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Abstract. In this article, we study the Chow group of the motive associated to a tempered
global L-packet π of unitary groups of even rank with respect to a CM extension, whose
global root number is −1. We show that, under some restrictions on the ramification of π,
if the central derivative L′(1/2, π) is nonvanishing, then the π-nearly isotypic localization of
the Chow group of a certain unitary Shimura variety over its reflex field does not vanish.
This proves part of the Beilinson–Bloch conjecture for Chow groups and L-functions, which
generalizes the Birch and Swinnerton-Dyer conjecture. Moreover, assuming the modularity
of Kudla’s generating functions of special cycles, we explicitly construct elements in a certain
π-nearly isotypic subspace of the Chow group by arithmetic theta lifting, and compute their
heights in terms of the central derivative L′(1/2, π) and local doubling zeta integrals. This
confirms the conjectural arithmetic inner product formula proposed by one of us, which
generalizes the Gross–Zagier formula to higher dimensional motives.
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1. Introduction

In 1986, Gross and Zagier [GZ86] proved a remarkable formula that relates the Néron–
Tate heights of Heegner points on a rational elliptic curve to the central derivative of the
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corresponding Rankin–Selberg L-function. A decade later, Kudla [Kud97] revealed another
striking relation between Gillet–Soulé heights of special cycles on Shimura curves and deriva-
tives of Siegel Eisenstein series of genus two, suggesting an arithmetic version of theta lifting
and the Siegel–Weil formula (see, for example, [Kud02,Kud03]). This was later further de-
veloped in his joint work with Rapoport and Yang [KRY06]. For the higher dimensional
case, in a series of papers starting from the late 1990s, Kudla and Rapoport developed
the theory of special cycles on integral models of Shimura varieties for GSpin groups in
lower rank cases and for unitary groups of arbitrary ranks [KR11,KR14]. They also stud-
ied special cycles on the relevant Rapoport–Zink spaces over non-archimedean local fields.
In particular, they formulated a conjecture relating the arithmetic intersection number of
special cycles on the unitary Rapoport–Zink space to the first derivative of local Whittaker
functions [KR11, Conjecture 1.3].

In his thesis work [Liu11a,Liu11b], one of us studied special cycles as elements in the Chow
group of the unitary Shimura variety over its reflex field (rather than in the arithmetic Chow
group of a certain integral model) and the Beilinson–Bloch height of the arithmetic theta
lifting (rather than the Gillet–Soulé height). In particular, in the setting of unitary groups,
he proposed an explicit conjectural formula for the Beilinson–Bloch height in terms of the
central L-derivative and local doubling zeta integrals. Such formula is completely parallel
to the Rallis inner product formula [Ral84], which computes the Petersson inner product
of the global theta lifting, hence was named arithmetic inner product formula in [Liu11a],
and can be regarded as a higher dimensional generalization of the Gross–Zagier formula.1 In
the case of U(1, 1) over an arbitrary CM extension, such conjectural formula was completely
confirmed in [Liu11b], while the case for U(r, r) with r > 2 is significantly harder. Recently,
the Kudla–Rapoport conjecture has been proved by W. Zhang and one of us in [LZ]; and
it has become possible to attack the cases for higher rank groups. In what follows, we will
explain our new results on Chow groups of automorphic motives for unitary groups and the
arithmetic inner product formula.

Beilinson–Bloch conjecture. Let E be a number field and X a projective smooth scheme
over E of odd dimension 2r− 1. We have the L-function L(s,H2r−1(X ⊗E E,Q`(r))) for the
middle degree `-adic cohomology of X for every rational prime `, which is conjectured to
be meromorphic, independent of `, and satisfy a functional equation with center s = 0. Let
CHr(X)0 be the group of codimension r Chow cycles on X that are homologically trivial
(on X ⊗E E). Then the unrefined Beilinson–Bloch conjecture ([Bĕı87, Conjecture 5.9] and
[Blo84]) predicts that

rank CHr(X)0 = ords=0 L(s,H2r−1(X ⊗E E,Q`(r)))
holds for every `, hence in particular, CHr(X)0 has finite rank. Note that when X is an
elliptic curve, this recovers the (unrefined) Birch and Swinnerton-Dyer conjecture.

In fact, this conjecture can also be formulated in terms of Chow motives. Based on this
point of view, we have an equivariant version of the Beilinson–Bloch conjecture as follows.
Suppose that X admits an action of an algebra T via étale correspondences. Then T acts on
both CHr(X)0 and H2r−1(X ⊗E E,Q`(r)). Let % be a nonzero irreducible finite-dimensional

1By “generalization of the Gross–Zagier formula”, we simply mean that they are both formulae re-
lating Beilinson–Bloch heights of special cycles and central derivatives of L-functions. However, from a
representation-theoretical point of view, the more accurate generalization of the Gross–Zagier formula should
be the arithmetic Gan–Gross–Prasad conjecture.
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complex representation of T. Then for every ` and every embedding Q` ↪→ C, we have the
L-function

L(s,HomT(%,H2r−1(X ⊗E E,Q`(r))C)).
Then it is expected that

dimC HomT(%,CHr(X)0
C) = ords=0 L(s,HomT(%,H2r−1(X ⊗E E,Q`(r))C))(1.1)

holds, which can be regarded as the Beilinson–Bloch conjecture for the (conjectural Chow)
motive HomT(%, h2r−1(X)(r)C) where h2r−1(X) is the (conjectural Chow) motive of X of
degree 2r − 1.

Now we propose a more specific conjecture for unitary Shimura varieties, guided by the
equivariant version of the Beilinson–Bloch conjecture above.

Let E/F be a CM extension of number fields with the complex conjugation c. We fix
an embedding ι : E ↪→ C and regard E as a subfield of C. Take an even positive integer
n = 2r. We equip Wr := En with the skew-hermitian form (with respect to the involution
c) given by the matrix

(
1r

−1r

)
. Put Gr := U(Wr), the unitary group of Wr, which is a

quasi-split reductive group over F . For every non-archimedean place v of F , we denote by
Kr,v ⊆ Gr(Fv) the stabilizer of the lattice On

Ev , which is a special maximal subgroup.
We first recall the notation of unitary Shimura varieties. Consider a hermitian space V

over E of rank n (with respect to the involution c) that has signature (n− 1, 1) at the real
place of F induced by ι and signature (n, 0) at other real places. Put H := U(V ) for its
unitary group, which is a reductive group over F . Note that for all but finitely many places
v of F , Hv := H ⊗F Fv and Gr,v := Gr ⊗F Fv are isomorphic as reductive groups over Fv.
We have a system {XL} of Shimura varieties2 of dimension n − 1 over E indexed by open
compact subgroups L ⊆ H(A∞F ) (see Section 4 for more details).

Let π be a tempered cuspidal automorphic representation of Gr(AF ). By the endoscopic
classification for unitary groups [Mok15, KMSW], we have the automorphic base change
BC(π) of π, which is an automorphic representation of GLn(AE) that is an isobaric sum of
mutually non-isomorphic (unitary) cuspidal automorphic representations.
Conjecture 1.1. Let π be a tempered cuspidal automorphic representation of Gr(AF ), and V
a hermitian space over E of rank n that has signature (n−1, 1) at the real place of F induced
by ι and signature (n, 0) at other real places. For every irreducible admissible representation
π̃∞ of H(A∞F ) satisfying
(a) π̃∞v ' πv for all but finitely many non-archimedean places v of F for which Hv ' Gr,v,
(b) HomH(A∞F )

(
π̃∞, lim−→L

Hn−1
dR (XL/C)

)
6= 0,

the identity

dimC HomH(A∞F )

(
π̃∞, lim−→

L

CHr(XL)0
C

)
= ords= 1

2
L(s,Πj(π̃∞))

holds. Here, Πj(π̃∞) is the cuspidal factor of BC(π) determined by π̃∞ (see Lemma 3.15); in
particular, Πj(π̃∞) = BC(π) if BC(π) is already cuspidal.

In relation with (1.1), we take X to be XL for L such that (π̃∞)L 6= 0, T to be the Hecke
algebra of H(A∞F ) of level L, and % to be (π̃∞)L. Moreover, in this case we know that the
L-function on the right-hand side of (1.1) coincides with L(s,Πj(π̃∞)) up to a shift by 1

2 .
Thus, Conjecture 1.1 is a special case of (1.1) after taking limit of L.

2When F = Q, we have to replace XL by its canonical smooth toroidal compactification.
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In the case when {XL} is replaced by classical modular curves, Conjecture 1.1 in fact
recovers the (unrefined) Birch and Swinnerton-Dyer conjecture for rational elliptic curves.
See [Gro04, Section 22] for more details from this point of view. Conjecture 1.1 was only
known in the case of modular/Shimura curves when the analytic rank is at most 1 [GZ86,
Kol90,Nek07a,YZZ13], and partially known in the case of Shimura varieties for U(2)×U(3)
when the analytic rank is exactly 1 [Xue19].3

Remark 1.2. It should be possible to formulate Conjecture 1.1 using totally positive definite
incoherent hermitian spaces (that is, totally positive definite hermitian spaces over AE that
are not base change from E) and incoherent Shimura varieties without fixing an embedding ι.
The notion of incoherent spaces was first invented by Kudla (in the quadratic case), which he
called an incoherent collection of quadratic spaces over local fields [Kud97, Definition 2.1].
Around the similar time, Gross realized that a Shimura curve can be uniformized at its
supersingular points in terms of a collection of quaternion algebras over the base number field
(see [Gro04] and also [GGP12] for generalizations). In their work [YZZ13], Yuan, S. Zhang,
and W. Zhang put this infinite collection of quaternion algebras as a single quaternion
algebra over the adèles as a uniform description of the geometry of Shimura curves and the
representation theory. This viewpoint was later adapted by W. Zhang [Zha12] and one of us
[Liu11a,Liu11b]. In [Zha19] (which is based on his 2010 talk at Gross birthday conference),
S. Zhang summarizes how one can use the notion of incoherent quadratic/hermitian spaces to
formulate various conjectures that are arithmetic counterparts of classical period formulae.
In particular, there should exists a compatible system of varieties {XL} over (the abstract
field) E such that for every embedding ι : E ↪→ C, the system {XL ⊗E ι(E)} recovers the
usual Shimura varieties defined above Conjecture 1.1 – this was explained in more details in
[Gro21]. Based on this observation, one should be able to formulate Conjecture 1.1 for the
system {XL} associated to totally positive definite incoherent hermitian spaces.
Main results. Our main results in this article prove part of Conjecture 1.1 under certain
assumptions on E/F and π. Denote by V(∞)

F and Vfin
F the set of archimedean and non-

archimedean places of F , respectively. Denote by Vspl
F , Vint

F , and Vram
F the subsets of Vfin

F of
those that are split, inert, and ramified in E, respectively. For every v ∈ Vfin

F , we denote by
qv the residue cardinality of Fv.
Assumption 1.3. Suppose that Vram

F = ∅ and that Vspl
F contains all 2-adic places. In par-

ticular, [F : Q] is even. We consider a cuspidal automorphic representation π of Gr(AF )
realized on a space Vπ of cusp forms, satisfying:
(1) For every v ∈ V(∞)

F , πv is the holomorphic discrete series representation of Harish-
Chandra parameter {1−n

2 , 3−n
2 , . . . , n−3

2 , n−1
2 }.

(2) For every v ∈ Vspl
F , πv is a principal series.

(3) For every v ∈ Vint
F , πv is either unramified or almost unramified (see Remark 1.4 below)

with respect to Kr,v; moreover, if πv is almost unramified, then v is unramified over Q.
(4) For every v ∈ Vfin

F , πv is tempered.
Remark 1.4. We have the following remarks concerning Assumption 1.3.
(1) In (1), by [Sch75, Theorem 1.3], the condition for πv is equivalent to that πv is a

discrete series representation whose restriction to Kr,v contains the character κrr,v (see
3Interestingly, the height formula in [Xue19], which is for the endoscopic case, is obtained by reducing it

to the arithmetic inner product formula for U(1, 1).



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES FOR UNITARY GROUPS 5

Notation 2.3(G5,G6) for the notation). Moreover, one can also describe πv as the theta
lifting of the trivial representation of the (positive) definite unitary group of rank n
(see, for example, [KK07]).

