang for their interest and helpful comments. The examples in this article are computed using Sage ([Sag16]).
2. Examples

In this section we illustrate our application to Goldfeld’s conjecture and the 2-part of the BSD conjecture by providing examples of E/\mathbb{Q} and K which satisfy Assumption \star.

Let us first consider curves E/\mathbb{Q} of rank one.

Example 2.1. Consider the curve $37a1$ in Cremona’s table,

$$E = 37a1 : y^2 + y = x^3 - x,$$

It is the rank one optimal curve over \mathbb{Q} of smallest conductor ($N = 37$). Take

$$K = \mathbb{Q}(\sqrt{-7}),$$

the imaginary quadratic field with smallest $|d_K|$ satisfying the Heegner hypothesis for N such that 2 is split in K. The Heegner point $P = (0, 0) \in E(K)$ generates $E(\mathbb{Q}) = E(K) \cong \mathbb{Z}$. Since E is optimal with Manin constant 1, we know that ω_E is equal to the Néron differential. The formal logarithm associated to ω_E is

$$\log_{\omega_E}(t) = t + 1/2 \cdot t^4 - 2/5 \cdot t^5 + 6/7 \cdot t^7 - 3/2 \cdot t^8 + 2/3 \cdot t^9 + \cdots$$

We have $|\widetilde{E}(\mathbb{F}_2)| = 5$ and the point $5P = (1/4, -5/8)$ reduces to $\infty \in \widetilde{E}(\mathbb{F}_2)$. Plugging in the parameter $t = -x(5P)/y(5P) = 2/5$, we know that up to a 2-adic unit,

$$\log_{\omega_E} P = \log_{\omega_E} 5P = 2 + 2^5 + 2^6 + 2^8 + 2^9 + \cdots \in 2\mathbb{Z}^\times.$$

Hence

$$\frac{|\widetilde{E}(\mathbb{F}_2)| \cdot \log_{\omega_E} P}{2} \in 2\mathbb{Z}^\times$$

and (\star) is satisfied. The set \mathcal{N} consists of square-free products of the signed primes

$-11, 53, -71, -127, 149, 197, -211, -263, 337, -359, 373, -379, -443, -571, -599, 613, \cdots$

For any $d \in \mathcal{N}$, we deduce:

1. The rank part of BSD conjecture is true for $E^{(d)}$ and $E^{(-7d)}$ by Theorem 1.7.

2. Since $\Delta(E) > 0$, we know from Corollary 6.2 that

$$\begin{cases}
\text{rank } E^{(d)}(\mathbb{Q}) = 1, & \text{rank } E^{(-7d)}(\mathbb{Q}) = 0, \quad d > 0, \\
\text{rank } E^{(d)}(\mathbb{Q}) = 0, & \text{rank } E^{(-7d)}(\mathbb{Q}) = 1, \quad d < 0.
\end{cases}$$

3. Since $\text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q})) \cong S_3$, it follows from Theorem 1.10 that

$$N_r(E, X) \gg \frac{X}{\log^{5/6} X}, \quad r = 0, 1.$$

4. Since BSD(2) is true for E/\mathbb{Q} and $E^{(-7)}/\mathbb{Q}$ by numerical verification, it follows from Theorem 1.13 that the BSD(2) is true for $E^{(d)}$ and $E^{(-7d)}$ when $d > 0$.

Example 2.2. As discussed in §1.4.3, a necessary condition for (\star) is that the local Tamagawa numbers $c_p(E)$ are all odd for $p \neq 2$. Another necessary condition is that the formal group of E at 2 cannot be isomorphic to \mathbb{G}_m: this due to the usual sublety that the logarithm on \mathbb{G}_m sends $1 + 2\mathbb{Z}_2$ into $4\mathbb{Z}_2$ (rather than $2\mathbb{Z}_2$). We search for rank one optimal elliptic curves with $E(\mathbb{Q})[2] = 0$ satisfying these two necessary conditions. There are 38 such curves of conductor ≤ 300. For each curve, we choose K with smallest $|d_K|$ satisfying the Heegner hypothesis for N and such that 2 is...
split in K. Then 31 out of 38 curves satisfy \bigstar. See Table 1. The first three columns list E, d_K and the local Tamagawa number $c_2(E)$ at 2 respectively. A check-mark in the last column means that \bigstar holds, in which case Theorems 1.7, 1.10 apply and the improved bound towards Goldfeld’s conjecture holds. If $c_2(E)$ is further odd (true for 23 out of 31), then the application to BSD(2) (Theorem 1.13) also applies.

Table 1. Assumption \bigstar for rank one curves

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>d_K</th>
<th>$c_2(E)$</th>
<th></th>
<th>E</th>
<th>d_K</th>
<th>$c_2(E)$</th>
<th></th>
<th>E</th>
<th>d_K</th>
<th>$c_2(E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>148a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>208a1</td>
<td>-23</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>43a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>152a1</td>
<td>-15</td>
<td>4</td>
<td>✓</td>
<td>208b1</td>
<td>-23</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>88a1</td>
<td>-7</td>
<td>4</td>
<td>✓</td>
<td>155a1</td>
<td>-79</td>
<td>1</td>
<td>✓</td>
<td>212a1</td>
<td>-7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>91a1</td>
<td>-55</td>
<td>1</td>
<td>✓</td>
<td>155c1</td>
<td>-79</td>
<td>1</td>
<td>✓</td>
<td>216a1</td>
<td>-23</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>91b1</td>
<td>-55</td>
<td>1</td>
<td>✓</td>
<td>163a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>219a1</td>
<td>-23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>92b1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>172a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>219b1</td>
<td>-23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>101a1</td>
<td>-23</td>
<td>1</td>
<td>✓</td>
<td>176c1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>232a1</td>
<td>-7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>123a1</td>
<td>-23</td>
<td>1</td>
<td>✓</td>
<td>184a1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>236a1</td>
<td>-23</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>123b1</td>
<td>-23</td>
<td>1</td>
<td>✓</td>
<td>184b1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>243a1</td>
<td>-23</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>124a1</td>
<td>-15</td>
<td>3</td>
<td>✓</td>
<td>189a1</td>
<td>-47</td>
<td>1</td>
<td>✓</td>
<td>244a1</td>
<td>-15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>131a1</td>
<td>-23</td>
<td>1</td>
<td>✓</td>
<td>189b1</td>
<td>-47</td>
<td>1</td>
<td>✓</td>
<td>248a1</td>
<td>-15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>141a1</td>
<td>-23</td>
<td>1</td>
<td>✓</td>
<td>196a1</td>
<td>-31</td>
<td>3</td>
<td>✓</td>
<td>248c1</td>
<td>-15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>141d1</td>
<td>-23</td>
<td>1</td>
<td>✓</td>
<td>197a1</td>
<td>-7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark 2.3. There is one CM elliptic curve in Table 1 namely $E = 243a1$ with j-invariant 0, which seems to be only j-invariant of CM elliptic curves over \mathbb{Q} for which \bigstar holds.

Next let us consider curves E/\mathbb{Q} of rank zero.

Example 2.4. Consider

$$E = X_0(11) = 11a1 : y^2 + y = x^3 - x^2 - 10x - 20,$$

the optimal elliptic curve over \mathbb{Q} of smallest conductor ($N = 11$). Take

$$K = \mathbb{Q}(\sqrt{-7}),$$

the imaginary quadratic field with smallest $|d_K|$ satisfying the Heegner hypothesis for N such that 2 is split in K. The Heegner point

$$P = \left(-\frac{1}{2}\sqrt{-7} + \frac{1}{2}, -2\sqrt{-7} - 2\right) \in E(K)$$

generates the free part of $E(K)$. Since E is optimal with Manin constant 1, we know that ω_E is equal to the Néron differential. The formal logarithm associated to ω_E is

$$\log_{\omega_E}(t) = t - 1/3 \cdot t^3 + 1/2 \cdot t^4 - 19/5 \cdot t^5 - t^6 + 5/7 \cdot t^7 - 27/2 \cdot t^8 + 691/9 \cdot t^9 + \cdots$$

We have $|\tilde{E}(\mathbb{F}_2)| = 5$ and the point $5P = \left(-\frac{3}{4}, -\frac{11}{8}\sqrt{-7} - \frac{1}{2}\right)$ reduces to $\infty \in \tilde{E}(\mathbb{F}_2)$. The prime 2 splits in K as

$$(2) = \left(-\frac{1}{2}\sqrt{-7} + \frac{1}{2}\right) \cdot \left(\frac{1}{2}\sqrt{-7} + \frac{1}{2}\right)$$
and the parameter \(t = -x(5P)/y(5P) \) has valuation 1 for both primes above 2. Plugging in \(t \), we find that

\[
\log_{\omega_E} P \in 2\mathcal{O}_{K_2}^x.
\]

Hence

\[
\frac{[\hat{E}(\mathbb{F}_2)] \cdot \log_{\omega_E} P}{2} \in \mathcal{O}_{K_2}^x
\]

and (★) is satisfied. The set \(\mathcal{N} \) consists of square-free products of the signed primes

For any \(d \in \mathcal{N} \), we deduce:

1. The rank part of BSD conjecture is true for \(E^{(d)} \) and \(E^{(-7d)} \) by Theorem 1.7.
2. Since \(\Delta(E) < 0 \), we know from Corollary 6.2 that

\[
\text{rank } E^{(d)}(\mathbb{Q}) = 0, \quad \text{rank } E^{(-7d)}(\mathbb{Q}) = 1.
\]

3. Since \(\text{Gal}(\mathbb{Q}(E[2])/\mathbb{Q})) \cong S_3 \), it follows from Theorem 1.10 that

\[
N_r(E, X) \gg \frac{X}{\log^{5/6} X}, \quad r = 0, 1.
\]

4. Since BSD(2) is true for \(E/\mathbb{Q} \) and \(E^{(-7)}/\mathbb{Q} \) by numerical verification, it follows from Theorem 1.13 that the BSD(2) is true for \(E^{(d)} \) and \(E^{(-7d)} \).