(2) Part (2) will only be used in the proof of Lemma 7.3 in order to quote a vanishing result
from [CS17]. However, in our second article on this subject [LL], we have successively
removed this assumption by confirming the conjecture in Remark 7.4 by proving a
stronger vanishing property.

(3) In (3), the notion of almost unramified representations ofGr(Fv) at v ∈ Vint
F is defined in

[Liu, Definition 5.3]. Roughly speaking, an irreducible admissible representation πv of
Gr(Fv) is almost unramified (with respect toKr,v) if πIr,vv contains a particular character
as a module over C[Ir,v\Kr,v/Ir,v], where Ir,v is an Iwahori subgroup contained in Kr,v,
and that the Satake parameter of πv contains the pair {qv, q−1

v }; it is not unramified.
By [Liu, Theorem 1.2], when qv is odd, almost unramified representations are exactly
those representations whose local theta lifting to the non-quasi-split unitary group of
the same rank 2r has nonzero invariants under the stabilizer of an almost self-dual
lattice.

Suppose that we are in Assumption 1.3. Denote by
• L(s, π) the doubling L-function (see Definition 3.3 for the more precise definition),
• Rπ ⊆ Vspl

F the (finite) subset for which πv is ramified,
• Sπ ⊆ Vint

F the (finite) subset for which πv is almost unramified.
Then we have ε(π) = (−1)r[F :Q]+|Sπ | for the global (doubling) root number, so that the
vanishing order of L(s, π) at the center s = 1

2 has the same parity as |Sπ| since [F : Q] is
even. The cuspidal automorphic representation π determines a hermitian space Vπ over AE

of rank n via local theta dichotomy (such that the local theta lifting of πv to U(Vπ)(Fv) is
nontrivial for every place v of F ), unique up to isomorphism, which is totally positive definite
and satisfies that for every v ∈ Vfin

F , the local Hasse invariant ε(Vπ ⊗AF Fv) = 1 if and only if
v 6∈ Sπ (see Proposition 3.6(2)).

Now suppose that |Sπ| is odd, hence ε(π) = −1, which is equivalent to that Vπ is not
the base change of a hermitian space over E. In this case, we take V to be the hermitian
space of E in the context of Conjecture 1.1, unique up to isomorphism, satisfying that
Vv ' Vπ,v for every v ∈ Vfin

F . Let R be a finite subset of Vfin
F . We fix a special maximal

subgroup LR of H(A∞,RF ) that is the stabilizer of a lattice ΛR in V ⊗F A∞,RF (see Notation
2.2(H6) for more details). For a field L, we denote by TR

L the (abstract) Hecke algebra
L[LR\H(A∞,RF )/LR], which is a commutative L-algebra. When R contains Rπ, the cuspidal
automorphic representation π gives rise to a character

χR
π : TR

Qac → Qac,

where Qac denotes the subfield of C of algebraic numbers; and we put mR
π := kerχR

π, which
is a maximal ideal of TR

Qac .
The following is the first main theorem of this article.

Theorem 1.5. Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for which we assume
Hypothesis 6.6. If L′(1

2 , π) 6= 0, that is, ords= 1
2
L(s, π) = 1, then as long as R satisfies Rπ ⊆ R

and |R ∩ Vspl
F | > 2, the nonvanishing

lim−→
LR

(
CHr(XLRLR)0

Qac

)
mR
π

6= 0
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holds, where the colimit is taken over all open compact subgroups LR of H(FR).

Remark 1.6. We have the following remarks concerning Theorem 1.5.
(1) For every v ∈ Vfin

F , the local doubling L-function L(s, πv) coincides with L(s,BC(πv))
where BC(πv) denotes the standard base change of πv to GLn(Ev) (see Remark 3.4 for
more details). In particular, combining with the local-global compatibility [KMSW,
Theorem 1.7.1], we know that L(s, π) coincides with the standard L-function of the
automorphic base change of π.

(2) Since |Sπ| is odd, by (1) and Remark 3.16, Conjecture 1.1 predicts the nonvanishing
lim−→
LR

CHr(XLRLR)0
Qac [mR

π] 6= 0

when ords= 1
2
L(s, π) = 1 (by considering π̃∞ as the theta lifting of π∞), which fur-

ther implies the nonvanishing in our statement. However, it is conjectured that
CHr(XLRLR)0

Qac is finite dimensional, which implies that the two types of nonvanish-
ing are equivalent. Thus, our theorem provides evidence toward Conjecture 1.1. See
Theorem 1.7(2) below for a stronger result under an extra hypothesis.

(3) Hypothesis 6.6 describes the Galois representation on the π-nearly isotypic subspace
of the middle degree `-adic cohomology lim−→L

H2r−1(XL ⊗E E,Q`). See Remark 6.7 for
the status of this hypothesis.

(4) In fact, the nonvanishing property we prove is that

lim−→
LR

(
SCHr(XLRLR)0

Qac

)
mR
π

6= 0,

where SCHr(XLRLR)0 denotes the subgroup of CHr(XLRLR)0 generated by special cycles
(recalled in Section 4).

(5) It is clear that the field Qac in the statement of the theorem can be replaced by an
arbitrary subfield over which π∞ (hence χR

π) is defined.
(6) The main reason we assume Vram

F = ∅ is that the local ingredient [LZ] only deals with
places that are inert in E; and we hope to remove this assumption in the future.

Our remaining results rely on Hypothesis 4.5 on the modularity of Kudla’s generating
functions of special cycles, hence are conditional at this moment (see Remark 4.6).

Theorem 1.7. Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for which we assume
Hypothesis 6.6. Assume Hypothesis 4.5 on the modularity of generating functions of codi-
mension r.
(1) For every test vectors

• ϕ1 = ⊗vϕ1v ∈ Vπ and ϕ2 = ⊗vϕ2v ∈ Vπ such that for every v ∈ V(∞)
F , ϕ1v and ϕ2v

have the lowest weight and satisfy 〈ϕc
1v, ϕ2v〉πv = 1,

• φ∞1 = ⊗vφ∞1v ∈ S (V r ⊗F A∞F ) and φ∞2 = ⊗vφ∞2v ∈ S (V r ⊗F A∞F ),
the identity

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E =
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c)

holds. Here,
• Θφ∞i

(ϕi) ∈ lim−→L
CHr(XL)0

C is the arithmetic theta lifting (Definition 4.8), which is
only well-defined under Hypothesis 4.5;



CHOW GROUPS AND L-DERIVATIVES OF AUTOMORPHIC MOTIVES FOR UNITARY GROUPS 7

• 〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E is the normalized height pairing (Definition 6.11),4 which
is constructed based on Beilinson’s notion of height pairing;
• b2r(0) is defined in Notation 2.1(F4), which equals L(M∨

r (1)) where Mr is the mo-
tive associated to Gr by Gross [Gro97], and is in particular a positive real number;
• Cr = (−1)r2−2rπr

2 Γ(1)···Γ(r)
Γ(r+1)···Γ(2r) , which is the exact value of a certain archimedean

doubling zeta integral; and
• Z\πv ,Vv(ϕc

1v, ϕ2v, φ
∞
1v ⊗ (φ∞2v)c) is the normalized local doubling zeta integral (see Sec-

tion 3), which equals 1 for all but finitely many v.
(2) In the context of Conjecture 1.1, take π̃∞ to be the theta lifting of π∞ to H(A∞F ). If

L′(1
2 , π) 6= 0, that is, ords= 1

2
L(s, π) = 1, then

HomH(A∞F )

(
π̃∞, lim−→

L

CHr(XL)0
C

)
6= 0

holds.

Remark 1.8. We have the following remarks concerning Theorem 1.7.
(1) Part (1) verifies the so-called arithmetic inner product formula, a conjecture proposed

by one of us [Liu11a, Conjecture 3.11].
(2) The arithmetic inner product formula in part (1) is perfectly parallel to the classical

Rallis inner product formula. In fact, suppose that |Sπ| is even, hence Vπ ' V ⊗F AF

for a hermitian space V over E. We have the classical theta lifting θφ∞(ϕ) where we
use standard Gaussian functions at archimedean places. Then the Rallis inner product
formula in this case reads as

〈θφ∞1 (ϕ1), θφ∞2 (ϕ2)〉H =
L(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c),

in which 〈 , 〉H denotes the Petersson inner product with respect to the Tamagawa
measure on H(AF ).

(3) In part (2), the representation π̃∞ satisfies (a) of Conjecture 1.1. By Remark 1.6(1)
and Remark 3.16, if ords= 1

2
L(s, π) = 1, then π̃∞ satisfies (b) of Conjecture 1.1 as well,

and Πj(π̃∞) is the unique cuspidal factor of the automorphic base change of π such that
ords= 1

2
L(s,Πj(π̃∞)) = 1. In particular, part (2) provides evidence toward Conjecture

1.1, which is more direct than Theorem 1.5 (but is conditional on the modularity of
generating functions).

In the case where Rπ = ∅, that is, πv is either unramified or almost unramified for every
v ∈ Vfin

F , we have a very explicit height formula for test vectors that are new everywhere.

Corollary 1.9. Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for which we assume
Hypothesis 6.6. Assume Hypothesis 4.5 on the modularity of generating functions of codi-
mension r. In the situation of Theorem 1.7(1), suppose further that
• Rπ = ∅;

4Strictly speaking, 〈Θφ∞
1

(ϕ1),Θφ∞
2

(ϕ2)〉\X,E relies on the choice of a rational prime ` and is a priori an
element in C⊗Q Q`. However, the above identity implicitly says that it belongs to C and is independent of
the choice of `.
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• ϕ1 = ϕ2 = ϕ ∈ V [r]∅
π (see Notation 2.3(G8) for the precise definition of the one-

dimensional space V [r]∅
π of holomorphic new forms) such that for every v ∈ VF ,

〈ϕc
v, ϕv〉πv = 1; and

• φ∞1 = φ∞2 = φ∞ such that for every v ∈ Vfin
F , φ∞v = 1(Λ∅v)r .

Then the identity

〈Θφ∞(ϕ),Θφ∞(ϕ)〉\X,E = (−1)r ·
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Sπ

qr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1)
holds.

Remark 1.10. Assuming the conjecture on the injectivity of the étale Abel–Jacobi map,
one can show that the cycle Θφ∞(ϕ) is a primitive cycle of codimension r. By [Bĕı87,
Conjecture 5.5], we expect that (−1)r〈Θφ∞(ϕ),Θφ∞(ϕ)〉\X,E > 0 holds, which, in the situation
of Corollary 1.9, is equivalent to L′(1

2 , π) > 0.
Strategy and structure. The main strategy for the proofs of our main results is to adopt
Beilinson’s notion of height pairing together with various sophisticated uses of Hecke op-
erators. In [Bĕı87], Beilinson constructed, under certain assumptions, a (hermitian) height
pairing on CHr(XL)0

C valued in C. Since those assumptions have not been resolved even
today, we are not able to use the full notion of this height pairing. However, after choosing
a sufficiently large prime `, Beilinson’s construction gives an unconditional height pairing on
a subspace CHr(XL)〈`〉C (a priori depending on `) of CHr(XL)0

C valued in C⊗Q Q`.
The candidates for those nonvanishing elements in Theorem 1.5 are Kudla’s special cycles

ZT (φ∞) (which will be recalled in Section 4), which are in general elements in CHr(XL)C. We
show that there exists an element s ∈ TR

Qac \ mR
π such that s∗ annihilates the quotient space

CHr(XL)C/CHr(XL)〈`〉C . The existence of such element allows us to consider the modified
cycles s∗ZT (φ∞) without changing their (non)triviality in the localization of CHr(XL)C at
mR
π, moreover at the same time to talk about their heights.
More precisely, we consider two such modified cycles s∗1ZT1(φ∞1 ) and s∗2ZT2(φ∞2 ). When

φ∞1 ⊗ φ∞2 satisfies a certain regularity condition, the two cycles have disjoint support, hence
their height pairing (in the sense of Beilinson) has a decomposition into so-called local indices
according to places u of E. We mention especially that if u is non-archimedean, then the
local index at u is defined via a winding number on the `-adic cohomology ofXL⊗EEu, which
a priori has nothing to do with intersection theory. When XL ⊗E Eu has a smooth integral
model, it is well-known that such winding number can be computed as the intersection
number of integral extensions of the cycles. However, when XL⊗E Eu does not have smooth
reduction, there is no general way to compute the local index. Nevertheless, we show that,
under certain assumptions on the ramification and on the representation π, the local index
between s∗1ZT1(φ∞1 ) and s∗2ZT2(φ∞2 ) can be computed in terms of the intersection number of
some nice extensions of cycles on some nice regular model, after further suitable translations
by elements in TR

Qac\mR
π. Eventually, all these local indices turn out to be (linear combinations

of) Fourier coefficients of derivatives of Eisenstein series (and values of Eisenstein series for
finitely many u).

The final ingredient is the Euler expansion of the doubling integral of cusp forms in π
against those derivatives of Eisenstein series (and Eisenstein series), which expresses the
height pairing in terms of L′(1

2 , π) and local doubling zeta integrals (in particular, it belongs
to C and is independent of `). An apparent technical challenge for this approach is to
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show that there exist test functions (φ∞1 , φ∞2 ) satisfying the regularity condition and yielding
nonvanishing local doubling zeta integrals; this is solved in Proposition 3.13. The proofs for
Theorem 1.7 and Corollary 1.9 follow from a similar strategy.

In Section 2, we collect setups and notation that are running through the entire article,
organized in several groups so that the readers can easily trace. In Section 3, we recall
the doubling method in the theory of theta lifting, and prove all necessary results from the
representation-theoretical side. In Section 4, we recall the notation of unitary Shimura vari-
eties, their special cycles and generating functions. We introduce the important hypothesis
on the modularity of generating functions, assuming which we define arithmetic theta lifting.
In Section 6, we introduce the notion of Beilinson’s height, in a restricted but unconditional
form, together with the decomposition into local indices. In Section 5, we introduce a vari-
ant of unitary Shimura variety that admits moduli interpretation, which will only be used
in computing local indices at various places. In Sections 7, 8, 9, and 10, we compute local
indices at split, inert with self-dual level, inert with almost self-dual level, and archimedean
places, respectively. Finally, in Section 11, we prove our main results. There are two appen-
dices: Appendix A contains two lemmas in Fourier analysis that are only used in the proof
of Proposition 3.13; and Appendix B collects some new observations concerning Beilinson’s
local indices at non-archimedean places.

Notation and conventions.
• When we have a function f on a product set A1 × · · · ×Am, we will write f(a1, . . . , am)
instead of f((a1, . . . , am)) for its value at an element (a1, . . . , am) ∈ A1 × · · · × Am.
• For a set S, we denote by 1S the characteristic function of S.
• All rings are commutative and unital; and ring homomorphisms preserve units. However,
we use the word algebra in the general sense, which is not necessarily commutative or
unital.
• If a base ring is not specified in the tensor operation ⊗, then it is Z.
• For an abelian group A and a ring R, we put AR := A⊗R as an R-module.
• For an integer m > 0, we denote by 0m and 1m the null and identity matrices of rank
m, respectively. We also denote by wm the matrix

(
1m

−1m

)
.

• We denote by c : C→ C the complex conjugation. For an element x in a complex space
with a default underlying real structure, we denote by xc its complex conjugation.
• For a field K, we denote by K the abstract algebraic closure of K. However, for aesthetic
reason, we will write Qp instead of Qp and will denote by Fp its residue field. On the
other hand, we denote by Qac the algebraic closure of Q inside C.
• For a number field K, we denote by ψK : K\AK → C× the standard additive character,
namely, ψK := ψQ ◦ TrK/Q in which ψQ : Q\A → C× is the unique character such that
ψQ,∞(x) = e2πix.
• Throughout the entire article, all parabolic inductions are unitarily normalized.

Acknowledgements. We would like to thank Wei Zhang for helpful discussion and careful
reading of early drafts with many valuable comments and suggestions for improvement. We
also thank Miaofen Chen, Wee Teck Gan, Benedict Gross, and Shouwu Zhang for helpful
comments. Finally, we thank the anonymous referees for their careful reading and many
useful suggestions and comments. The research of C. L. is partially supported by the NSF
grant DMS–1802269. The research of Y. L. is partially supported by the NSF grant DMS–
1702019, DMS–2000533, and a Sloan Research Fellowship.
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2. Running notation

In this section, we collect several groups of more specific notation that will be used through-
out the remaining sections except appendices.

Notation 2.1. Let E/F be a CM extension of number fields, so that c is a well-defined
element in Gal(E/F ). We continue to fix an embedding ι : E ↪→ C. We denote by u the
(archimedean) place of E induced by ι and regard E as a subfield of C via ι.
(F1) We denote by

• VF and Vfin
F the set of all places and non-archimedean places of F , respectively;

• Vspl
F , Vint

F , and Vram
F the subsets of Vfin

F of those that are split, inert, and ramified in
E, respectively;
• V(�)

F the subset of VF of places above � for every place � of Q; and
• V?

E the places of E above V?
F .

Moreover,
• for every place u ∈ VE of E, we denote by u ∈ VF the underlying place of F ;
• for every v ∈ Vfin

F , we denote by pv the maximal ideal of OFv , and put qv := |OFv/pv|;
• for every v ∈ VF , we put Ev := E ⊗F Fv and denote by | |Ev : E×v → C× the
normalized norm character.

(F2) Let m > 0 be an integer.
• We denote by Hermm the subscheme of ResE/F Matm,m of m-by-m matrices b sat-
isfying tbc = b. Put Herm◦m := Hermm ∩ ResE/F GLm.
• For every ordered partitionm = m1+· · ·+ms withmi a positive integer, we denote
by ∂m1,...,ms : Hermm → Hermm1 × · · · × Hermms the morphism that extracts the
diagonal blocks with corresponding ranks.
• We denote by Hermm(F )+ (resp. Herm◦m(F )+) the subset of Hermm(F ) of elements
that are totally semi-positive definite (resp. totally positive definite).

(F3) For every u ∈ V(∞)
E , we fix an embedding ιu : E ↪→ C inducing u (with ιu = ι), and

identify Eu with C via ιu.
(F4) Let η := ηE/F : A×F → C× be the quadratic character associated to E/F . For every

v ∈ VF and every positive integer m, put

bm,v(s) :=
m∏
i=1

L(2s+ i, ηm−iv ).

Put bm(s) := ∏
v∈VF bm,v(s).

(F5) For every element T ∈ Hermm(AF ), we have the character ψT : Hermm(AF ) → C×
given by the formula ψT (b) := ψF (tr bT ).

(F6) Let R be a commutative F -algebra. A (skew-)hermitian space over R ⊗F E is a free
R ⊗F E-module V of finite rank, equipped with a (skew-)hermitian form ( , )V with
respect to the involution c that is nondegenerate.

Notation 2.2. Throughout the article, we fix an even positive integer n = 2r. Let (V, ( , )V )
be a hermitian space over AE of rank n that is totally positive definite.
(H1) For every commutative AF -algebra R and every integer m > 0, we denote by

T (x) := ((xi, xj)V )i,j ∈ Hermm(R)

the moment matrix of an element x = (x1, . . . , xm) ∈ V m ⊗AF R.
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(H2) For every v ∈ VF , we put Vv := V ⊗AF Fv, which is a hermitian space over Ev, and
define the local Hasse invariant of Vv to be ε(Vv) := ηv((−1)rdet Vv) ∈ {±1} which
equals 1 for all but finitely many v. In what follows, we will abbreviate ε(Vv) as εv.
Recall that V is coherent (resp. incoherent) if ∏v∈VF εv = 1 (resp. ∏v∈VF εv = −1).

(H3) Let v be a place of F and m > 0 an integer.
• For T ∈ Hermm(Fv), we put (V m

v )T := {x ∈ V m
v | T (x) = T}, and

(V m
v )reg :=

⋃
T∈Herm◦m(Fv)

(V m
v )T .

• We denote by S (V m
v ) the space of (complex valued) Bruhat–Schwartz functions

on V m
v . When v ∈ V(∞)

F , we have the Gaussian function φ0
v ∈ S (V m

v ) given by the
formula φ0

v(x) = e−2π trT (x).
• We have a Fourier transform map ̂ : S (V m

v )→ S (V m
v ) sending φ to φ̂ defined by

the formula
φ̂(x) :=

∫
Vmv

φ(y)ψE,v
(

m∑
i=1

(xi, yi)V
)

dy,

where dy is the self-dual Haar measure on V m
v with respect to ψE,v.

• In what follows, we will always use this self-dual Haar measure on V m
v .

(H4) Let m > 0 be an integer. For T ∈ Hermm(F ), we put
Diff(T, V ) := {v ∈ VF | (V m

v )T = ∅},
which is a finite subset of VF \ Vspl

F .
(H5) Take a nonempty finite subset R ⊆ Vfin

F that contains Vram
F . Let S be the subset of Vfin

F \R
consisting of v such that εv = −1, which is contained in Vint

F .
(H6) We fix a ∏v∈Vfin

F \R
OEv -lattice ΛR in V ⊗AF A∞,RF such that for every v ∈ Vfin

F \ R, ΛR
v is a

subgroup of (ΛR
v)∨ of index q1−εv

v , where
(ΛR

v)∨ := {x ∈ Vv | ψE,v((x, y)V ) = 1 for every y ∈ ΛR
v}

is the ψE,v-dual lattice of ΛR
v.

(H7) Put H := U(V ), which is a reductive group over AF .
(H8) Denote by LR ⊆ H(A∞,RF ) the stabilizer of ΛR, which is a special maximal subgroup.5

We have the (abstract) Hecke algebra away from R

TR := Z[LR\H(A∞,RF )/LR],
which is a ring with the unit 1LR , and denote by SR the subring

lim−→
T⊆Vspl

F \R
|T|<∞

Z[(LR)T\H(FT)/(LR)T]⊗ 1(LR)T

of TR.
(H9) Suppose that V is incoherent, namely, ∏v∈VF εv = −1. For every u ∈ VE \ Vspl

E , we
fix a u-nearby space uV of V , which is a hermitian space over E, and an isomorphism
uV ⊗F Au

F ' V ⊗AF Au
F . More precisely,

• if u ∈ V(∞)
E , then uV is the hermitian space over E, unique up to isomorphism, that

has signature (n− 1, 1) at u and satisfies uV ⊗F Au
F ' V ⊗AF Au

F ;
5When r > 2 (resp. r = 1), the set of conjugacy classes of special maximal subgroups of H(A∞,RF ) is

canonically a torsor over µ⊕Vint
F \R

2 (resp. µ⊕Vint
F \(R∪Sπ)

2 ).
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• if u ∈ Vfin
E \ Vspl

E , then uV is the hermitian space over E, unique up to isomorphism,
that satisfies uV ⊗F Au

F ' V ⊗AF Au
F .

Put uH := U(uV ), which is a reductive group over F . Then uH(Au
F ) and H(Au

F ) are
identified.

Notation 2.3. Let m > 0 be an integer. We equip Wm = E2m and W̄m = E2m the
skew-hermitian forms given by the matrices wm and −wm, respectively.
(G1) Let Gm be the unitary group of both Wm and W̄m. We write elements of Wm and W̄m

in the row form, on which Gm acts from the right.
(G2) We denote by {e1, . . . , e2m} and {ē1, . . . , ē2m} the natural bases of Wm and W̄m, re-

spectively.
(G3) Let Pm ⊆ Gm be the parabolic subgroup stabilizing the subspace generated by

{er+1, . . . , e2m}, and Nm ⊆ Pm its unipotent radical.
(G4) We have

• a homomorphism m : ResE/F GLm → Pm sending a to

m(a) :=
(
a

tac,−1

)
,

which identifies ResE/F GLm as a Levi factor of Pm.
• a homomorphism n : Hermm → Nm sending b to

n(b) :=
(

1m b
1m

)
,

which is an isomorphism.
(G5) We define a maximal compact subgroup Km = ∏

v∈VF Km,v of Gm(AF ) in the following
way:
• for v ∈ Vfin

F , Km,v is the stabilizer of the lattice O2m
Ev ;

• for v ∈ V(∞)
F , Km,v is the subgroup of the form

[k1, k2] := 1
2

(
k1 + k2 −ik1 + ik2
ik1 − ik2 k1 + k2

)
,

in which ki ∈ GLm(C) satisfies ki tkc
i = 1m for i = 1, 2. Here, we have identified

Gm(Fv) as a subgroup of GL2m(C) via the embedding ιu with v = u in Notation
2.1(F3).