Example 2.5. For rank zero curves, the computation of Heegner points is most feasible when \(|d_K| \) is small. Thus we fix \(d_K = -7 \) and search for rank zero optimal curves with \(E(\mathbb{Q})[2] = 0 \) satisfying the two necessary conditions in Example 2.2 and such that \(K = \mathbb{Q}(\sqrt{-7}) \) satisfies the Heegner hypothesis. There are 39 such curves of conductor \(\leq 750 \). See Table 2. Then 28 out of 39 curves satisfy (★), in which case Theorems 1.7, 1.10 apply and the improved bound towards Goldfeld’s conjecture holds. If \(c_2(E) \) is further odd (true for 24 out of 28), then the application to BSD(2) (Theorem 1.13) also applies.

Table 2. Assumption (★) for rank zero curves

<table>
<thead>
<tr>
<th>(E)</th>
<th>(d_K)</th>
<th>(c_2(E))</th>
<th>★</th>
<th>(E)</th>
<th>(d_K)</th>
<th>(c_2(E))</th>
<th>★</th>
<th>(E)</th>
<th>(d_K)</th>
<th>(c_2(E))</th>
<th>★</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>316a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>592b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>37b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>352a1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>592c1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>44a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>352e1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>659b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>67a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>368c1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>688b1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
</tr>
<tr>
<td>92a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>368f1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>701a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>116a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>428a1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>704c1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>116b1</td>
<td>-7</td>
<td>3</td>
<td>✓</td>
<td>464c1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>704d1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>176a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>464d1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>704e1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>176b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>464f1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>704f1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>179a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>464g1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>704g1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>184d1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>557b1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>704h1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>232b1</td>
<td>-7</td>
<td>2</td>
<td>✓</td>
<td>568a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>704i1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>268a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>571a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
<td>739a1</td>
<td>-7</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>
3. Proof of the main congruence

3.1. The idea of the argument. We first give the idea of the proof of Theorem 1.1. Let \(f \) and \(g \) denote the normalized weight 2 newforms attached to \(E \) and \(E' \) over \(\mathbb{Q} \). If we have an isomorphism of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \)-modules \(E[p^m] \cong E'[p^m] \), then denoting the maps \(\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{Aut}(E[p^m]) \) and \(\rho' : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{Aut}(E'[p^m]) \), the Eichler–Shimura relation implies that for \(\ell \mid pNN' \),

\[
\alpha_\ell(E) = \text{Trace}(\rho(Frob_\ell)) \equiv \text{Trace}(\rho'(Frob_\ell)) = \alpha_\ell(E') \pmod{p^m}.
\]

This translates to an “almost congruence” between the newforms \(f \) and \(g \), in the sense that after modifying by suitable linear combinations of Hecke operators \((NN'/M)\) of forms on some common higher level \(N^\# \). Viewing \(f^{(NN'/M)}(q) \) and \(g^{(NN'/M)}(q) \) as \(p \)-adic modular forms and applying powers of the Atkin–Serre \(\theta \) operator, we obtain a system of congruences

\[
\theta^j f^{(NN'/M)}(q) \equiv \theta^j g^{(NN'/M)}(q) \pmod{p^m}
\]

for all \(j \in \mathbb{Z}_{\geq 1} \). After applying another \((p)\)-stabilization operator, the \(p \)-adic modular forms \(\theta^j f^{(pNN'/M)}(q) \) and \(\theta^j g^{(pNN'/M)}(q) \) fit into \(p \)-adic families parametrized by \(j \in \mathbb{Z}/(p-1) \times \mathbb{Z}_p \).

Hence we get a \(p \)-adically-continuously varying system of congruences

\[
\theta^j f^{(pNN'/M)}(q) \equiv \theta^j g^{(pNN'/M)}(q) \pmod{p^m}.
\]

Taking a limit of the above congruence for a sequence \(\{j\} \subset \mathbb{Z}_{\geq 1} \) such that \(j \to (-1,0) \) in \(\mathbb{Z}/(p-1) \times \mathbb{Z}_p \), we obtain

\[
\theta^{-1} f^{(pNN'/M)}(q) \equiv \theta^{-1} g^{(pNN'/M)}(q) \pmod{p^m}.
\]

By the \(q \)-expansion principle for \(p \)-adic modular forms, this congruence extends to the entire ordinary locus of \(X_0(N^\#)(\mathbb{C}_p) \). If \(p \) splits in \(K \), the points on \(X_0(N^\#)(\mathbb{C}_p) \) corresponding to elliptic curves with \(\text{CM} \) by \(\mathcal{O}_K \) lie in the ordinary locus, and hence the above congruence holds at these points. Fixing such a \(\text{CM} \) point \(\tau \) and averaging over all conjugates of \(\tau \) under the Shimura reciprocity law (parametrized by elements of \(\mathcal{C}_\ell(\mathcal{O}_K) \), see §3.4 for the precise definition), we obtain

\[
\sum_{[a] \in \mathcal{C}_\ell(\mathcal{O}_K)} \theta^{-1} f^{(pNN'/M)}([a] \ast \tau) \equiv \sum_{[a] \in \mathcal{C}_\ell(\mathcal{O}_K)} \theta^{-1} g^{(pNN'/M)}([a] \ast \tau) \pmod{p^m}.
\]

Suppose a prime \(\ell \) splits or ramifies in \(K \). Using a moduli interpretation of the stabilization operators, for any \(p \)-adic modular form \(F \), one can prove the equality

\[
F^{(\ell)}([a] \ast \tau) = F([a] \ast \tau) - \alpha_\ell(F)F([\overline{\nu}^{-1}a] \ast \tau) + \ell^{k-1}F([\overline{\nu}^{-2}a] \ast \tau)
\]

when \(\ell \) does not divide the minimal level of \(F \), and

\[
F^{(\ell)}([a] \ast \tau) = F([a] \ast \tau) - \alpha_\ell(F)F([\overline{\nu}^{-1}a] \ast \tau)
\]

when \(\ell \) does divide the minimal level, where \(\nu \) is a certain prime ideal above \(\ell \), \(\overline{\nu} \) is its complex conjugate, and \(\ell = \nu \overline{\nu} \). Since we assume the Heegner hypothesis on \(N \) and \(N' \), this identity applies in our situation, and using it we can rewrite our previous congruence as

\[
\mathcal{E}_{(pNN'/M)}(f,1) \sum_{[a] \in \mathcal{C}_\ell(\mathcal{O}_K)} \theta^{-1} f([a] \ast \tau) \equiv \mathcal{E}_{(pNN'/M)}(g,1) \sum_{[a] \in \mathcal{C}_\ell(\mathcal{O}_K)} \theta^{-1} g([a] \ast \tau) \pmod{p^m}.
\]
where \(\mathcal{E}_{(pN'N'/M)}(f, 1) \) and \(\mathcal{E}_{(pN'N'/M)}(g, 1) \) denote the products of the Euler factors at \(\ell|(pN'N'/M) \) of \(L(f, 1) \) and \(L(g, 1) \), respectively. Again applying the Eichler–Shimura relation, one can rewrite this congruence as

\[
\left(\prod_{\ell|(pN'N'/M)} \frac{|E^{ns}_{\ell}(\mathcal{F})|}{L(\ell, \chi)} \right) \sum_{[a] \in \mathcal{O}(\mathcal{O}_K)} \theta^{-1} f([a] \ast \tau) \equiv \left(\prod_{\ell|(pN'N'/M)} \frac{|E^{t,ns}_{\ell}(\mathcal{F})|}{L(\ell, \chi)} \right) \sum_{[a] \in \mathcal{O}(\mathcal{O}_K)} \theta^{-1} g([a] \ast \tau) \pmod{p^m}.
\]

An extension of a theorem of Coleman (Theorem 3.6) identifies \(\theta^{-1} f \) and \(\theta^{-1} g \) as the \(p \)-adic formal logarithms \(\log_{\omega_E} \) and \(\log_{\omega_E'} \), and thus the CM period sums on the left and right-hand sides of the above congruence as \(p \)-adic formal logarithms of Heegner points. The resulting congruence is precisely the statement of Theorem 3.1.

3.2. Stabilization operators. In this section, we define the “stabilization operators” alluded to in §3.1. Fix an integer \(k \in \mathbb{Z} \), and let \(M_k^{p-\text{adic}}(\Gamma_0(N)) \) denote the space of \(p \)-adic modular forms with \(\Gamma_0(N) \)-level structure (and trivial nebentypus). We have the following \((\ell)\)-stabilization operators acting on \(p \)-adic \(\Gamma_0(N) \)-modular forms \(F \), which for eigenforms have the effect of killing terms at \(q^m \) in the \(q \)-expansion when \(\ell | n \). Suppose \(F \in M_k^{p-\text{adic}}(\Gamma_0(N)) \) where \(N \) is the minimal level of \(F \), i.e. the smallest \(N \in \mathbb{Z}_{>0} \) such that \(F \in M_k^{p-\text{adic}}(\Gamma_0(N)) \), and let \(a_\ell(F) \) denote the \(\ell \)-th coefficient of the \(q \)-expansion \(F(q) \). Now the stabilization operators are defined in the following way by their actions on \(q \)-expansions:

\[
F(q) \mapsto F^{(\ell)}(q) := F(q) - a_\ell(F)F(q^\ell) + \ell^{k-1}F(q^{\ell^2}) \in M_k^{p-\text{adic}}(\Gamma_0(N\ell^2)).
\]

In fact, if \(F \) is a \(T_n \)-eigenform where \(\ell \nmid n \), then \(F^{(\ell)} \) is still an eigenform for \(T_n \). If \(F \) is a \(T_\ell \) eigenform, one verifies by direct computation that \(T_\ell F^{(\ell)} = 0 \). Note that for \(\ell_1 \neq \ell_2 \), the stabilization operators \(F \mapsto F^{(\ell_1)} \) and \(F \mapsto F^{(\ell_2)} \) commute. Then we define, for integers \(N' = \prod_i \ell_i^{e_i} \),

\[
F^{(N')} := F^{\prod_i (\ell_i)}.
\]

Similarly, for \(\ell | N \), we define

\[
F(q) \mapsto F^{(\ell)}(q) := F(q) - a_\ell(F)F(q^{\ell}) \in M_k^{p-\text{adic}}(\Gamma_0(N\ell)).
\]

If \(F \) is a \(U_n \)-eigenform where \(\ell \nmid n \), then \(F^{(\ell)} \) is still an eigenform for \(U_n \). If \(F \) is a \(U_\ell \)-eigenform, one verifies by direct computation that \(U_\ell F^{(\ell)} = 0 \). Define the general \((N')\)-stabilization operator in the same way as above.