(G6) For every v ∈ V(∞)
F , we have a character κm,v : Km,v → C× that sends [k1, k2] to

det k1/det k2.6
(G7) For every v ∈ VF , we define a Haar measure dgv on Gm(Fv) as follows:

• for v ∈ Vfin
F , dgv is the Haar measure under which Km,v has volume 1;

• for v ∈ V(∞)
F , dgv is the product of the measure on Km,v of total volume 1 and the

standard hyperbolic measure on Gm(Fv)/Km,v (see, for example, [EL, Section 2.1]).
Put dg = ∏

v dgv, which is a Haar measure on Gm(AF ).
(G8) We denote by A(Gm(F )\Gm(AF )) the space of both Z(gm,∞)-finite and Km,∞-finite

automorphic forms on Gm(AF ), where Z(gm,∞) denotes the center of the complexified
universal enveloping algebra of the Lie algebra gm,∞ of Gm ⊗F F∞. We denote by

6In fact, neither Km,v nor κm,v depends on the choice of the embedding ιu for v = u ∈ V(∞)
F .
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• A[r](Gm(F )\Gm(AF )) the maximal subspace of A(Gm(F )\Gm(AF )) on which for
every v ∈ V(∞)

F , Km,v acts by the character κrm,v,
• A[r]R(Gm(F )\Gm(AF )) the maximal subspace of A[r](Gm(F )\Gm(AF )) on which

– for every v ∈ Vfin
F \ (R ∪ S), Km,v acts trivially; and

– for every v ∈ S, the standard Iwahori subgroup Im,v acts trivially and
C[Im,v\Km,v/Im,v] acts by the character κ−m,v ([Liu, Definition 2.1]),

• Acusp(Gm(F )\Gm(AF )) the subspace of A(Gm(F )\Gm(AF )) of cusp forms, and by
〈 , 〉Gm the hermitian form on Acusp(Gm(F )\Gm(AF )) given by the Petersson inner
product with respect to the Haar measure dg.

For a subspace V of A(Gm(F )\Gm(AF )), we denote by
• V [r] the intersection of V and A[r](Gm(F )\Gm(AF )),
• V [r]R the intersection of V and A[r]R(Gm(F )\Gm(AF )),
• Vc the subspace {ϕc | ϕ ∈ V}.

Notation 2.4. We review the Weil representation.
(W1) For every v ∈ VF , we have the Weil representation ωm,v of Gm(Fv) × H(Fv), with

respect to the additive character ψF,v and the trivial splitting character, realized on
the Schrödinger model S (V m

v ). For the readers’ convenience, we review the formulas:
• for a ∈ GLm(Ev) and φ ∈ S (V m

v ), we have

ωm,v(m(a))φ(x) = |det a|rEv · φ(xa);

• for b ∈ Hermm(Fv) and φ ∈ S (V m
v ), we have

ωm,v(n(b))φ(x) = ψT (x)(b) · φ(x)

(see Notation 2.1(F5) for ψT (x));
• for φ ∈ S (V m

v ), we have

ωm,v (wm)φ(x) = γmVv ,ψF,v · φ̂(x),

where γVv ,ψF,v is certain Weil constant determined by Vv and ψF,v;
• for h ∈ H(Fv) and φ ∈ S (V m

v ), we have

ωm,v(h)φ(x) = φ(h−1x).

We put ωm := ⊗vωm,v as the adèlic version, realized on S (V m).
(W2) For every v of F , we also realize the contragredient representation ω∨m,v on the space

S (V m
v ) as well via the bilinear pairing

〈 , 〉ωm,v : S (V m
v )×S (V m

v )→ C

defined by the formula

〈φ∨, φ〉ωm,v :=
∫
Vmv

φ(x)φ∨(x) dx

for φ, φ∨ ∈ S (V m
v ).

Notation 2.5. For a locally Noetherian scheme X and an integer m > 0, we denote by
Zm(X) the free abelian group generated by irreducible closed subschemes of codimension m
and CHm(X) the quotient by rational equivalence. Suppose that X is smooth over a field
K of characteristic zero. Let ` be a rational prime.
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(C1) We denote by Zm(X)0 the kernel of the de Rham cycle class map
clX,dR : Zm(X)→ H2m

dR(X/K)(m),
and by CHm(X)0 the image of Zm(X)0 in CHm(X).

(C2) When K is a non-archimedean local field, we denote by Zm(X)〈`〉 the kernels of the
`-adic cycle class map

clX,` : Zm(X)→ H2m(X,Q`(m)).
(C3) When K is a number field, we define Zm(X)〈`〉 via the following Cartesian diagram

Zm(X)〈`〉 //

��

∏
v Zm(XKv)〈`〉

��
Zm(X) // ∏

v Zm(XKv)

where the product is taken over all non-archimedean places v of K not above `. We de-
note by CHm(X)〈`〉 the image of Zm(X)〈`〉 in CHm(X), which is contained in CHm(X)0

by the comparison theorem between de Rham and `-adic cohomology.

3. Doubling method and analytic side

In this section, we review the doubling method and prove several statements on the analytic
side of our desired height formula.

We have the doubling skew-hermitian space W�
r := Wr ⊕ W̄r (Notation 2.3(G1)). Let

G�r be the unitary group of W�
r , which contains Gr × Gr canonically. We now take a basis

{e�1 , . . . , e�4r} of W�
r by the formula
e�i = ei, e�r+i = −ēi, e�2r+i = er+i, e�3r+i = ēr+i

for 1 6 i 6 r, under which we may identify W�
r with W2r and G�r with G2r. Put

w�r := w2r, P�r := P2r, N�r := N2r, K�r := K2r, ω�r := ω2r(3.1)
(see Notation 2.3 and Notation 2.4). We denote by

δ�r : P�r → ResE/F GL1

the composition of the Levi quotient map P�r = P2r → M2r, the isomorphism m−1 : M2r →
ResE/F GL2r, and the determinant ResE/F GL2r → ResE/F GL1. Put

wr :=


1r

1r
−1r 1r

1r 1r

 ∈ G�r (F ).

Then P�r wr(Gr ×Gr) is Zariski open in G�r .
Let v be a place of F . For s ∈ C, we have the degenerate principal series of G�r (Fv), which

is defined as the normalized induced representation

I�r,v(s) := IndG
�
r (Fv)

P�
r (Fv)(| |

s
Ev ◦ δ

�
r,v)

of G�r (Fv). We denote by I�r (s) the restricted tensor product of I�r,v(s) for all places v of F
with respect to unramified sections.
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For every section f ∈ I�r (0), let f (s) ∈ I�r (s) be the standard section induced by f . Then
we have the Eisenstein series E(g, f (s)) for g ∈ G�r (AF ). We have a G�r (AF )-intertwining
map

f• : S (V 2r)→ I�r (0)
sending Φ to fΦ defined by the formula fΦ(g) := ω�r (g)Φ(0) (see (3.1) for ω�r ). In particular,
for Φ ∈ S (V 2r), we have the Eisenstein series

E(s, g,Φ) = E(g, f (s)
Φ ) :=

∑
γ∈P�

r (F )\G�
r (F )

f
(s)
Φ (γg)

for g ∈ G�r (AF ). It is meromorphic in s and holomorphic on the imaginary line.

Assumption 3.1. In what follows, we will consider an irreducible automorphic subrepre-
sentation (π,Vπ) of Acusp(Gr(F )\Gr(AF )) satisfying that
(1) for every v ∈ V(∞)

F , πv is the (unique up to isomorphism) discrete series representation
whose restriction to Kr,v contains the character κrr,v;

(2) for every v ∈ Vfin
F \ R, πv is unramified (resp. almost unramified) with respect to Kr,v if

εv = 1 (resp. εv = −1);
(3) for every v ∈ Vfin

F , πv is tempered.
We realize the contragredient representation π∨ on Vc

π via the Petersson inner product 〈 , 〉Gr
(Notation 2.3(G8)). By (1) and (2), we have V [r]R

π 6= {0}, where V [r]R
π is defined in Notation

2.3(G8).

Remark 3.2. By Proposition 3.6(2) below, we know that when R ⊆ Vspl
F , V coincides with the

hermitian space over AE of rank n determined by π via local theta dichotomy.

Definition 3.3. We define the L-function for π as the Euler product L(s, π) := ∏
v L(s, πv)

over all places of F , in which
(1) for v ∈ Vfin

F , L(s, πv) is the doubling L-function defined in [Yam14, Theorem 5.2];
(2) for v ∈ V(∞)

F , L(s, πv) is the L-function of the standard base change BC(πv) of πv. By
Assumption 3.1(1), BC(πv) is the principal series representation of GLn(C) that is the
normalized induction of argn−1� argn−3� · · ·� arg3−n� arg1−n where arg : C× → C×
is the argument character. In particular, we have

L(s+ 1
2 , πv) =

(
r∏
i=1

2(2π)−(s+i)Γ(s+ i)
)2

.(3.2)

Remark 3.4. Let v be a place of F .
(1) For v ∈ V(∞)

F , doubling L-function is only well-defined up to an entire function without
zeros. However, one can show that L(s, πv) satisfies the requirement for the doubling
L-function in [Yam14, Theorem 5.2].

(2) For v ∈ Vspl
F , the standard base change BC(πv) is well-defined and we have L(s, πv) =

L(s,BC(πv)) by [Yam14, Theorem 7.2].
(3) For v ∈ Vint

F \R, the standard base change BC(πv) is well-defined and we have L(s, πv) =
L(s,BC(πv)) by [Liu, Remark 1.4].

In particular, when R ⊆ Vspl
F , we have L(s, π) = ∏

v L(s,BC(πv)).
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Let v be a place of F . We denote by 〈 , 〉πv : π∨v × πv → C the tautological pairing. For
ϕv ∈ πv, ϕ∨v ∈ π∨v , and a good section f (s) ∈ I�r,v(s) ([Yam14, Definition 3.1]), we have the
local doubling zeta integral

Z(ϕ∨v ⊗ ϕv, f (s)) :=
∫
Gr(Fv)

〈π∨v (g)ϕ∨v , ϕv〉πv · f (s)(wr(g, 12r)) dg,

and the normalized version

Z\(ϕ∨v ⊗ ϕv, f (s)) :=
(
L(s+ 1

2 , πv)
b2r,v(s)

)−1

· Z(ϕ∨v ⊗ ϕv, f (s)),

which is holomorphic in s. In particular, taking s = 0, we obtain a functional
Z\πv ,Vv : π∨v ⊗ πv ⊗S (V 2r

v )→ C
such that

Z\πv ,Vv(ϕ
∨
v , ϕv,Φv) = Z\(ϕ∨v ⊗ ϕv, f

(0)
Φv ) = Z\(ϕ∨v ⊗ ϕv, fΦv).

Remark 3.5. By [Yam14, Lemma 7.2], we know that the integral defining Z(ϕ∨v ⊗ϕv, f (0)) is
absolutely convergent, and that

L(s+ 1
2 , πv)

b2r,v(s)
is finite and invertible at s = 0.

Proposition 3.6. Let (π,Vπ) be as in Assumption 3.1.
(1) For every v ∈ Vfin

F , we have
dimC HomGr(Fv)×Gr(Fv)(I�r,v(0), πv � π∨v ) = 1.

(2) For every v ∈ (Vfin
F \ R) ∪ Vspl

F , Vv is the unique hermitian space over Ev of rank 2r, up
to isomorphism, such that Z\πv ,Vv 6= 0.

(3) For every v ∈ Vfin
F , HomGr(Fv)(S (V r

v ), πv) is irreducible as a representation of H(Fv),
and is nonzero if v ∈ (Vfin

F \ R) ∪ Vspl
F .

Proof. To ease notation, we will suppress the place v throughout the proof. For a hermitian
space Ṽ over E of rank 2r, denote by R(0, Ṽ ) ⊆ I�r (0) the subspace spanned by Siegel–Weil
sections from Ṽ and put Θ(π, Ṽ ) := HomGr(F )(S (Ṽ r), π). By the seesaw identity, we have

HomGr(F )×Gr(F )(R(0, Ṽ ), π � π∨) ' HomH̃(F )(Θ(π, Ṽ )⊗Θ(π∨, Ṽ ),1)

where H̃ := U(Ṽ ). Since π is tempered, by (the same argument for) [GI16, Theorem 4.1(v)],
Θ(π, Ṽ ) is a semisimple representation of H̃(F ). By [GT16, Theorem 1.2], we know that
Θ(π, Ṽ ) is either zero or irreducible. By the local theta dichotomy [GG11, Theorem 1.8] (see
also [HKS96, Corollary 4.4] and [Har07, Theorem 2.1.7]), there exists exactly one choice Ṽ ,
up to isomorphism, such that Θ(π, Ṽ ) 6= 0. Thus, we obtain (1) by [KS97, Theorem 1.2 &
Theorem 1.3].

For (2), there are two cases. If v ∈ Vspl
F , then it follows from (1) and [KS97, Theorem 1.3].

If v ∈ Vint
F \ R, then the uniqueness follows from (1) and [KS97, Theorem 1.2]; and the

nonvanishing of Z\π,V follows from [Liu, Proposition 5.6 & Lemma 6.1].
For (3), the irreducibility of Θ(π, V ) = HomGr(F )(S (V r), π) has already been proved; and

the nonvanishing follows from (2). �
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Proposition 3.7. Let (π,Vπ) be as in Assumption 3.1 such that L(1
2 , π) = 0. Take

• ϕ1 = ⊗vϕ1v ∈ V [r]R
π and ϕ2 = ⊗vϕ2v ∈ V [r]R

π such that 〈ϕc
1v, ϕ2v〉πv = 1 for v ∈ VF \ R,7

and
• Φ = ⊗vΦv ∈ S (V 2r) such that Φv is the Gaussian function (Notation 2.2(H3)) for
v ∈ V(∞)

F , and Φv = 1(ΛR
v)2r for v ∈ Vfin

F \ R.
Then we have ∫

Gr(F )\Gr(AF )

∫
Gr(F )\Gr(AF )

ϕ2(g2)ϕc
1(g1)E ′(0, (g1, g2),Φ) dg1 dg2

=
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv)

=
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈S

(−1)rqr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1) ·
∏
v∈R

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv),

where
Cr := (−1)r2−2rπr

2 Γ(1) · · ·Γ(r)
Γ(r + 1) · · ·Γ(2r) ,

and the measure on Gr(AF ) is the one defined in Notation 2.3(G7).

Proof. By the formula derived in [Liu11a, Page 869], we have∫∫
[Gr(F )\Gr(AF )]2

ϕ2(g2)ϕc
1(g1)E ′(0, (g1, g2),Φ) dg1 dg2 =

L′(1
2 , π)

b2r(0)
∏
v

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv).

For v ∈ V(∞)
F , it is clear that Z\πv ,Vv(ϕc

1v, ϕ2v,Φv) depends only on r, which we denote by Cr.
Note that for g ∈ Gr(Fv),

f
(0)
Φv (wr(g, 12r)) = (−1)r〈ωr,v(g)φ0

v, φ
0
v〉ωr,v ,

where φ0
v is the Gaussian function on V r

v and 〈 , 〉ωr,v is the pairing in Notation 2.4(W2). In
particular, f (0)

Φv (wr(12r, 12r)) = (−1)r2−2r2 . By [EL, Theorem 1.3 & Proposition 3.3.2] (with
n = k = 2r, a = b = r, τ1 = · · · = τr = r, ν1 = · · · νr = −r, and χrac = 1), we have

Z(0, ϕc
1v ⊗ ϕ2v,Φv) = (−1)r2−2r2 · 2r2−rπr

2 Γ(1) · · ·Γ(r)
Γ(r + 1) · · ·Γ(2r) .

By (3.2) and the formula

b2r,v(s) =
(

r∏
i=1

π−(s+i)Γ(s+ i)
)2

,

we obtain our formula for Cr.
By [Yam14, Proposition 7.1 & (7.2)], we have Z\πv ,Vv(ϕc

1v, ϕ2v,Φv) = 1 for v ∈ Vfin
F \ (R∪ S).

By [Liu, Proposition 5.6 & Lemma 6.1], we have

Z\πv ,Vv(ϕ
c
1v, ϕ2v,Φv) = (−1)rqr−1

v (qv + 1)
(q2r−1
v + 1)(q2r

v − 1)
for v ∈ S. The proposition is proved. �

7Strictly speaking, what we fixed is a decomposition ϕc
1 = ⊗v(ϕc

1)v and have abused notation by writing
ϕc

1v instead of (ϕc
1)v.
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Now we study the Eisenstein series E(s, g,Φ) via Whittaker functions. For every v ∈ VF ,
T� ∈ Herm◦2r(Fv), and Φv ∈ S (V 2r

v ), we define the local Whittaker function on G�r (Fv) with
parameter s ∈ C as

WT�(s, g,Φv) :=
∫

Herm2r(Fv)
f

(s)
Φv (w�r n(b)g)ψT�(b)−1 db(3.3)

(see (3.1) for w�r ) by meromorphic continuation, where db is the self-dual measure on
Herm2r(Fv) with respect to ψF,v. By [Liu11a, Lemma 2.8(1)], we know that WT�(s, g,Φv) is
an entire function in the variable s.

Definition 3.8. By the definition of local Whittaker functions (3.3), for every v ∈ VF , there
exists a unique Haar measure dhv on H(Fv) such that for every T� ∈ Herm◦2r(Fv) and every
Φv ∈ S (V 2r

v ), we have

WT�(0, 14r,Φv) =
γ2r
Vv ,ψF,v

b2r,v(0)

∫
H(Fv)

Φv(h−1
v x) dhv,

where x is an arbitrary element in (V 2r
v )T� (Notation 2.2(H3)). For every open compact

subgroup Lv of H(Fv), we denote by vol(Lv) the volume of Lv under the measure dhv.
By [Tan99, Proposition 3.2], for all but finitely many v ∈ Vfin

F , a hyperspecial maximal
subgroup of H(Fv) has volume 1 under dhv. In particular, we may define the normalized
measure

d\h := 1
b2r(0)

∏
v∈VF

dhv

on H(AF ). In what follows, for an open compact subgroup L of H(A∞F ), we will denote by
vol\(L) the volume of H(F∞)L under the measure d\h.

Remark 3.9. Note that when V is coherent, d\h coincides with the Tamagawa measure on
H(AF ). Later in Definition 6.11, we will use the volume vol\(L) to scale the normalized
height pairing. In view of Remark 1.8(2), this is the most “natural” way.

Proposition 3.10. Suppose that V is incoherent.
(1) Take an element u ∈ VE \ Vspl

E , and uΦ = ⊗v uΦv ∈ S (uV 2r ⊗F AF ), where we recall
from Notation 2.2(H9) that uV is the u-nearby hermitian space, such that supp(uΦv) ⊆
(uV 2r

v )reg (Notation 2.2(H3)) for v in a nonempty subset R′ ⊆ R. Then for every
g ∈ P�r (FR′)G�r (AR′

F ), we have
E(0, g, uΦ) =

∑
T�∈Herm◦2r(F )

∏
v∈VF

WT�(0, gv, uΦv).

(2) Take Φ = ⊗vΦv ∈ S (V 2r) such that supp(Φv) ⊆ (V 2r
v )reg for v in a subset R′ ⊆ R of

cardinality at least 2. Then for every g ∈ P�r (FR′)G�r (AR′
F ), we have

E ′(0, g,Φ) =
∑

w∈VF \Vspl
F

E(g,Φ)w,

where
E(g,Φ)w :=

∑
T�∈Herm◦2r(F )
Diff(T�,V )={w}

W ′
T�(0, gw,Φw)

∏
v∈VF \{w}

WT�(0, gv,Φv).

Here, Diff(T�, V ) is defined in Notation 2.2(H4).
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Proof. This is proved in [Liu11b, Section 2B]. �

Definition 3.11. Suppose that V is incoherent. Take an element u ∈ VE \ Vspl
E , and a pair

(T1, T2) of elements in Hermr(F ).
(1) For uΦ = ⊗v uΦv ∈ S (uV 2r ⊗F AF ), we put

ET1,T2(g, uΦ) :=
∑

T�∈Herm◦2r(F )
∂r,rT�=(T1,T2)

∏
v∈VF

WT�(0, gv, uΦv).

(2) For Φ = ⊗vΦv ∈ S (V 2r), we put

ET1,T2(g,Φ)u :=
∑

T�∈Herm◦2r(F )
Diff(T�,V )={u}
∂r,rT�=(T1,T2)

W ′
T�(0, gu,Φu)

∏
v∈VF \{u}

WT�(0, gv,Φv).

Here, ∂r,r : Herm2r → Hermr × Hermr is defined in Notation 2.1(F2).

Remark 3.12. The image of Herm◦2r(F )+ under ∂r,r is contained in Herm◦r(F )+×Herm◦r(F )+.

The following proposition ensures the sufficient supply of test functions with support in
(V 2r

v )reg. As we have mentioned in Section 1, it solves a key technical challenge for our
approach.

Proposition 3.13. Let (π,Vπ) be as in Assumption 3.1. Take v ∈ Vfin
F and suppose that

Z\πv ,Vv 6= 0. Then for every ϕv ∈ πv and ϕ∨v ∈ π∨v that are both nonzero, we can find elements
φv, φ

∨
v ∈ S (V r

v ) such that supp(φv ⊗ φ∨v ) ∈ (V 2r
v )reg and Z\πv ,Vv(ϕ∨v , ϕv, φv ⊗ φ∨v ) 6= 0.

Proof. To ease notation, we will suppress the place v throughout the proof. We identify the
F -vector space Herm2r(F ) with its dual Herm2r(F )∨ via the bilinear form (x, y) 7→ trxy.
Take an element Ψ ∈ S (Herm2r(F )). Let Ψ̂ ∈ S (Herm2r(F )) be the Fourier transform of
Ψ with respect to ψ. Let fΨ be the unique section in I�r (0) such that fΨ(w�r n(b)) = Ψ̂(b) and
fΨ = 0 outside P�r (F )w�r N�r (F ). Take ϕ ∈ π and ϕ∨ ∈ π∨ that are both nonzero. We claim
that
(∗) There exists an element Ψ ∈ S (Herm◦2r(F )) such that Z(ϕ∨ ⊗ ϕ, fΨ) 6= 0.
Assuming (∗), we continue the proof. Let V ′ be the other hermitian space over F of rank
2r that is not isomorphic to V if E is a field, or the zero space if E = F × F . Let
Herm◦2r(F )V and Herm◦2r(F )V ′ be the subset of Herm◦2r(F ) that is contained in the image of
the moment maps from V 2r and V ′2r, respectively. Then Herm◦2r(F )V ∪ Herm◦2r(F )V ′ is a
disjoint open cover of Herm◦2r(F ). Choose Ψ as in the claim and put ΨV := Ψ·1Herm◦2r(F )V and
ΨV ′ := Ψ ·1Herm◦2r(F )V ′ . We may choose elements ΦV ∈ S (V 2r

reg) and ΦV ′ ∈ S (V ′2rreg ) such that
ΨV and ΨV ′ are the pushforward of ΦV and ΦV ′ along the moment map V 2r

reg → Herm◦2r(F )V
and V ′2rreg → Herm◦2r(F )V ′ , respectively. It is easy to see that fΦV = fΨV and fΦV ′ = fΨV ′ . In
particular, we have
Z(ϕ∨ ⊗ ϕ, fΨ) = Z(ϕ∨ ⊗ ϕ, fΨV ) + Z(ϕ∨ ⊗ ϕ, fΨV ′ ) = Z(ϕ∨ ⊗ ϕ, fΦV ) + Z(ϕ∨ ⊗ ϕ, fΦV ′ ).

By Proposition 3.6 and Remark 3.5, we have Z(ϕ∨⊗ϕ, fΦV ′ ) = 0 if Z\π,V 6= 0. Thus, we have
Z(ϕ∨⊗ϕ, fΦV ) 6= 0, hence Z\π,V (ϕ∨⊗ϕ,ΦV ) 6= 0. The theorem follows as ΦV can be written
as a finite sum of elements of the form φ⊗ φ∨ satisfying supp(φ⊗ φ∨) ⊆ supp(ΦV ) ⊆ V 2r

reg.
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It remains to show (∗). We identify ResE/F Matr,r×Hermr × Hermr with Herm2r via the
assignment

(a, u, v) 7→
(
u tac

a v

)
.