Henceforth, it will be useful to adopt Katz’s viewpoint of \(p \)-adic modular forms as rules on the moduli space of isomorphism classes of “ordinary test triples”. (For a detailed reference, see for example [Kat'76, Chapter V].)

Definition 3.1 (Ordinary test triple). Let \(R \) be a \(p \)-adic ring (i.e. the natural map \(R \to \varprojlim R/p^nR \) is an isomorphism). An **ordinary test triple** \((A, C, \omega)\) over \(R \) means the following:

1. \(A/R \) is an elliptic curve which is ordinary (i.e. \(A \) is ordinary over \(R/pR \)),
2. \(\text{(level } N \text{ structure) } C \subset A[N] \) is a cyclic subgroup of order \(N \) over \(R \) such that the \(p \)-primary part \(C[p^\infty] \) is the **canonical subgroup** of that order (i.e., letting \(\hat{A} \) be the formal group of \(A \), we have \(C[p^\infty] = \hat{A}[p^\infty] \cap C \)),
3. \(\omega \in \Omega^1_{A/R} := H^0(A/R, \Omega^1) \) is a differential.
Given two ordinary test triples (A, C, ω) and (A', C', ω') over R, we say there is an isomorphism $(A, C, \omega) \cong (A', C', \omega')$ if there is an isomorphism $i : A \rightarrow A'$ of elliptic curves over R such that $\phi(C) = C'$ and $i^* \omega = \omega$. Henceforth, let $[(A, C, \omega)]$ denote the isomorphism class of the test triple (A, C, ω).

Definition 3.2 (Katz’s interpretation of p-adic modular forms). Let S be a fixed p-adic ring. Suppose F as a rule which, for every p-adic S-algebra R, assigns values in R to isomorphism classes of test triples (A, C, ω) of level N defined over R. As such a rule assigning values to isomorphism classes of ordinary test triples, consider the following conditions:

1. (Compatibility under base change) For all S-algebra homomorphisms $i : R \rightarrow R'$, we have
 \[F((A, C, \omega) \otimes_i R') = i(F(A, C, \omega)). \]

2. (Weight k condition) Fix $k \in \mathbb{Z}$. For all $\lambda \in R^\times$,
 \[F(A, C, \lambda \cdot \omega) = \lambda^{-k} \cdot F(A, C, \omega). \]

3. (Regularity at cusps) For any positive integer $d | N$, letting $\text{ Tate}(q) = \mathbb{G}_m/q^2$ denote the Tate curve over the p-adic completion of $R((q^{1/d}))$, and letting $C \subset \text{ Tate}(q)[N]$ be any level N structure, we have
 \[F(\text{ Tate}(q), C, du/u) \in R[[q^{1/d}]] \]
 where u is the canonical parameter on \mathbb{G}_m.

If F satisfies conditions (1)-(2), we say it is a weak p-adic modular form over S of level N. If F satisfies conditions (1)-(3), we say it is a p-adic modular form over S of level N. Denote the space of weak p-adic modular forms over S of level N and the space of p-adic modular forms over S of level N by $\tilde{M}^{p\text{-adic}}(\Gamma_0(N))$ and $M^{p\text{-adic}}(\Gamma_0(N))$, respectively. Note that $M^{p\text{-adic}}(\Gamma_0(N)) \subset \tilde{M}^{p\text{-adic}}(\Gamma_0(N))$.

Let $\text{ Tate}(q)$ be the Tate curve over the p-adic completion of $S((q))$. If $F \in M^{p\text{-adic}}(\Gamma_0(N))$, one defines the q-expansion (at infinity) of F as $F(q) := F(\text{ Tate}(q), \mu_N, du/u) \in S[[q]]$, which defines a q-expansion map $F \mapsto F(q)$. The q-expansion principle (see [Gou88, Theorem I.3.1] or [Kat75]) says that the q-expansion map is injective for $F \in M^{p\text{-adic}}(\Gamma_0(N))$.

From now on, let N denote the minimal level of F (i.e. the smallest N such that $F \in \tilde{M}^{p\text{-adic}}(\Gamma_0(N))$).

For any positive integer N' such that $N | N'$, we can define
\[[N'/N]^* F(A, C, \omega) := F(A, C[N], \omega) \]
so that $[N'/N]^* F \in \tilde{M}^{p\text{-adic}}(\Gamma_0(N'))$. When the larger level N' is clear from context, we will often abuse notation and simply view $F \in \tilde{M}^{p\text{-adic}}(\Gamma_0(N'))$ by identifying F and $[N'/N]^* F$.

3.3. Moduli-theoretic interpretation of stabilization operators. In this section, we give the stabilization operators defined in the previous section a moduli-theoretic interpretation, phrased in Katz’s language of p-adic modular forms.

We now fix $N^\# \in \mathbb{Z}_{>0}$ such that $N | N^\#$, so that we can view $F \in \tilde{M}^{p\text{-adic}}(\Gamma_0(N^\#))$, and further suppose $\ell^2 | N^\#$ where ℓ is a prime (not necessarily different from p). Take the base ring $S = \mathcal{O}_{C_p}$.

Then the operator on $\tilde{M}^{p\text{-adic}}(\Gamma_0(N^\#))$ given on q-expansions by
\[F(q) \mapsto F(q^\ell) \]
has a moduli-theoretic interpretation given by “dividing by \(\ell \)-level structure”. That is, we have an operation on test triples \((A, C, \omega) \) defined over \(p \)-adic \(\mathcal{O}_{\mathbb{C}_p} \)-algebras \(R \) given by

\[
V_\ell(A, C, \omega) = (A/C[\ell], \pi(C), \tilde{\pi}^*\omega)
\]

where \(\pi : A \to A/C[\ell] \) is the canonical projection and \(\tilde{\pi} : A/C[\ell] \to A \) is its dual isogeny.

Thus \(V_\ell \) induces a form \(V_\ell^* F \in \hat{M}_k^{\text{p-adic}}(\Gamma_0(N^\#)) \) defined by

\[
V_\ell^* F(A, C, \omega) := F(V_\ell(A, C, \omega)).
\]

For the Tate curve test triple \((\text{Tate}(q), \mu_{N^\#}, du/u) \), one sees that \((\mu_{N^\#})[\ell] = \mu_\ell \) and \(\pi : \text{Tate}(q) \to \text{Tate}(q^\ell) \). Since \(\tilde{\pi} : \hat{\mathcal{G}}_m = \text{Tate}(q) \to \text{Tate}(q^\ell) = \hat{\mathcal{G}}_m \) is multiplication by \(\ell \), we have \(\tilde{\pi}^* du/u = \ell \cdot du/u \), and so \(\tilde{\pi}^* du/u = du/u \). Thus one sees that \(V_\ell \) acts on \(q \)-expansions by

\[
V_\ell^* F(q) = V_\ell^* F(\text{Tate}(q), \mu_{N^\#}, du/u) = F(\text{Tate}(q^\ell), \mu_{N^\#/\ell}, du/u) = F(q^\ell).
\]

If \(F \in \hat{M}_k^{\text{p-adic}}(\Gamma_0(N^\#)) \), then \(V_\ell^* F \in \hat{M}_k^{\text{p-adic}}(\Gamma_0(N^\#)) \), and the \(q \)-expansion principle then implies that \(V_\ell^* F \) is the unique \(p \)-adic modular form of level \(N^\# \) with \(q \)-expansion \(F(q^\ell) \).

Thus, as a rule on the moduli space of isomorphism classes of test triples, we define \((\ell) \)-stabilization for \(F \in \hat{M}_k^{\text{p-adic}}(\Gamma_0(N^\#)) \) as

\[
(2) \quad F^{(\ell)} = F - a_\ell(F) V_\ell^* F + \ell^{k-1} V_\ell^* V_\ell^* F
\]

when \(\ell \nmid N \), and

\[
(3) \quad F^{(\ell)} = F - a_\ell(F) V_\ell^* F
\]

when \(\ell | N \). If \(F \in \hat{M}_k^{\text{p-adic}}(\Gamma_0(N^\#)) \), then \(F^{(\ell)} \in \hat{M}_k^{\text{p-adic}}(\Gamma_0(N^\#)) \), and the \(q \)-expansion principle implies that \(F^{(\ell)} \) is the unique \(p \)-adic modular form of level \(N^\# \) with \(q \)-expansion equal to the \(q \)-series \(F^{(\ell)}(q) \) as defined in [3.2].

3.4. Calculation of stabilization operators at CM points

Now suppose that \(K \) is an imaginary quadratic field in which \(p \) splits and which satisfies the Heegner hypothesis with respect to \(N^\# \). Let \(p \subset \mathcal{O}_K \) be the prime ideal above \(p \) determined by the embedding \(K \to \mathbb{C}_p \). Fix an ideal \(\mathfrak{M} \subset \mathcal{O}_K \) with \(\mathcal{O}_K/\mathfrak{M} = \mathbb{Z}/N^\# \) such that if \(p | N^\# \), then \(p | \mathfrak{M}^\# \). Let \(A/\mathcal{O}_{\mathbb{C}_p} \) be an elliptic curve with CM by \(\mathcal{O}_K \). (Note that the theory of complex multiplication guarantees that any elliptic curve defined over a number field with CM by \(\mathcal{O}_K \) has integral \(j \)-invariant and is thus defined over \(\mathcal{O}_{\mathbb{C}_p} \).)

The curve \(A/\mathcal{O}_{\mathbb{C}_p} \) has good ordinary reduction at \(p \) by Deuring’s theorem, since \(p \) splits in \(K \). The order \(\mathfrak{p}^r \) canonical subgroup of \(A \) is just \(\hat{A}[\mathfrak{p}^r] = A[\mathfrak{p}^r] \). Hence given any \(\omega \in \Omega^1_{A/\mathcal{O}_{\mathbb{C}_p}} \), \((A, A[\mathfrak{M}^\#], \omega) \) is an ordinary test triple.