Define a polynomial function ∆ on Herm2r sending (a, u, v) to NmE/F det a. Let Ω be the
complement of the Zariski closed subset of Herm2r defined by the ideal (∆). We define a
morphism ι : Ω→ Gr such that

ι(a, u, v) =
(

1r v
0 1r

)(
−a 0
0 − tac,−1

)
wr

(
1r u
0 1r

)
,

which is an isomorphism onto the Zariski open subset PrwrNr ofGr. By a direct computation,
we have a unique morphism p : Ω→ P�r such that

wrι(a, u, v) = p(a, u, v) · w�r · n
(
u tac

a v

)
,(3.4)

which satisfies

NmE/F δ
�
r (p(a, u, v)) = NmE/F det a = ∆(a, u, v).(3.5)

Define a locally constant function ξϕ∨,ϕ on Gr(F ) by ξϕ∨,ϕ(g) := 〈π∨(g)ϕ∨, ϕ〉π. Then by
(3.4) and (3.5), we have

Z(ϕ∨ ⊗ ϕ, fΨ) =
∫
Gr(F )

ξϕ∨,ϕ(g)fΨ(wr(g, 12r)) dg

=
∫
Pr(F )wrNr(F )

ξϕ∨,ϕ(ι(a, u, v))|∆(a, u, v)|rF Ψ̂(a, u, v) · dι(a, u, v).

We define a locally constant function ξ[ϕ∨,ϕ on Ω(F ) by

ξ[ϕ∨,ϕ(a, u, v) = |∆(a, u, v)|−rF ξϕ∨,ϕ(ι(a, u, v)).

Note that there exists a unique Haar measure da du dv on Herm2r(F ) such that

dι(a, u, v) = |∆(a, u, v)|−2r
F da du dv.

Thus, we have

Z(ϕ∨ ⊗ ϕ, fΨ) =
∫

Ω(F )
ξ[ϕ∨,ϕ(a, u, v)Ψ̂(a, u, v) da du dv.(3.6)

As both ϕ∨ and ϕ are nonzero, ξ[ϕ∨,ϕ is nonzero, which is also locally integrable on Herm2r(F )
by Remark 3.5. The remaining discussion bifurcates.

When E is a field, we have ξϕ∨,ϕ ∈ L2+ε(Gr(F )) for every ε > 0, which is equivalent to∫
Ω(F )
|ξ[ϕ∨,ϕ(a, u, v)|2+ε|∆(a, u, v)|rεF da du dv <∞.

Applying Lemma A.1 to X = Herm2r(F ), we obtain an element Ψ ∈ S (V 2r
reg) such that∫

Ω(F )
ξ[ϕ∨,ϕ(a, u, v)Ψ̂(a, u, v) da du dv 6= 0,

which implies Z(ϕ∨ ⊗ ϕ, fΨ) 6= 0 by (3.6). Thus, (∗) is proved.
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When E = F ×F , we have ξϕ∨,ϕ ∈ L2+ε(Zr(F )\Gr(F )) for every ε > 0, where Zr denotes
the center of Gr, which is equivalent to∫

F×\Ω(F )
|ξ[ϕ∨,ϕ(a, u, v)|2+ε|∆(a, u, v)|rεF da du dv <∞.

Here, the action of F× on Herm2r(F ) is given as follows: After identifying Matr,r(E) with
Matr,r(F ) ×Matr,r(F ) via the two factors of F under which we write a = (a1, a2), α ∈ F×
sends ((a1, a2), u, v) to ((αa1, α

−1a2), u, v). Applying Lemma A.2 to X = Herm2r(F ) with
X1 = Matr,r(F ), X2 = Matr,r(F ), and X3 = Hermr(F ) ⊕ Hermr(F ), we obtain an element
Ψ ∈ S (V 2r

reg) such that ∫
Ω(F )

ξ[ϕ∨,ϕ(a, u, v)Ψ̂(a, u, v) da du dv 6= 0,

which implies Z(ϕ∨ ⊗ ϕ, fΨ) 6= 0 by (3.6). Thus, (∗) is proved. �

To end this section, we recall some constructions concerning the tempered global L-packet
given by π, which will be used in Section 6 and Section 9.

Notation 3.14. Let (π,Vπ) be as in Assumption 3.1.
(1) Let Π be the automorphic base change of π, that is, the isobaric automorphic rep-

resentation of GLn(AE) such that Πv is the standard base change of πv for all but
finitely many v ∈ Vfin

F for which πv is unramified.8 By the local-global compatibil-
ity [KMSW, Theorem 1.7.1], for every v ∈ V(∞)

F , Πv is the normalized induction of
argn−1� argn−3� · · ·� arg3−n� arg1−n as in Definition 3.3.

(2) Put I := {n − 1, n − 3, . . . , 3 − n, 1 − n}. For each character χ : µI
2 → C×, we define

the signature of χ to be the pair (p, q) with p + q = n such that χ takes value 1 on p
µ2-generators and −1 on q µ2-generators. For such a character χ of signature (p, q), we
have a discrete series representation πχ of U(p, q). When (p, q) = (n− 1, 1), we denote
by πχ∞ the representation of uH(F∞) that is the inflation of πχ along the quotient map
uH(F∞)→ uH(R) ' U(n− 1, 1).

(3) We may write Π = Π1 � · · · � Πs, in which Πj is a conjugate-selfdual cuspidal auto-
morphic representation of GLnj(AE), with n1 + · · · + ns = n. Then there is a unique
partition I = I1 t · · · t Is such that Πj,w is the normalized induction of �i∈Ij argi for
1 6 j 6 s.

(4) Let ` be a rational prime with an arbitrarily given isomorphism Q` ' C. For every
1 6 j 6 s, we have a (semisimple) Galois representation

ρΠj : Gal(Qac/E)→ GLnj(Q`)
attached to Πj as described in [Car12, Theorem 1.1].

Here, we recall from Notation 2.1 that we have regarded E as a subfield of C via ι.

Lemma 3.15. For every irreducible admissible representation π̃∞ of H(A∞F ) such that Πv is
the standard base change of π̃∞v for all but finitely many v ∈ Vfin

F for which π̃∞v is unramified,
exactly one of the following two cases happens:
(a) There does not exist a character χ : µI

2 → C× of signature (n−1, 1) such that πχ∞⊗ π̃∞
is a cuspidal automorphic representation of uH(AF ).

8The existence of Π follows from [Shi] or more generally [KMSW], while the uniqueness of Π up to
isomorphism is ensured by the strong multiplicity one theorem.
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(b) There is a unique integer 1 6 j(π̃∞) 6 s, such that for every χ : µI
2 → C× of signature

(n− 1, 1), πχ∞⊗ π̃∞ is a cuspidal automorphic representation of uH(AF ) if and only if
the unique µ2-generator of µI

2 on which χ takes value −1 is indexed by an element in
Ij(π̃∞).

Moreover, we have

dimC HomH(A∞F )

(
π̃∞, lim−→

L

Hn−1
dR (XL/C)

)
=
{0, if π̃∞ fits in (a)
nj(π̃∞) > 0, if π̃∞ fits in (b)

where {XL} is the unitary Shimura variety recalled in Section 4 below.

Proof. The first part of the lemma is a consequence of Arthur’s multiplicity formula for
tempered global L-packets [KMSW, Theorem 1.7.1].

The second part of the lemma follows from Matsushima’s formula and Arthur’s multiplic-
ity formula [KMSW, Theorem 1.7.1]. In particular, the number of characters χ : µI

2 → C× of
signature (n− 1, 1) such that πχ∞ ⊗ π̃∞ is a cuspidal automorphic representation of uH(AF )
equals nj(π̃∞). Here, we also use the well-known fact that the (g, K)-cohomology of a (coho-
mological) discrete series representation is one-dimensional in the middle degree and vanishes
in all other degrees (see, for example, [BW00, II. Theorem 5.4]). �

Remark 3.16. Assume that π̃∞ := HomGr(A∞F )(S (V r ⊗F A∞F ), π∞) is nonzero, which is then
an irreducible admissible representation of H(A∞F ) by Proposition 3.6(3). By [GI16, Theo-
rem 4.1(ii)], the global root number ε(Π) equals −1. Moreover, using Arthur’s multiplicity
formula [KMSW, Theorem 1.7.1] and Conjecture (P1)n in [GI16, Section 4.4] (which is
proved in that article), we see that π̃∞ fits in the situation (b) of Lemma 3.15 if and only if
there is exactly one element j ∈ {1, . . . , s} such that ε(Πj) = −1; and in this case we must
have j = j(π̃∞). When ords= 1

2
L(s,Π) = 1, there is exactly one element j ∈ {1, . . . , s} such

that ε(Πj) = −1 as L(s,Π) = ∏s
j=1 L(s,Πj), so π̃∞ fits in the situation (b) of Lemma 3.15

automatically.

4. Special cycles and generating functions

In this section, we review the construction of Kudla’s special cycles and generating func-
tions. We also introduce the hypothesis on the modularity of generating functions and derive
some of its consequences. From now to the end of Section 11, we assume V incoherent.9

Recall that we have fixed a u-nearby space uV and an isomorphism uV ⊗F Au
F ' V ⊗AF A

u
F

from Notation 2.2(H9). For every open compact subgroup L ⊆ H(A∞F ), we have the Shimura
variety XL associated to ResF/Q uH of the level L, which is a smooth quasi-projective scheme
over E (which is regarded as a subfield of C via ι) of dimension n−1. We remind the readers
its complex uniformization

(XL ⊗E C)an ' uH(F )\ uD×H(AF )/L,(4.1)
where uD denotes the complex manifold of negative lines in uV ⊗E C and the Deligne homo-
morphism is the one adopted in [LTXZZ, Section 3.2]. In what follows, for a place u ∈ VE,
we put XL,u := XL ⊗E Eu as a scheme over Eu.

9At the end, we will take V = Vπ as in Section 1. We have changed the use of V from Section 1 since in
the proofs of the main results, we need to consider all nearby spaces of Vπ. In particular, V in Section 1 is
now uV .
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Now we recall the construction of Kudla’s special cycles and their generating functions.
Take an integer 1 6 m 6 n− 1.

Definition 4.1. For every element x ∈ V m ⊗AF A∞F , we have the special cycle Z(x)L ∈
CHm(XL)Q defined as follows.
• For T (x) 6∈ Hermm(F )+, we set Z(x)L = 0.
• For T (x) ∈ Herm◦m(F )+, we may find elements x′ ∈ uV m and h ∈ H(A∞F ) such that
hx = x′ holds in V m ⊗AF A∞F . The components of x′ spans a totally positive definite
hermitian subspace Vx′ of uV of rank m. Put Hx′ := U(V ⊥x′ ), which is naturally a
subgroup of uH, and let {Xx′

M}M⊆Hx′ (A∞F ) be the associated system of Shimura varieties.
Define Z(x)L to be the image cycle of the composite morphism

Xx′

hLh−1∩Hx′ (A∞F ) → XhLh−1
·h−→ XL.

It is straightforward to check that Z(x)L does not depend on the choice of x′ and h.
Moreover, Z(x)L is a well-defined element in Zm(XL).
• For T (x) ∈ Hermm(F )+ in general, we have an element Z(x)L ∈ CHm(XL)Q (not well-
defined in Zm(XL)Q). We refer the readers to [Liu11a, Section 3A] for more details as it
is not important to us in this article.

For every φ∞ ∈ S (V m ⊗AF A∞F )L and T ∈ Hermm(F ), we put

ZT (φ∞)L :=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

φ∞(x)Z(x)L.

As the above summation is finite, ZT (φ∞)L is a well-defined element in CHm(XL)C.

Remark 4.2. For T ∈ Herm◦m(F )+, ZT (φ∞)L is even a well-defined element in Zm(XL)C.

Finally, for every g ∈ Gm(AF ), Kudla’s generating function is defined to be

Zφ∞(g)L :=
∑

T∈Hermm(F )+

ωm,∞(g∞)φ0
∞(T ) · ZT (ω∞m (g∞)φ∞)L

as a formal sum valued in CHm(XL)C, where

ωm,∞(g∞)φ0
∞(T ) :=

∏
v∈V(∞)

F

ωm,v(gv)φ0
v(T ).