A crucial observation is that at an ordinary CM test triple \((A, A[\mathfrak{M}^\#], \omega) \), one can express \(V_\ell(A, A[\mathfrak{M}^\#], \omega) \) and thus \((\ell) \)-stabilization operators in terms of the action of \(\mathcal{C}_\ell(\mathcal{O}_K) \) on \(A \) coming from Shimura’s reciprocity law. Namely, for any ideal \(a \subset \mathcal{O}_K \), define

\[
a * A := A/A[a],
\]

which is an elliptic curve with CM by \(\mathcal{O}_K \), whose isomorphism class depends only on the ideal class of \(a \). Shimura’s reciprocity law guarantees that every isomorphism class of curves with CM by \(\mathcal{O}_K \) lies in the orbit of \(A \) under the action of \(\mathcal{C}_\ell(\mathcal{O}_K) \), and hence this induces a simply transitive action of \(\mathcal{C}_\ell(\mathcal{O}_K) \) on isomorphism classes of curves with CM by \(\mathcal{O}_K \). Note that the Shimura reciprocity law...
induces an action of the set of integral ideals prime to \(\mathfrak{N}^\# \) on test triples \((A, A[\mathfrak{N}^\#], \omega)\). Namely, given an ideal \(a \subset O_K \) which is prime to \(\mathfrak{N}^\# \), we can define

\[
a * (A, A[\mathfrak{N}^\#], \omega) := (a * A, (a * A)[\mathfrak{N}^\#], \phi_a \omega)
\]

where \(\phi_a : A \to a * A \) is the canonical projection. One verifies that given ideals \(a, a' \subset O_K \) which are prime to \(\mathfrak{N}^\# \), the canonical isomorphism \(a * (a' * A) \sim a a' * A \) induces an isomorphism \(a * (a' * (A, A[\mathfrak{N}^\#], \omega)) \sim a a' * (A, A[\mathfrak{N}^\#], \omega) \). If \((\alpha) \subset O_K\) is a principal ideal which is prime to \(\mathfrak{N}^\# \), the canonical isomorphism \((\alpha) * A \sim A \) also induces an isomorphism \((\alpha) * (A, A[\mathfrak{N}^\#], \omega) \sim (A, A[\mathfrak{N}^\#], \omega) \). Hence there is an induced action of \(\mathcal{C}(O_K) \) on the set of isomorphism classes \([(A, A[\mathfrak{N}^\#], \omega)] \), given by \([a] * [(A, A[\mathfrak{N}^\#], \omega)] = [a * (A, A[\mathfrak{N}^\#], \omega)] \). Finally, note that for any level dividing \(N^\# \), the Shimura reciprocity law also induces an action of \(\mathcal{C}(O_K) \) on isomorphism classes of ordinary CM test triples of that level in an analogous way.

The following calculation relates the values of \(V_\ell \), \(F^{(\ell)} \) and \(F \) at CM test triples.

Lemma 3.3. For a prime \(\ell \), let \(v|\mathfrak{N}^\# \) be the corresponding prime ideal of \(O_K \) above it, and let \(a \subset O_K \) be an ideal prime to \(\mathfrak{N}^\# \). Then for any \(\omega \in \Omega_{A/O_{C_v}}^1 \), we have

\[
(4) \quad [V_\ell (\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega))] = [v^{-1}\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\# v^{-1}], \omega)]
\]

and

\[
(5) \quad [V_\ell (V_\ell (\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega))) = [v^{-2}\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\# v^{-2}], \omega)].
\]

As a consequence, if \(F \in \mathcal{M}_k^{a \text{adic}}(\Gamma_0(N^\#)) \), we have

\[
(6) \quad F^{(\ell)}(\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega)) = F(\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega)) - a_\ell(F)F(\overline{v^{-1}a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega)) + \ell^{k-1}F(\overline{v^{-2}a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega))
\]

when \(\ell \nmid N \), and

\[
(7) \quad F^{(\ell)}(\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega)) = F(\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega)) - a_\ell(F)F(\overline{v^{-1}a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega))
\]

when \(\ell|N \).

Proof. Note that \([(a\mathfrak{N}^\# A)[\mathfrak{N}^\#])[\ell] = (a\mathfrak{N}^\# A)[v] \]. Hence

\[
[V_\ell (\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\#], \omega))] = [(\overline{a\mathfrak{N}^\# v} A, (\overline{a\mathfrak{N}^\# v} A)[\mathfrak{N}^\# v^{-1}], \overline{\phi}_v(a\mathfrak{N}^\# \omega))]
\]

\[
= [\overline{a\mathfrak{N}^\#} * (v A, (v A)[\mathfrak{N}^\# v^{-1}], \overline{\phi}_v(a\mathfrak{N}^\# \omega))]
\]

\[
= [v^{-1}\overline{a\mathfrak{N}^\#} * (\overline{v} A, (\overline{v} v A)[\mathfrak{N}^\# v^{-1}], \overline{\phi}_v(a\mathfrak{N}^\# \omega))]
\]

\[
= [v^{-1}\overline{a\mathfrak{N}^\#} * ((\ell) A, (\ell) A)[\mathfrak{N}^\# v^{-1}], \overline{\phi}_v(a\mathfrak{N}^\# \omega))]
\]

\[
= [v^{-1}\overline{a\mathfrak{N}^\#} * (A, A[\mathfrak{N}^\# v^{-1}], \omega)]
\]

whence (4) follows. The identity (5) follows by the same argument as above, replacing \(\mathfrak{N}^\# \) with \(\mathfrak{N}^\# v^{-1} \).

In particular, viewing \(F \) as a form of level \(N^\# \) and using (4) and (5), (6) and (7) follow from (2) and (3), respectively. \(\square \)
Finally, we relate the CM period sum of $F^{(\ell)}$ to that of F by showing that they differ by an Euler factor at ℓ associated with $F \otimes \chi^{-1}$. This calculation will be used in the proof of Theorem 3.7 to relate the values at Heegner points of the formal logarithms $\log_{\omega_{F^{(\ell)}}}$ and \log_{ω_F} associated with $F^{(\ell)}$ and F.

Lemma 3.4. Suppose $F \in \tilde{M}_0^{p\text{-adic}}(\Gamma_0(N^\#))$, and let $\chi : \mathcal{C}l(O_K) \to \overline{\mathbb{Q}}^\times$ be any character. Let $\{a\}$ be a full set of integral representatives of $\mathcal{C}l(O_K)$ where each a is prime to $N^\#$. If $\ell \nmid N$, we have

$$\sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F^{(\ell)}(a \ast (A, A[N^\#], \omega)) = \left(1 - a_\ell(F)\chi^{-1}(v) + \frac{\chi^{-2}(v)}{\ell}\right) \sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F(a \ast (A, A[N^\#], \omega))$$

and if $\ell | N$, we have

$$\sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F^{(\ell)}(a \ast (A, A[N^\#], \omega)) = (1 - a_\ell(F)\chi^{-1}(v)) \sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F(a \ast (A, A[N^\#], \omega)).$$

Proof. Since $\{a\}$ of integral representatives of $\mathcal{C}l(O_K)$, $\{\overline{aN^\#}\}$ is also a full set of integral representatives of $\mathcal{C}l(O_K)$. By summing over $\mathcal{C}l(O_K)$ and applying Lemma 3.3 we obtain

$$\sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F^{(\ell)}(a \ast (A, A[N^\#], \omega)) = \sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F(a \ast (A, A[N^\#], \omega)) - a_\ell(F) \sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a\overline{N^\#})F(\overline{v}^{-1}a\overline{N^\#} \ast (A, A[N^\#], \omega))$$

$$- \frac{1}{\ell} \sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a\overline{N^\#})F(\overline{v}^{-2}a\overline{N^\#} \ast (A, A[N^\#], \omega))$$

$$= \left(1 - a_\ell(F)\chi^{-1}(v) + \frac{\chi^{-2}(v)}{\ell}\right) \sum_{[a] \in \mathcal{C}l(O_K)} \chi^{-1}(a)F(a \ast (A, A[N^\#], \omega))$$

when $\ell \nmid N$. Similarly, we obtain the second identity when $\ell | N$. \qed

3.5. Coleman integration

In this section, we recall Liu–Zhang–Zhang’s extension of Coleman’s theorem on p-adic integration. We will use this theorem later in order to directly realize (a pullback of) the formal logarithm along the weight 2 newform $f \in S_2^{\text{new}}(\Gamma_0(N))$ as a rigid analytic function F on the ordinary locus of $X_0(N)(\mathbb{C}_p)$ (viewed as a rigid analytic space) satisfying $\theta F = f$.

First we recall the theorem of Liu–Zhang–Zhang, closely following the discussion preceding Proposition A.1 in [LZZ15] Appendix A. Let $R \subset \mathbb{C}_p$ be a local field. Suppose X is a quasi-projective scheme over R, $X^{\text{rig}} = X(\mathbb{C}_p)^{\text{rig}}$ is its rigid-antalyfication, and $U \subset X^{\text{rig}}$ an affinoid domain with good reduction.

Definition 3.5. Let X and U be as above, and let ω be a closed rigid analytic 1-form on U. Suppose there exists a locally analytic function F_ω on U as well as a Frobenius endomorphism ϕ of U (i.e. an endomorphism reducing to an endomorphism induced by a power of Frobenius on the reduction of U) and a polynomial $P(X) \in \mathbb{C}_p[X]$ such that no root of $P(T)$ is a root of unity, satisfying
\[dF_\omega = \omega; \]
\[P(\phi^*)F_\omega \text{ is rigid analytic; }\]

and \(F_\omega\) is uniquely determined by these conditions up to additive constant. We then call \(F_\omega\) the Coleman primitive of \(\omega\) on \(U\). It turns out that \(F_\omega\), if it exists, is independent of the choice of \(P(X)\) (\cite[Corollary 2.1b]{Col85}).

Given an abelian variety \(A\) over \(R\) of dimension \(d\), recall the formal logarithm defined as follows. Choosing a \(\omega \in \Omega^1_{A/F}\), the \(p\)-adic formal logarithm along \(\omega\) is defined by formal integration
\[
\log_\omega(T) := \int_0^T \omega
\]
in a formal neighborhood \(\hat{A}\) of the origin. Since \(A(\mathbb{C}_p)\) is compact, we may extend by linearity to a map \(\log_\omega : A(\mathbb{C}_p) \to \mathbb{C}_p\) (i.e., \(\log_\omega(x) := \frac{1}{n} \log_\omega(nx)\) if \(nx \in \hat{A}\).

Liu–Zhang–Zhang prove the following extension of Coleman’s theorem.