Here, we note that for v ∈ V(∞)
F , the function ωm,v(gv)φ0

v factors through the moment map
V m
v → Hermm(Fv) (see Notation 2.2(H1)), hence ωm,v(gv)φ0

v(T ) makes sense.

Lemma 4.3. In Definition 4.1, we have

ωm,∞(n(b)m(a))φ0
∞(T ) · ZT (ωm(n(b)m(a))φ∞)L = φ0

∞(tacTa) · ZtacTa(φ∞)L

for every a ∈ GLm(E) and every b ∈ Hermm(F ).

Proof. This is proved in (the proof of) [Liu11a, Theorem 3.5]. �

Lemma 4.4. In Definition 4.1, we have t∗ZT (φ∞)L = ZT (tφ∞)L for every t ∈ TR
C.
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Proof. By linearity, we may assume t = 1LhL for some h ∈ H(A∞,RF ). Then it follows easily
from Definition 4.1 that

t∗Z(x)L =
∑

h′∈h−1Lh∩L\L
Z(hh′x)L

for every x ∈ V m ⊗AF A∞F . Thus,
t∗ZT (φ∞)L =

∑
x∈L\Vm⊗AF A∞F

T (x)=T

φ∞(x)t∗Z(x)L

=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

φ∞(x)
∑

h′∈h−1Lh∩L\L
Z(hh′x)L

=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

 ∑
h′∈h−1Lh∩L\L

φ∞(h′−1h−1x)
Z(x)L

=
∑

x∈L\Vm⊗AF A∞F
T (x)=T

(tφ∞)(x)Z(x)L = ZT (tφ∞)L.

The lemma follows. �

Hypothesis 4.5 (Modularity of generating functions of codimension m). For every open
compact subgroup L ⊆ H(A∞F ), every φ∞ ∈ S (V m⊗AF A∞F )L, and every complex linear map
l : CHm(XL)C → C, the assignment

g 7→ l(Zφ∞(g)L)
is absolutely convergent, and gives an element in A[r](Gm(F )\Gm(AF )). In other words, the
function Zφ∞(−)L defines an element in HomC(CHm(XL)∨C,A[r](Gm(F )\Gm(AF ))).

Remark 4.6. Hypothesis 4.5 is believed to hold. In fact, in the case of symplectic groups over
Q, the analogous statement was first conjectured by Kudla [Kud04], and has been confirmed
in [BWR15] based on previous works [Zha09, YZZ09]. In our situation, Hypothesis 4.5 is
proved in [Liu11a, Theorem 3.5] for m = 1; for m > 2, we know that l(Zφ∞(g)L) is formally
modular by [Liu11a, Theorem 3.5].

Note that the natural inclusion
A[r](Gm(F )\Gm(AF ))⊗C CHm(XL)C ⊆ HomC(CHm(XL)∨C,A[r](Gm(F )\Gm(AF )))

might be proper, since we do not know whether CHm(XL)C is finite dimensional. However,
we have the following result.

Proposition 4.7. Assume Hypothesis 4.5 on the modularity of generating functions of codi-
mension m.
(1) For every open compact subgroup L ⊆ H(A∞F ) and every φ∞ ∈ S (V m ⊗AF A∞F )L,

Zφ∞(−)L belongs to A[r](Gm(F )\Gm(AF ))⊗C CHm(XL)C.
(2) The map

S (V m ⊗AF A∞F )L → A[r](Gm(F )\Gm(AF ))⊗C CHm(XL)C
sending φ∞ to Zφ∞(−)L is Gm(A∞F )×TR

C-equivariant, where Gm(A∞F ) acts on the source
via the Weil representation and on the target via the right translation on the first factor;
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and TR
C acts on the source via the Weil representation and on the target via the Hecke

correspondences.

Proof. For (1), fix an open compact subgroup K ⊆ Gm(A∞F ) that fixes φ∞, and a set of
representatives {g(1), . . . , g(s)} of the finite double coset Gm(F )\Gm(A∞F )/K. For every 1 6
i 6 s, the restriction of Zφ∞(−)L to Gm(F∞)× {g(i)} is given by the hermitian q-expansion

f (i)(q) :=
∑

T∈Hermm(F )+

ZT (φ∞(i))L · qT ,

where φ∞(i) := ω∞m (g(i))φ∞. By Hypothesis 4.5, for every l ∈ CHm(XL)∨C, the q-expansion

l(f (i))(q) :=
∑

T∈Hermm(F )+

l(ZT (φ∞(i))L) · qT

belongs to M[r]
m (Γ(i)), the space of holomorphic hermitian Siegel modular form of Gm of

weight (κrm,w)
w∈V(∞)

F

(Notation 2.3(G6)) and level Γ(i) := Gm(F )∩ g(i)K(g(i))−1. LetM(i) be
the subspace of CHm(XL)C spanned by ZT (φ∞(i))L for all T ∈ Hermm(F )+. We claim that

dimCM(i) 6 dimCM[r]
m (Γ(i)) <∞.(4.2)

Take arbitrary elements l1, . . . , ld of CHm(XL)∨C with d > dimCM[r]
m (Γ(i)). Then there exist

c1, . . . , cd ∈ C not all zero, such that ∑d
j=1 cjlj(f (i))(q) = 0; in other words,

d∑
j=1

cjlj(ZT (φ∞(i))L) = 0, ∀T ∈ Hermm(F )+.

Thus, we have ∑d
j=1 cjlj|M(i) = 0, which implies (4.2). However, (4.2) implies that the

subspace of CHm(XL)C generated by ZT (ω∞m (g∞)φ∞)L for all T ∈ Hermm(F )+ and g∞ ∈
Gm(A∞F ) is finite dimensional. Thus, (1) follows.

Part (2) is follows from Lemma 4.4 and the construction.
The proposition follows. �

Definition 4.8. Let (π,Vπ) be as in Assumption 3.1. Assume Hypothesis 4.5 on the mod-
ularity of generating functions of codimension r. For every ϕ ∈ V [r]

π , every open compact
subgroup L ⊆ H(A∞F ), and every φ∞ ∈ S (V r ⊗AF A∞F )L, we put

Θφ∞(ϕ)L :=
∫
Gr(F )\Gr(AF )

ϕc(g)Zφ∞(g)L dg,

which is an element in CHr(XL)C by Proposition 4.7. It is clear that the image of Θφ∞(ϕ)L
in

CHr(X)C := lim−→
L

CHr(XL)C

depends only on ϕ and φ∞, which we denote by Θφ∞(ϕ). Finally, we define the arithmetic
theta lifting of (π,Vπ) to V (with respect to ι) to be the complex subspace Θ(π, V ) of
CHr(X)C spanned by Θφ∞(ϕ) for all ϕ ∈ V [r]

π and φ∞ ∈ S (V r ⊗AF A∞F ).
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5. Auxiliary Shimura variety

In this section, we introduce an auxiliary Shimura variety that will only be used in the
computation of local indices IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)L,u to be introduced in the next sec-
tion. We continue the discussion from Section 4.
Notation 5.1. We denote by T0 the torus over Q such that for every commutative Q-algebra
R, we have T0(R) = {a ∈ E ⊗Q R | NmE/F a ∈ R×}.

We choose a CM type Φ of E containing ι and denote by E ′ the subfield of C generated
by E and the reflex field of Φ. We also choose a skew hermitian space W over E of rank 1,
whose group of rational similitude is canonically T0. For a (sufficiently small) open compact
subgroup L0 of T0(A∞), we have the PEL type moduli scheme Y of CM abelian varieties
with CM type Φ and level L0, which is a smooth projective scheme over E ′ of dimension 0
(see, [Kot92], for example). In what follows, when we invoke this construction, the data Φ,
W , and L0 will be fixed, hence will not be carried into the notation E ′ and Y . For every
open compact subgroup L ⊆ H(A∞F ), we put

X ′L := XL ⊗E Y
as a scheme over E ′.

Unlike XL, the scheme X ′L has a moduli interpretation as first observed in [RSZ20].
Lemma 5.2. The E ′-scheme X ′L represents the functor that assigns to every locally Noe-
therian scheme S over E ′ the set of equivalence classes of sextuples (A0, λ0, η0;A, λ, η) where
• (A0, λ0, η0) is an element in Y (S);
• (A, λ) is a unitary OE-abelian scheme of signature type nΦ− ι + ιc over S (see [LTXZZ,
Definition 3.4.2 & Definition 3.4.3]);
• η is an L-level structure, that is, for a chosen geometric point s on every connected
component of S, a π1(S, s)-invariant L-orbit of isomorphisms

η : V ⊗AF A∞F → Homλ0,λ
E⊗QA∞(H1(A0s,A∞),H1(As,A∞))

of hermitian spaces over E⊗Q A∞ = E⊗F A∞F (see [LTXZZ, Construction 3.4.4] for the
hermitian form on the target of η).

Two sextuples (A0, λ0, η0;A, λ, η) and (A′0, λ′0, η′0;A′, λ′, η′) are equivalent if there are OF -
linear quasi-isogenies ϕ0 : A0 → A′0 and ϕ : A→ A′ such that
• ϕ0 carries η0 to η′0;
• there exists c ∈ Q× such that ϕ∨0 ◦ λ′0 ◦ ϕ0 = cλ0 and ϕ∨ ◦ λ′ ◦ ϕ = cλ;
• the L-orbit of maps v 7→ ϕ∗ ◦ η(v) ◦ (ϕ0∗)−1 for v ∈ V ⊗AF A∞F coincides with η′.

Proof. This is shown in [RSZ20, Section 3.2]. See also [LTXZZ, Section 4.1]. �

Definition 5.3. For every x ∈ V r ⊗AF A∞F with T (x) ∈ Herm◦r(F )+, we define a moduli
functor Z ′(x)L over E ′ as follows: for every locally Noetherian scheme S over E ′, Z ′(x)L(S)
is the set of equivalence classes of septuples (A0, λ0, η0;A, λ, η; x̃) where
• (A0, λ0, η0;A, λ, η) belongs to X ′L(S);
• x̃ is an element in HomOE(Ar0, A)Q satisfying x̃∗ ∈ η(Lx).

By Lemma 5.4(1) below, the image of Z ′(x)L defines an element in Zr(X ′L), which we denote
by Z(x)′L.
Lemma 5.4. For every x ∈ V r ⊗AF A∞F with T (x) ∈ Herm◦r(F )+, we have
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(1) the forgetful morphism Z ′(x)L → X ′L is finite and unramified;
(2) the restriction of the algebraic cycle Z(x)L to X ′L coincides with Z(x)′L, as elements in

Zr(X ′L).

Proof. In the proof below, we will frequently use notations from Definition 4.1. Take x′ ∈ uV r

and h ∈ H(A∞F ) such that hx = x′ holds in V m ⊗AF A∞F . For both statements, it suffices to
show that there is an isomorphism Z ′(x)L ∼−→ Xx′

hLh−1∩Hx′ (A∞F ) ⊗E Y , rendering the following
diagram

Z ′(x)L ∼ //

""

Xx′

hLh−1∩Hx′ (A∞F ) ⊗E Y

·hww
X ′L

(5.1)

commute. Let S be a locally Noetherian scheme over E ′. We will construct a functorial
bijection between Z ′(x)L(S) and (Xx′

hLh−1∩Hx′ (A∞F ) ⊗E Y )(S).
Take an element (A0, λ0, η0;A, λ, η; x̃) ∈ Z ′(x)L(S). We may find an OE-abelian scheme

A1 of signature type rΦ − ι + ιc over S, and an element x̃1 ∈ HomOE(A1, A)Q, such that
x̃1 ⊕ x̃ is an isomorphism in HomOE(A1 × Ar0, A)Q, and that the composition x̃∨ ◦ λ ◦ x̃1 ∈
HomOE(A1, (Ar0)∨)Q equals zero. Put λ1 := x̃∨1 ◦ λ ◦ x̃1. As x̃∗ ∈ η(Lx), we may replace h by
an element in hL such that the restriction of η ◦ h−1 to V ⊥x′ ⊗Q A∞, which we denote by η1,
is contained in the submodule Homλ0,λ1

E⊗QA∞(H1(A0s,A∞),H1(A1s,A∞)). Thus, we obtain an
element

(A0, λ0, η0;A1, λ1, η1) ∈ (Xx′

hLh−1∩Hx′ (A∞F ) ⊗E Y )(S).
By construction, it maps to (A0, λ0, η0;A, λ, η) ∈ X ′L(S) in (5.1).