Theorem 3.6 (See Proposition A.1 in \cite{LZZ15}). Let \(X\) and \(U\) be as above. Let \(A\) be an abelian variety over \(R\) which has either totally degenerate reduction (i.e. after base changing to a finite extension of \(R\), the connected component of the special fiber of the Néron model of \(A\) is isomorphic to \(\mathbb{C}^d_m\)), or potentially good reduction. For a morphism \(\iota : X \to A\) and a differential form \(\omega \in \Omega^1_{A/F}\), we have

1. \(\iota^*\omega|_U\) admits a Coleman primitive on \(U\), and in fact
2. \(\iota^*\log_\omega|_U\) is a Coleman primitive of \(\iota^*\omega|_U\) on \(U\), where \(\log_\omega : A(\mathbb{C}_p) \to \mathbb{C}_p\) is the \(p\)-adic formal logarithm along \(\omega\).

3.6. Proof of Theorem 3.1. Let \(f \in M_2(\Gamma_0(N))\) and \(g \in M_2(\Gamma_0(N'))\) be normalized eigenforms defined over the ring of integers of a number field with minimal levels \(N\) and \(N'\), respectively. Let \(K\) be an imaginary quadratic field with Hilbert class field \(H\), and suppose \(K\) satisfies the Heegner hypothesis with respect to both \(N\) and \(N'\), with corresponding fixed choices of ideals \(\mathfrak{N}, \mathfrak{N}' \subset \mathcal{O}_K\) such that \(\mathcal{O}_K/\mathfrak{N} = \mathbb{Z}/N\) and \(\mathcal{O}_K/\mathfrak{N}' = \mathbb{Z}/N'\).

Recall the moduli-theoretic interpretation of \(X_0(N)\), in which points on \(X_0(N)\) are identified with isomorphism classes \([A,C]\) of pairs \((A,C)\) consisting of an elliptic curve \(A\) and a cyclic subgroup \(C \subset A[N]\) of order \(N\). Throughout this section, let \(A/\mathcal{O}_p\) be a fixed elliptic curve with CM by \(\mathcal{O}_K\), and note that as in §3.4, the Shimura reciprocity law induces an action of integral ideals prime to \(\mathfrak{N}\) on \((A,A[\mathfrak{N}])\), which descends to an action of \(\mathcal{C}(\mathcal{O}_K)\) on \([A,A[\mathfrak{N}]]\). Let \(\chi : \text{Gal}(H/K) \to \overline{\mathbb{Q}}^*\) be a character, and let \(L\) be a finite extension of \(K\) containing the Hecke eigenvalues of \(f, g\), the values of \(\chi\) and the field cut out by the kernel of \(\chi\). For any full set of prime-to-\(\mathfrak{N}\) integral representatives \(\{\mathfrak{a}\}\) of \(\mathcal{C}(\mathcal{O}_K)\), define the Heegner point on \(J_0(N)\) attached to \(\chi\) by
\[
P(\chi) := \sum_{[\mathfrak{a}] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(\mathfrak{a})([\mathfrak{a} \star (A,A[\mathfrak{N}])]) - [\infty]) \in J_0(N)(H) \otimes_{\mathbb{Z}} L,\]
where \([\infty] \in X_0(N)(\mathbb{C}_p)\) denotes the cusp at infinity. Similarly, for any full set of prime-to-\(\mathfrak{N}'\) integral representatives \(\{\mathfrak{a}\}\) of \(\mathcal{C}(\mathcal{O}_K)\), define the Heegner point on \(J_0(N')\) attached to \(\chi\) by
\[
P'(\chi) := \sum_{[\mathfrak{a}] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(\mathfrak{a})([\mathfrak{a} \star (A,A[\mathfrak{N}'])]) - [\infty']) \in J_0(N')(H) \otimes_{\mathbb{Z}} L,\]
where \([\infty'] \in X_0(N')(\mathbb{C}_p)\) denotes the cusp at infinity.
Theorem 3.7. In the setting and notations described above, suppose that the associated semisimple mod \(\lambda^m \) representations \(\tilde{\rho}_f, \tilde{\rho}_g : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathcal{O}_{L_p}/\mathbb{Q}^m) \) satisfy \(\tilde{\rho}_f \cong \tilde{\rho}_g \). For each prime \(\ell | NN' \), let \(v|\mathfrak{N}\mathfrak{N}' \) be the corresponding prime above it. Then we have

\[
\prod_{\ell | NN', \ell \mid N} \left(\frac{\ell - a_\ell(f)\chi^{-1}(\overline{\tau}) + \chi^{-2}(\overline{\tau})}{\ell} \right) \prod_{\ell | NN', \ell \mid N'} \left(\frac{\ell - a_\ell(g)\chi^{-1}(\overline{\tau}) + \chi^{-2}(\overline{\tau})}{\ell} \right) \log_{\omega_{A_f}} P_f(\chi) \equiv \log_{\omega_{A_g}} P_g(\chi) \pmod{\lambda^m \mathcal{O}_{L_p}},
\]

where

\[
M = \prod_{\ell | NN', a_\ell(f) \equiv a_\ell(g) \mod \lambda^m} \ell^\text{ord}_L(\mathfrak{N})\mathfrak{N}' \cdot \mathfrak{N}'/\mathfrak{N}.
\]

Remark 3.8. Theorem 1.1 follows immediately by taking \(\chi = 1 \), \(L = K \), and \(f \) and \(g \) to be associated with \(E \) and \(E' \). The Heegner points \(P = P_f(1) \) and \(P' = P_g(1) \) are defined up to sign and torsion depending on the choices of \(\mathfrak{N} \) and \(\mathfrak{N}' \), see [Gro84].

Proof of Theorem 3.7. We first transfer all differentials and Heegner points on \(J_0(N) \) and \(J_0(N') \) to the Jacobian \(J_0(N^\#) \) of the modular curve \(X_0(N^\#) \), where \(N^\# := \text{lcm}_{\ell | NN',N',p^2,\ell^2} \). Note that for the newforms \(f \) and \(g \), the minimal levels of the stabilizations \(f^{(\ell)} \) and \(g^{(\ell)} \) divide \(N^\# \), since if \(\ell^2 | N \) then \(a_\ell(f) = 0 \) and \(f^{(\ell)} = f \), and similarly if \(\ell^2 | N' \) then \(g^{(\ell)} = g \). By assumption, \(K \) satisfies
the Heegner hypothesis with respect to $N^\#$, and let $\mathcal{M}^\# := \text{lcm}_{v|p^2}(\mathcal{M}, \mathcal{M}', p^2, v^2)$. For any full set of prime-to-$\mathcal{M}^\#$ integral representatives $\{a\}$ of $\mathcal{O}(\mathcal{O}_K)$, define

$$P^\#(\chi) := \sum_{[a] \in \mathcal{O}(\mathcal{O}_K)} \chi^{-1}(a)([a \ast (A, A[\mathcal{M}^\#])] - [\infty^\#]) \in J_0(N^\#)(H) \otimes_\mathbb{Z} L,$$

where $[\infty^\#] \in X_0(N^\#)(\mathbb{C}_p)$ denotes the cusp at infinity. Letting $\pi^b : J_0(N^\#) \to J_0(N)$ and $\pi^{t,b} : J_0(N^\#) \to J_0(N')$ denote the natural projections, one sees that $\pi^b(P^\#(\chi)) = P(\chi)$ and that $\pi^{t,b}(P^\#(\chi)) = P^t(\chi)$. Let $\iota^\#: X_0(N^\#) \to J_0(N^\#)$ denote the Abel-Jacobi map sending $[\infty^\#] \mapsto 0$. Viewing f and g as having level $N^\#$, we define their associated differential forms by

$$\omega^\#_f \in \Omega^1_{J_0(N^\#)/\mathcal{O}_p} \text{ such that } \iota^\#_* \omega^\#_f = f(q) \cdot dq/q \in \Omega^1_{X_0(N^\#)/\mathcal{O}_p},$$

and similarly define $\omega^\#_g \in \Omega^1_{J_0(N^\#)/\mathcal{O}_p}$. One sees that $\pi^{t,b}_* \omega_f = \omega^\#_f$ and $\pi^{t,b}_* \omega_g = \omega^\#_g$. Finally, define

$$\log_{\omega^\#_f} P^\#(\chi) := \sum_{[a] \in \mathcal{C}(\mathcal{O}_K)} \chi^{-1}(a) \log_{\omega^\#_f}([a \ast (A, A[\mathcal{M}^\#])] - [\infty^\#]) \in L_p$$

and similarly for $\log_{\omega^\#_g} P^\#(\chi)$.

Let $N_0^\#$ denote the prime-to-p part of $N^\#$. Let \mathcal{X} denote the canonical smooth proper model of $X_0(N_0^\#)$ over \mathbb{Z}_p, and let \mathcal{X}_p denote its special fiber. There is a natural reduction map $\text{red} : X_0(N_0^\#)(\mathbb{C}_p) \to \mathcal{X}(\mathcal{O}_p) \to \mathcal{X}_p(\bar{\mathbb{F}}_p)$. Viewing $X_0(N_0^\#)(\mathbb{C}_p)$ as a rigid analytic space, the inverse image in $X_0(N_0^\#)(\mathbb{C}_p)$ of an element of the finite set of supersingular points in $\mathcal{X}_p(\bar{\mathbb{F}}_p)$ is conformal to an open unit disc, and is referred to as a supersingular disc. Let \mathcal{D}_0 denote the the affinoid domain of good reduction obtained by removing the finite union of supersingular discs from the rigid space $X_0(N_0^\#)(\mathbb{C}_p)$. In the moduli-theoretic interpretation, \mathcal{D}_0 consists of points $[(A, C)]$ over \mathcal{O}_C of good reduction such that $A \otimes_{\mathcal{O}_C} \bar{\mathbb{F}}_p$ is ordinary. The canonical projection $X_0(N^\#) \to X_0(N_0^\#)$ has a rigid analytic section on \mathcal{D}_0 given by “increasing level $N_0^\#$ structure by the order $N^\#/N_0^\#$ canonical subgroup”. Namely given $[(A, C)] \in \mathcal{D}_0$, the section is defined by $[(A, C)] \mapsto [(A, C \times \hat{A}[N^\#/N_0^#])]$. We identify \mathcal{D}_0 with its lift \mathcal{D}, which is called the ordinary locus of $X_0(N^\#)(\mathbb{C}_p)$; one sees from the above construction that \mathcal{D} is an affinoid domain of good reduction.

A p-adic modular form F of weight 2 (as defined in §3.2) can be equivalently viewed as a rigid analytic section of $(\Omega^1_{X_0(N^\#)/\mathcal{O}_p})^{\mathcal{D}}$ (viewed as an analytic sheaf). Under this identification, the exterior differential is given on q-expansions by $d = \theta^d dq \eta$, where θ is the Atkin–Serre operator on p-adic modular forms acting via $q \frac{d}{dq}$ on q-expansions. Thus for each $j \in \mathbb{Z}_{\geq 0}$, $\theta^j F$ is a rigid analytic section of $(\Omega^1_{X_0(N^\#)/\mathcal{O}_p})^{\mathcal{D}}$. The collection of p-adic modular forms $\theta^j F$ varies p-adically continuously in $j \in \mathbb{Z}/(p - 1) \times \mathbb{Z}_p$ (as one verifies on q-expansions), and so

$$\theta^{-1}(f(p)) := \lim_{j \to (-1, 0)} \theta^j (f(p))$$

is a rigid analytic function on \mathcal{D} and a Coleman primitive for $\iota^\#_* \omega_{f(p)}$ since

$$d \theta^{-1}(f(p)) = f(p) \cdot dq/q = \iota^\#_* \omega_{f(p)}.$$

Also note that $\iota^\#_* \omega_f$ (restricted to \mathcal{D}) has a Coleman primitive $F_{\iota^\#_* \omega_f}$ by part (1) of Theorem 3.6 (applied to $R = \mathbb{Q}_p$, $X = X_0(N^\#)$, $U = \mathcal{D}$ and $A = J_0(N^\#)$), which we can (and do) choose to take the value 0 at $[\infty^\#]$. As a locally analytic function on \mathcal{D}, $F_{\iota^\#_* \omega_f}$ can be viewed as an element
of $\tilde{M}_p^{\text{adic}}(\Gamma_0(N\#))$ (see Definition 3.2). By the moduli-theoretic definition of (p)-stabilization in terms of the operators V_p defined in §3.3, we have

$$d\phi^{-1}(f^{(p)}) = d(F_{t^{\#,\omega^{\#}_{f}}})^{(p)},$$

and so

$$\theta^{-1}(f^{(p)}) = (F_{t^{\#,\omega^{\#}_{f}}})^{(p)}$$

by uniqueness of Coleman primitives. The same argument shows that $\theta^{-1}(g^{(p)}) = (F_{t^{\#,\omega^{\#}_{g}}})^{(p)}$.

Since $\bar{\rho}_f \cong \bar{\rho}_g$, we have

$$\theta^j (f^{(pN'/M)})(q) \equiv \theta^j (g^{(pN'/M)})(q) \mod \lambda^n \mathcal{O}_{C_p}$$

for all $j \geq 0$. Letting $j \rightarrow (-1, 0) \in \mathbb{Z}/(p-1) \times \mathbb{Z}/p$, we find that

$$\theta^{-1}(f^{(pN'/M)})(q) \equiv \theta^{-1}(g^{(pN'/M)})(q) \mod \lambda^m \mathcal{O}_{C_p}.$$
and similarly for \(F_{\#}^{\omega} \). Thus by [9], we have

\[
\left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(f)\chi(\overline{v})}{\ell} + \frac{\chi^{-2}(\overline{v})}{\ell} \right) \left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(f)\chi(\overline{v})}{\ell} \right)
\]

\[
\cdot \sum_{[a] \in \ell(O_K)} \chi^{-1}(a)F_{\#}^{\omega_f}(\{a \ast (A, A[\mathcal{N}])\})
\]

\[
\equiv \left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(g)\chi(\overline{v})}{\ell} + \frac{\chi^{-2}(\overline{v})}{\ell} \right) \left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(g)\chi(\overline{v})}{\ell} \right)
\]

\[
\cdot \sum_{[a] \in \ell(O_K)} \chi^{-1}(a)F_{\#}^{\omega_g}(\{a \ast (A, A[\mathcal{N}])\}) \pmod{\lambda^n\mathcal{O}_p}.
\]

By part (2) of Theorem 3.6 we have \(F_{\#}^{\omega_f} = \epsilon^{\#,\ast} \log_{\omega_f} \) and \(F_{\#}^{\omega_g} = \epsilon^{\#,\ast} \log_{\omega_g} \). Thus, the above congruence becomes

\[
\left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(f)\chi(\overline{v})}{\ell} + \frac{\chi^{-2}(\overline{v})}{\ell} \right) \left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(f)\chi(\overline{v})}{\ell} \right) \log_{\omega_f} P(\chi)
\]

\[
\equiv \left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(g)\chi(\overline{v})}{\ell} + \frac{\chi^{-2}(\overline{v})}{\ell} \right) \left(\prod_{\ell | pN'^N/ML} \frac{1 - a_\ell(g)\chi(\overline{v})}{\ell} \right) \log_{\omega_g} P(\chi)
\]

\[
\pmod{\lambda^n\mathcal{O}_p}.
\]

In fact, since both sides of this congruence belong to \(L_p \) and \(L_p \cap \mathcal{O}_{C_p} = \mathcal{O}_{L_p} \), this congruence in fact holds mod \(\lambda^n\mathcal{O}_{L_p} \). The theorem now follows from the functoriality of the \(p \)-adic logarithm:

\[
\log_{\omega_f} P(\chi) = \log^{\#,\ast}_{\omega_f} P(\chi) = \log_{\omega_f} P(\chi) = \log^{\#,\ast}_{\omega_{A_f}} P(\chi) = \log_{\omega_{A_f}} P_f(\chi)
\]

and similarly \(\log_{\omega_g} P(\chi) = \log_{\omega_{A_g}} P_g(\chi) \).

\[\square\]

Remark 3.9. The normalizations of \(\omega_E \) and \(\omega_{E'} \) in the statement of Theorem 1.1 *a priori* imply that both sides of Theorem 1.1 are \(p \)-integral. This is because CM points are integrally defined by the theory of CM and the above proof shows that the rigid analytic function \(\epsilon^{\#,\ast} \log_{\omega_f(pN'^N/M)} \) has integral \(\varphi \)-expansion.

Let \(\omega_E \) denote the canonical Néron differential of \(E \) (as we do in §5), and let \(c \in \mathbb{Z} \) such that \(\omega_E = c \cdot \omega_E \). Note that the normalization of the \(p \)-adic formal logarithm \(\log_{\omega_{E}} \) above differs by a factor of \(c \) from that of the normalization \(\log_{\omega_{E}} := \log_{\omega_{E}} \). So we know that

\[
\frac{|\hat{E}_{\text{ns}}(\mathbb{F}_p)|}{p \cdot c} \cdot \log_{\omega_{E}} P = \frac{|\hat{E}_{\text{ns}}(\mathbb{F}_p)|}{p} \cdot \log_{\omega_{E}} P
\]

is \(p \)-integral. We remark this is compatible with the \(p \)-part of the BSD conjecture. In fact, the \(p \)-part of the BSD conjecture predicts that \(P \) is divisible by \(p^{\text{ord}_E c} \cdot c p(E) \) in \(E(K) \) (see the conjectured formula (10)) and so \(|\hat{E}_{\text{ns}}(\mathbb{F}_p)| P \) lies in the formal group and hence \(|\hat{E}_{\text{ns}}(\mathbb{F}_p)| \cdot \log_{\omega_{E}} P \in p\mathcal{O}_K \).
4. Quadratic twists of elliptic curves

4.1. Proof of Theorem 1.7

(1) We apply Theorem 1.1 to the two elliptic curves E/\mathbb{Q} and $E^{(d)}/\mathbb{Q}$ and $p = 2$. Let $\ell|Nd^2$ be a prime. Notice

(a) if $\ell||N$,

$$a_\ell(E), a_\ell(E^{(d)}) \in \{\pm 1\},$$

(b) if $\ell^2|N$,

$$a_\ell(E) = a_\ell(E^{(d)}) = 0,$$

(c) if $\ell|d$, we have $\ell \in S$. Since Frob_ℓ is order 3 on $E[2]$, we know that its trace $a_\ell(E) \equiv 1 \pmod{2}$.

Since $\ell^2|Nd^2$, we know that $a_\ell(E^{(d)}) = 0$.

It follows that $M = N^2$. The congruence formula in Theorem 1.1 then reads:

$$\frac{|\tilde{E}_{ns}(\mathbb{F}_2)|}{2} \prod_{\ell|d} \frac{|\tilde{E}_{ns}(\mathbb{F}_\ell)|}{\ell} \cdot \log_{\omega_E} P \equiv \frac{|\tilde{E}^{(d),ns}(\mathbb{F}_2)|}{2} \prod_{\ell|d} \frac{|\tilde{E}^{(d),ns}(\mathbb{F}_\ell)|}{\ell} \cdot \log_{\omega_{E^{(d)}}} P^{(d)} \pmod{2}.$$

Since E has good reduction at $\ell|d$ and ℓ is odd, we have

$$|\tilde{E}_{ns}(\mathbb{F}_\ell)| = |E(\mathbb{F}_\ell)| = \ell + 1 - a_\ell(E) \equiv a_\ell(E) \equiv 1 \pmod{2}.$$

Since $E^{(d)}$ has additive reduction at $\ell|d$ and ℓ is odd, we have

$$|\tilde{E}^{(d),ns}(\mathbb{F}_\ell)| = \ell \equiv 1 \pmod{2}.$$

Therefore we obtain the congruence

$$\frac{|\tilde{E}_{ns}(\mathbb{F}_2)|}{2} \cdot \log_{\omega_E} P \equiv \frac{|\tilde{E}^{(d),ns}(\mathbb{F}_2)|}{2} \cdot \log_{\omega_{E^{(d)}}} P^{(d)} \pmod{2}.$$

Assumption (⋆) says that the left-hand side is nonzero, hence the right-hand side is also nonzero. In particular, the Heegner point $P^{(d)}$ is of infinite order. The last assertion follows from the celebrated work of Gross–Zagier and Kolyvagin.

(2) Since

$$L(E^{(d)}/K, s) = L(E^{(d)}/\mathbb{Q}, s) \cdot L(E^{(d,K)}/\mathbb{Q}, s),$$

the sum of the analytic rank of $E^{(d)}/\mathbb{Q}$ and $E^{(d,K)}/\mathbb{Q}$ is the equal to the analytic rank of $E^{(d)}/K$, which is one by the first part. Hence one of them has analytic rank one and the other has analytic rank zero. The remaining claims follow from Gross–Zagier and Kolyvagin.

(3) It is well-known that the global root numbers of quadratic twists are related by

$$\varepsilon(E/\mathbb{Q}) \cdot \varepsilon(E^{(d)}/\mathbb{Q}) = \chi_d(-N).$$

It follows that $E^{(d)}/\mathbb{Q}$ and E/\mathbb{Q} have the same global root number if and only if $\chi_d(-N) = 1$. Since the analytic ranks of $E^{(d)}/\mathbb{Q}$ and E/\mathbb{Q} are at most one, the equality of global root numbers implies the equality of the analytic ranks.
4.2. Proof of Theorem 1.10. This is a standard application of Ikehara’s tauberian theorem (see, e.g., [Ser76, 2.4]). We include the argument for completeness. Since the set of primes S has Dirichlet density $\alpha = \frac{1}{6}$ or $\frac{1}{3}$ depending on $\text{Gal}(\mathbb{Q}(E[2]/\mathbb{Q})) \cong S_3$ or $\mathbb{Z}/3\mathbb{Z}$, we know that
\[\sum_{\ell \in S} \ell^{-s} \sim \alpha \cdot \log \frac{1}{s - 1}, \quad s \to 1^+. \]
Then
\[\log \left(\sum_{d \in \mathcal{N}} |d|^{-s} \right) = \log \left(\prod_{\ell \in S} (1 + \ell^{-s}) \right) \sim \sum_{\ell \in S} \ell^{-s} \sim \alpha \cdot \log \frac{1}{s - 1}, \quad s \to 1^+. \]
Hence
\[\sum_{d \in \mathcal{N}} |d|^{-s} = \frac{1}{(s - 1)^\alpha} \cdot f(s) \]
for some function $f(s)$ holomorphic and nonzero when $\Re(s) \geq 1$. It follows from Ikehara’s tauberian theorem that
\[\# \{ d \in \mathcal{N} : |d| < X \} \sim c \cdot \frac{X}{\log^{1-\alpha} X}, \quad X \to \infty \]
for some constant $c > 0$. But by Theorem 1.7 (2), we have for $r = 0, 1$,
\[N_r(E, X) \geq \# \{ d \in \mathcal{N} : |d| < X/|d_K| \}. \]
The results then follow.

5. The 2-part of the BSD conjecture over K

Let E and K be as in Theorem 1.13.

5.1. BSD(2) for E/K. By the Gross–Zagier formula, the BSD conjecture for E/K is equivalent to the equality ([GZ86, V.2.2])
\[u_K \cdot c_E \cdot \prod_{\ell \in \mathcal{N}} c_{\ell}(E) \cdot [\text{III}(E/K)]^{1/2} = [E(K) : \mathbb{Z}P], \tag{10} \]
where $u_K = |O_K^\times/\{\pm 1\}|$, c_E is the Manin constant of E/\mathbb{Q}, $c_\ell(E) = [E(\mathbb{Q}_\ell) : E^0(\mathbb{Q}_\ell)]$ is the local Tamagawa number of E and $[E(K) : \mathbb{Z}P]$ is the index of the Heegner point $P \in E(K)$. By Assumption (⋆) that 2 splits in K, we know $K \neq \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, so $u_K = 1$. Therefore the BSD conjecture for E/K is equivalent to the equality
\[\prod_{\ell \in \mathcal{N}} c_{\ell}(E) \cdot [\text{III}(E/K)]^{1/2} = \frac{[E(K) : \mathbb{Z}P]}{c_E}, \tag{11} \]

Lemma 5.1. The right-hand side of (11) is a 2-adic unit.

Proof. Since $\mathbb{Q}(E[2])/\mathbb{Q}$ is an S_3 or $\mathbb{Z}/3\mathbb{Z}$ extension, we know that the Galois representation $E[2]$ remains irreducible when restricted to any quadratic field, hence $E(K)[2] = 0$.

Notice that the Manin constant c_E is odd; it follows from [AU96, Theorem A] when E is good at 2, from [AU96, p.270 (ii)] when E is multiplicative at 2 since $c_2(E)$ is assumed to be odd, and by our extra assumption when E is additive at 2.

Since c_E is odd, we know that the right-hand side of (11) 2-adically integral. If it is not a 2-adic unit, then there exists some $Q \in E(K)$ such that $2Q$ is an odd multiple of P. Let ω_E be the
Néron differential of E and let $\log_E := \log_{\omega_E}$. By the very definition of the Manin constant we have $c_E \cdot \omega_E = \omega_E$ and $c_E \cdot \log_{\omega_E} = \log_E$. Hence up to a 2-adic unit, we have

$$\frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_2)| \cdot \log_{\omega_E} P}{2} = \frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_2)| \cdot \log_E P}{2} = \frac{|\tilde{E}^{\text{ns}}(\mathbb{F}_2)| \cdot \log_E(Q)}{2}.$$

On the other hand, $c_2(E) \cdot |\tilde{E}^{\text{ns}}(\mathbb{F}_2)| \cdot Q$ lies in the formal group $\tilde{E}(2\mathcal{O}_{K_2})$ and $c_2(E)$ is assumed to be odd, we know that

$$|\tilde{E}^{\text{ns}}(\mathbb{F}_2)| \cdot \log_E(Q) \in 2\mathcal{O}_{K_2},$$

which contradicts \blacksquare. So the right-hand side of (11) is a 2-adic unit. \hfill \blacksquare

Since the left-hand side of (11) is a product of integers, Lemma 5.1 implies the following.

Corollary 5.2. BSD(2) for E/K is equivalent to that all the local Tamagawa numbers $c_\ell(E)$ are odd and III($E/K)[2] = 0$.

5.2. BSD(2) for $E^{(d)}/K$. Let $d \in \mathcal{N}$. The BSD conjecture for $E^{(d)}/K$ is equivalent to the equality

$$\prod_{\ell \mid Nd^2} c_\ell(E^{(d)}) \cdot |\text{III}(E^{(d)}/K)|^{1/2} = \frac{[E^{(d)}(K) : \mathbb{Z}P^{(d)}]}{c_{E^{(d)}}},$$

Lemma 5.3. Assume BSD(2) is true for E/K. Then $c_\ell(E^{(d)})$ is odd for any $\ell \mid Nd^2$.

Proof. First consider $\ell \mid N$. Let \mathcal{E} and $\mathcal{E}^{(d)}$ be the Néron model over \mathbb{Z}_ℓ of E and $E^{(d)}$ respectively. Notice that $E^{(d)}/\mathbb{Q}_p$ is the unramified quadratic twist of $E^{(d)}$. Since Néron models commute with unramified base change, we know that the component groups $\Phi_{\mathcal{E}}$ and $\Phi_{\mathcal{E}^{(d)}}$ are quadratic twists of each other as $\text{Gal}([\overline{\mathbb{F}}_\ell]/\mathbb{F}_\ell)$-modules. In particular, $\Phi_{\mathcal{E}}[2] \cong \Phi_{\mathcal{E}^{(d)}}[2]$ as $\text{Gal}([\overline{\mathbb{F}}_\ell]/\mathbb{F}_\ell)$-modules and thus $\Phi_{\mathcal{E}}(\mathbb{F}_\ell)[2] \cong \Phi_{\mathcal{E}^{(d)}}(\mathbb{F}_\ell)[2]$.

It follows that $c_\ell(E)$ and $c_\ell(E^{(d)})$ have the same parity.

Next consider $\ell \mid d$. Since $E^{(d)}$ has additive reduction and ℓ is odd, thus we know that $E^{(d)}(\mathbb{Q}_\ell)[2] \cong \Phi_{E^{(d)}}(\mathbb{F}_\ell)[2]$. Since $\ell \in \mathcal{S}$, Frobenius is assumed to have order 3 acting on $E^{(d)}[2] \cong E[2]$, we know that $E^{(d)}(\mathbb{Q}_\ell)[2] = 0$. Hence $c_\ell(E^{(d)})$ is odd. \hfill \blacksquare

Lemma 5.4. Assume BSD(2) is true for E/K. The right-hand side of (12) is a 2-adic unit.

Proof. Since E has no rational 2-torsion, we know that the Manin constants (with respect to both $X_0(N)$-parametrization and $X_1(N)$-parametrization) for all curves in the isogeny of E have the same 2-adic valuation. The twisting argument of Stevens [Ste89, §5] shows that if the Manin constant c_1 for the $X_1(N)$-optimal curve in the isogeny class of E is 1, then the Manin constant $c_1^{(d)}$ for the $X_1(N)$-optimal curve in the isogeny class of $E^{(d)}$ is also 1. The same twisting argument in fact shows that if c_1 is a 2-adic unit, then $c_1^{(d)}$ is also a 2-adic unit. Since c_E is odd, we know that c_1 is odd, therefore $c_1^{(d)}$ is also odd. Since $E^{(d)}$ has no rational 2-torsion, it follows that the Manin constant $c_{E^{(d)}}$ is also odd.

Now using $c_2(E^{(d)})$ is odd (by Lemma 5.3) and $c_{E^{(d)}}$ is odd, and replacing E by $E^{(d)}$ and replacing \blacksquare by the conclusion of Theorem 1.7 (1), the same argument as in the proof of Lemma 5.1 shows that the right-hand side of (12) is also a 2-adic unit. \hfill \blacksquare
Again, since the left-hand side of (12) is a product of integers, Lemma 5.4 implies the following.

Corollary 5.5. BSD(2) for $E^{(d)}/K$ is equivalent to that all the local Tamagawa numbers $c_v(E^{(d)})$ are odd and $\text{III}(E^{(d)}/K)[2] = 0$.

5.3. **2-Selmer groups over** K. Now let us compare the 2-Selmer groups of E/K and $E^{(d)}/K$.

Lemma 5.6. Assume BSD(2) is true for E/K. The isomorphism of Galois representations $E[2] \cong E^{(d)[2]}$ induces an isomorphism of 2-Selmer groups

$$\text{Sel}_2(E/K) \cong \text{Sel}_2(E^{(d)}/K).$$

In particular,

$$\text{III}(E^{(d)}/K)[2] = 0.$$

Proof. The 2-Selmer group $\text{Sel}_2(E/K)$ is defined by the local Kummer conditions

$$\mathcal{L}_v(E/K) = \text{im} \left(E(K_v)/2E(K_v) \to H^1(K_v, E[2]) \right).$$

Denote by $\mathcal{L}_v(E^{(d)}/K)$ the local Kummer conditions for $E^{(d)}/K$. It suffices to show that $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K)$ are the same at all places v of K:

1. $v \mid \infty$: Since v is complex, $H^1(K_v, E[2]) = 0$. So $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K) = 0$.

2. $v \mid d$: Suppose v lies above $\ell \in S$. Since Frob_ℓ acts by order 3 on $E[2]$, we know that the unramified cohomology

$$H^1_{ur}(\mathbb{Q}_\ell, E[2]) \cong E[2]/(\text{Frob}_\ell - 1)E[2] = 0$$

(such ℓ is called silent by Mazur–Rubin), and thus $\dim H^1(\mathbb{Q}_\ell, E[2]) = 2 \dim H^1_{ur}(\mathbb{Q}_\ell, E[2]) = 0$ ([Mii86 1.26]). Since ℓ is split in K, it follows that

$$H^1(K_v, E[2]) \cong H^1(\mathbb{Q}_\ell, E[2]) = 0,$$

So $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K) = 0$.

3. $v \nmid \infty$: By [MR10 Lemma 2.9], we have

$$\mathcal{L}_v(E/K) \cap \mathcal{L}_v(E^{(d)}/K) = E_2(K_v)/2E(K_v),$$

where

$$E_2(K_v) = \text{im} \left(N : E(L_v) \to E(K_v) \right)$$

is the image of the norm map induced from the quadratic extension $L_v = K_v(\sqrt{d})$ over K_v. To show that $\mathcal{L}_v(E/K) = \mathcal{L}_v(E^{(d)}/K)$, it suffices to show that

$$E(K_v)/NE(L_v) = 0.$$

By local Tate duality, it suffices to show that

$$H^1(\text{Gal}(L_v/K_v), E(L_v)) = 0.$$

Notice that $K_v \cong \mathbb{Q}_\ell$ and L_v/K_v is the unramified quadratic extension, we know that

$$E(L_v)/E^0(L_v) \cong \Phi_{\ell}(\mathbb{F}_{\ell^2}),$$

where Φ_{ℓ} is the component group of the Néron model of E over \mathbb{Z}_ℓ. Let $c \in \text{Gal}(\mathbb{F}_{\ell^2}/\mathbb{F}_\ell)$ be the order two automorphism, then $\Phi_{\ell}(\mathbb{F}_{\ell^2})[2]^c = \Phi_{\ell}(\mathbb{F}_{\ell})[2]$. Since $c_\ell(E)$ is odd, it follows that $\Phi_{\ell}(\mathbb{F}_{\ell^2})[2]^c = \Phi_{\ell}(\mathbb{F}_{\ell})[2] = 0$. Since an order two automorphism on a nonzero \mathbb{F}_2-vector space
must have a nonzero fixed vector, we know that \(\Phi E(F_{\ell^2})[2] = 0 \). Therefore \(E(L_v)/E^0(L_v) \) has odd order. It remains to show that

\[
H^1(\Gal(L_v/K_v), E^0(L_v)) = 0,
\]

which is true by Lang’s theorem since \(L_v/K_v \) is unramified (see [Maz72 Prop. 4.3]). □

5.4. **Proof of Theorem 1.13 (1).** It follows immediately from Corollary 5.5, Lemma 5.3 and Lemma 5.6.

6. **The 2-part of the BSD conjecture over \(\mathbb{Q} \)**

Let \(E \) and \(K \) be as in Theorem 1.13. Let \(d \in \mathbb{N} \).

6.1. **2-Selmer groups over \(\mathbb{Q} \).** Let us begin by comparing the 2-Selmer groups of \(E/\mathbb{Q} \) and \(E^{(d)}/\mathbb{Q} \).

Lemma 6.1. Let \(\Delta(E) \) be the discriminant of a Weierstrass equation of \(E/\mathbb{Q} \).

1. If \(\Delta(E) < 0 \), then \(\Sel_2(E/\mathbb{Q}) \cong \Sel_2(E^{(d)}/\mathbb{Q}) \).
2. If \(\Delta(E) > 0 \) and \(d > 0 \), then \(\Sel_2(E/\mathbb{Q}) \cong \Sel_2(E^{(d)}/\mathbb{Q}) \).
3. If \(\Delta(E) > 0 \) and \(d < 0 \), then \(\dim_{\mathbb{F}_2} \Sel_2(E/\mathbb{Q}) \) and \(\dim_{\mathbb{F}_2} \Sel_2(E^{(d)}/\mathbb{Q}) \) differ by 1.

Proof. By the same proof as Lemma 5.6, we know that \(\mathcal{L}_v(E/\mathbb{Q}) = \mathcal{L}_v(E^{(d)}/\mathbb{Q}) \) for any place \(v \nmid \infty \) of \(\mathbb{Q} \). The only issue is that the local condition at \(\infty \) may differ for \(E/\mathbb{Q} \) and \(E^{(d)}/\mathbb{Q} \). By [Ser72 p.305], we have \(\mathbb{Q}(\sqrt{\Delta(E)}) \subseteq \mathbb{Q}(E[2]) \). So complex conjugation acts nontrivially on \(E[2] \) if and only if \(\Delta(E) < 0 \). Hence

\[
\dim_{\mathbb{F}_2} H^1(\Gal(\mathbb{C}/\mathbb{R}), E[2]) = \begin{cases}
0, & \Delta(E) < 0, \\
2, & \Delta(E) > 0.
\end{cases}
\]

The item (1) follows immediately. When \(\Delta(E) > 0 \), \(\mathcal{L}_\infty(E/\mathbb{Q}) = E(\mathbb{R})/2E(\mathbb{R}) \) and \(\mathcal{L}_\infty(E^{(d)}/\mathbb{Q}) = E^{(d)}(\mathbb{R})/2E^{(d)}(\mathbb{R}) \) define the same line in \(H^1(\Gal(\mathbb{C}/\mathbb{R}), E[2]) \) if and only if \(d > 0 \). The item (2) follows immediately and the item (3) follows from a standard application of global duality (e.g., by [LHL16 Lemma 8.5]). □

We immediately obtain a more explicit description of the condition \(\chi_d(-N) = 1 \) in Theorem 1.7 under our extra assumption that \(c_2(E) \) is odd.

Corollary 6.2. The following conditions are equivalent.

1. \(E^{(d)}/\mathbb{Q} \) has the same rank as \(E/\mathbb{Q} \).
2. \(\chi_d(-N) = 1 \), where \(\chi_d \) is the quadratic character associated to \(\mathbb{Q}(\sqrt{d})/\mathbb{Q} \).
3. \(\Delta(E) < 0 \), or \(\Delta(E) > 0 \) and \(d > 0 \).

Proof. Since the parity conjecture for 2-Selmer groups of elliptic curves is known ([Mon96 Theorem 1.5]), we know that \(E/\mathbb{Q} \) and \(E^{(d)}/\mathbb{Q} \) has the same root number if and only if they have the same 2-Selmer rank. The result then follows from Lemma 6.1 and Theorem 1.7 [3]. □
6.2. Rank zero twists. Let K be as in Theorem 1.13. We now verify BSD(2) for the rank zero twists.

Lemma 6.3. If BSD(2) is true for E/Q and $E^{(d_K)}/Q$, then BSD(2) is true for all twists $E^{(d)}/Q$ and $E^{(d-d_K)}/Q$ of rank zero, where $d \in \mathcal{N}$ with $\chi_d(-N) = 1$.

Proof. Notice exactly one of E/Q and $E^{(d_K)}/Q$ has rank zero. Consider the case that E/Q has rank zero. Since all the local Tamagawa numbers $c_\ell(E)$ are odd and $\text{III}(E/Q)[2] = 0$, BSD(2) for E/Q implies that
\[
\frac{L(E/Q, 1)}{\Omega(E/Q)}
\]
is a 2-adic unit. Assume $\chi_d(-N) = 1$. We know from Corollary 6.2 that $\Delta(E) < 0$, or $\Delta(E) > 0$ and $d > 0$. Under these conditions, it follows from [Zha14, Theorem 1.1, 1.2] that
\[
\frac{L(E^{(d)}/Q, 1)}{\Omega(E^{(d)}/Q)}
\]
is also a 2-adic unit (notice that the Néron period $\Omega(E/Q)$ is twice of the real period when $\Delta(E) > 0$). Since all the local Tamagawa numbers $c_\ell(E^{(d)})$ are odd (Lemma 5.3) and $\text{III}(E^{(d)}/Q)[2] = 0$ (Lemma 6.2), we know that BSD(2) is true for $E^{(d)}/Q$. By the same argument, if $E^{(d_K)}/Q$ has rank zero and $\chi_d(-N) = 1$, we know that BSD(2) is true for $E^{(d-d_K)}/Q$. \hfill \Box

6.3. Proof of Theorem 1.13 (2). Now we can finish the proof of Theorem 1.13 (2). Because the abelian surface $E \times E^{(d_K)}/Q$ is isogenous to the Weil restriction $\text{Res}_{K/Q} E$ and the validity of the BSD conjecture for abelian varieties is invariant under isogeny ([Mil06, I.7.3]), we know that BSD(2) for E/Q and $E^{(d_K)}/Q$ implies that BSD(2) is true for E/K. Hence by Theorem 1.13 (2), BSD(2) is true for $E^{(d)}/K$. By Lemma 6.3 BSD(2) is true for the rank zero curve among $E^{(d)}/Q$ and $E^{(d-d_K)}/Q$ for $d \in \mathcal{N}$ such that $\chi_d(-N) = 1$. Then again by the invariance of BSD(2) under isogeny, we know BSD(2) is also true for the other rank one curve among $E^{(d)}/Q$ and $E^{(d-d_K)}/Q$.

References

E-mail address: dkriz@princeton.edu

Department of Mathematics, Princeton University, Fine Hall, Washington Rd, Princeton, NJ 08544

E-mail address: chaoli@math.columbia.edu

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027