For the reverse direction, take an element
(A0, λ0, η0;A1, λ1, η1) ∈ (Xx′

hLh−1∩Hx′ (A∞F ) ⊗E Y )(S).

Put A2 := Ar0 and let λ2 be the polarization such that we have an isomorphism

η2 : Vx′ ∼−→ Homλ0,λ2
OE

(A0, A2)Q
of hermitian spaces over E. Put A := A1 × A2, λ := λ1 × λ2, and η := (η1 ⊕ η2 ⊗Q A∞) ◦ h.
Then (A0, λ0, η0;A, λ, η) is the image of (A0, λ0, η0;A1, λ1, η1) in X ′L(S) in (5.1). Let x̃ be the
isomorphism in HomOE(Ar0, A2)Q that corresponds to η2(x′), which we regard as an element
in HomOE(Ar0, A)Q. Then we obtain an element (A0, λ0, η0;A, λ, η; x̃) ∈ Z ′(x)L(S) lying
above (A0, λ0, η0;A, λ, η).

It is straightforward to check that the above two assignments are inverse to each other.
The lemma follows. �

The following lemma will only be used in Section 10.

Lemma 5.5. For every u ∈ V(∞)
E , there exists an isomorphism
{XL ⊗E,ιu C} ' {uXL ⊗ιu(E) C}

of systems of complex schemes under which Z(x)L⊗E,ιu C coincides with uZ(x)L⊗ιu(E) C for
every x ∈ V r ⊗AF A∞F with T (x) ∈ Herm◦r(F )+. Here, uXL and uZ(x)L are defined similarly
as XL and Z(x)L with ι replaced by ιu, hence are schemes and cycles over ιu(E).
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Proof. We choose an isomorphism σ : C ∼−→ C satisfying ιu = σ ◦ ι.
Choose an element (A0, λ0, η0) ∈ Y (C). Then by Lemma 5.2, XL ⊗E C has the following

moduli interpretation: For every locally Noetherian complex scheme S, (XL ⊗E C)(S) is
the set of equivalence classes of triples (A, λ, η) as in Lemma 5.2. In particular, (A, λ) is
a unitary OE-abelian scheme of signature type nΦ − ι + ιc over S. Since XL ⊗E C does
not depend on the choice of Φ, such moduli interpretation holds as long as Φ contains
ι. In particular, we may take Φ such that it contains both ιu and ι. Then we have such
moduli interpretation for both Φ and σ−1Φ. Using both moduli interpretations, we obtain an
isomorphism {XL⊗E,ιuC} ' {uXL⊗ιu(E)C} of systems of complex schemes. By Lemma 5.4,
it follows easily that under such isomorphism, Z(x)L ⊗E,ιu C coincides with uZ(x)L ⊗ιu(E) C
for every x ∈ V r ⊗AF A∞F with T (x) ∈ Herm◦r(F )+. The lemma is proved. �

Notation 5.6. In Sections 7, 8, and 9, we will consider a place u ∈ Vfin
E \ Vram

E . Let p be the
underlying rational prime of u. We will fix an isomorphism C ∼−→ Qp under which ι induces
the place u. In particular, we may identify Φ as a subset of Hom(E,Qp).

We further require that Φ in Notation 5.1 is admissible in the following sense: if Φv ⊆ Φ
denotes the subset inducing the place v for every v ∈ V(p)

F , then it satisfies
(1) when v ∈ V(p)

F ∩ Vspl
F , Φv induces the same place of E above v, which we denote by vc

and by ve its conjugate;
(2) when v ∈ V(p)

F ∩ Vint
F , Φv is the pullback of a CM type of the maximal subfield of Ev

unramified over Qp.
To release the burden of notation, we denote byK the subfield of Qp generated by Eu and the
reflex field of Φ, by k its residue field, and by K̆ the completion of the maximal unramified
extension of K in Qp with the residue field Fp. It is clear that admissible CM type always
exists, and that when V(p)

F ∩ Vram
F = ∅, the field K is unramified over Eu.

We also choose a (sufficiently small) open compact subgroup L0 of T0(A∞) such that L0,p
is maximal compact. We denote by Y the integral model of Y over OK such that for every
S ∈ Sch′/OK , Y(S) is the set of equivalence classes of triples (A0, λ0, η

p
0) where

• (A0, λ0) is a unitary OE-abelian scheme over S of signature type Φ such that λ0 is a
p-principal polarization;
• ηp0 is an Lp0-level structure (see [LTXZZ, Definition 4.1.2] for more details).

By [How12, Proposition 3.1.2], Y is finite and étale over OK .

6. Height pairing and geometric side

In this section, we introduce the notion of a height pairing after Beilinson and initiate
the study of the geometric side of our desired height formula. We continue the discussion
from Section 4. From this moment, we will further assume F 6= Q, which implies that XL is
projective.

We apply Beilinson’s construction of the height pairing in [Bĕı87, Section 4] to obtain a
map

〈 , 〉`XL,E : CHr(XL)〈`〉C × CHr(XL)〈`〉C → C⊗Q Q`

(see Notation 2.5(C3) for the notation) that is complex linear in the first variable, and
conjugate symmetric. Here, ` is a rational prime such that XL,u has smooth projective
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reduction for every u ∈ V(`)
E . For a pair (c1, c2) of elements in Zr(XL)〈`〉C × Zr(XL)〈`〉C with

disjoint supports, we have
〈c1, c2〉`XL,E =

∑
u∈V(∞)

E

2〈c1, c2〉XL,u,Eu +
∑
u∈Vfin

E

log qu · 〈c1, c2〉`XL,u,Eu ,(6.1)

in which
• qu is the residue cardinality of Eu for u ∈ Vfin

E ;
• 〈c1, c2〉`XL,u,Eu ∈ C⊗Q Q` is the non-archimedean local index (B.1) recalled in Appendix
B for u ∈ Vfin

E (see Remark B.11 when u is above `), which equals zero for all but finitely
many u;
• 〈c1, c2〉XL,u,Eu ∈ C is the archimedean local index for u ∈ V(∞)

E , which will be recalled
when we compute it in Section 10.

Definition 6.1. We say that a rational prime ` is R-good if ` is unramified in E and satisfies
V(`)
F ⊆ Vfin

F \ (R ∪ S).

Definition 6.2. For every open compact subgroup LR of H(FR) and every subfield L of C,
we define
(1) (SR

L)0
LR

to be the ideal of SR
L (Notation 2.2(H8)) of elements that annihilate⊕
i 6=2r−1

Hi
dR(XLRLR/E)⊗Q L,

(2) for every rational prime `, (SR
L)〈`〉LR

to be the ideal of SR
L of elements that annihilate⊕

u∈Vfin
E \V

(`)
E

H2r(XLRLR,u,Q`(r))⊗Q L.

Here, LR is defined in Notation 2.2(H8).

Definition 6.3. Consider a nonempty subset R′ ⊆ R, an R-good rational prime `, and an
open compact subgroup L of H(A∞F ) of the form LRL

R where LR is defined in Notation
2.2(H8). An (R, R′, `, L)-admissible sextuple is a sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2) in which
• for i = 1, 2, φ∞i = ⊗vφ∞iv ∈ S (V r ⊗AF A∞F )L in which φ∞iv = 1(ΛR

v)r for v ∈ Vfin
F \ R,

satisfying that supp(φ∞1v ⊗ (φ∞2v)c) ⊆ (V 2r
v )reg for v ∈ R′;

• for i = 1, 2, si is a product of two elements in (SR
Qac)〈`〉LR

;
• for i = 1, 2, gi is an element in Gr(AR′

F ).
For an (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2) and every pair (T1, T2) of ele-

ments in Herm◦r(F )+, we define
(1) the global index IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)`L to be
〈ωr,∞(g1∞)φ0

∞(T1) · s∗1ZT1(ω∞r (g∞1 )φ∞1 )L, ωr,∞(g2∞)φ0
∞(T2) · s∗2ZT2(ω∞r (g∞2 )φ∞2 )L〉`XL,E

as an element in C⊗Q Q`, where we note that for i = 1, 2, s∗iZTi(ω∞r (g∞i )φ∞i )L belongs
to CHr(XL)〈`〉C by Definition 6.2(2);

(2) for every u ∈ Vfin
E , the local index IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)`L,u to be

〈ωr,∞(g1∞)φ0
∞(T1) · s∗1ZT1(ω∞r (g∞1 )φ∞1 )L, ωr,∞(g2∞)φ0

∞(T2) · s∗2ZT2(ω∞r (g∞2 )φ∞2 )L〉`XL,u,Eu
as an element in C⊗Q Q`, in view of Remark 4.2 and Lemma 6.4(2) below;
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(3) for every u ∈ V(∞)
E , the local index IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)L,u to be

〈ωr,∞(g1∞)φ0
∞(T1) · s∗1ZT1(ω∞r (g∞1 )φ∞1 )L, ωr,∞(g2∞)φ0

∞(T2) · s∗2ZT2(ω∞r (g∞2 )φ∞2 )L〉XL,u,Eu
as an element in C, in view of Remark 4.2 and Lemma 6.4(2) below.

Lemma 6.4. Let R, R′, `, and L be as in Definition 6.3. Let (T1, T2) be a pair of elements
in Herm◦r(F )+.
(1) For x1, x2 ∈ V ⊗AF A∞F satisfying T (x1) = T1, T (x2) = T2, and (Lvx1v, Lvx2v) ⊆

(V 2r
v )reg for some v ∈ R′, the algebraic cycles Z(x1)L and Z(x2)L in Zr(XL)C have

disjoint supports.
(2) For every (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2), the algebraic cycles

s∗1ZT1(ω∞r (g∞1 )φ∞1 )L and s∗2ZT2(ω∞r (g∞2 )φ∞2 )L in Zr(XL)C have disjoint supports.

Proof. It is clear that (2) follows from (1).
For (1), it suffices to check that they are disjoint under complex uniformization (4.1). By

definition, for i = 1, 2, the support of Z(xi)L consists of points (zi, h′ihi) in the double coset
(4.1), where hixi = x′i with x′i ∈ uV r; zi is perpendicular to Vx′i ; and h′i acts trivially on
Vx′i . Suppose that the supports of Z(x1)L and Z(x2)L are not disjoint, then we may find
γ ∈ uH(F ) such that z1 = γz2 and h′1h1L = γh′2h2L. In particular, Vx′1 ∩ γVx′2 6= {0},
which implies that the subspace of uV 2r generated by (x′1, γx′2) is a proper subspace. Thus,
(h1x1, γh2x2) 6∈ (V 2r

v )reg for every v ∈ R′. On the other hand, we have (h1x1, γh2x2) =
(h′1h1x1, γh

′
2h2x2), which implies that (Lvx1v, Lvx2v) is not contained in (V 2r

v )reg, which is a
contradiction. Thus, (1) follows. �

The following definition will be used in the future.

Definition 6.5. Let p be a rational prime. We say that an element φ∞ ∈ S (V m ⊗AF A∞F )
for some integer m > 1 is p-basic if it is of the form φ∞ = ⊗vφ∞v in which φ∞v = 1(ΛR

v)m for
every v ∈ V(p)

F \ (R ∪ Vspl
F ).

Recall from Notation 3.14(1) that Π is the automorphic base change of π.

Hypothesis 6.6. Let ` be a rational prime with an arbitrarily given isomorphism Q` ' C.
For every irreducible admissible representation π̃∞ of H(A∞F ) such that Πv is the standard
base change of π̃∞v for all but finitely many v ∈ Vfin

F for which π̃∞v is unramified, if we are in
the situation (b) of Lemma 3.15, then the semisimplification of the representation

ρ[π∞] := HomH(A∞F )

(
π̃∞, lim−→

L

H2r−1(XL ⊗E Qac,Q`)
)

of Gal(Qac/E) is isomorphic to ρc
Πj(π̃∞)

, where ρΠj is introduced in Notation 3.14(4).

Remark 6.7. Concerning Hypothesis 6.6, we have
(1) When n = 2, it has been confirmed in [Liu21, Theorem D.6].
(2) When Π is cuspidal (that is, s = 1 in Notation 3.14(3)), it will be confirmed in [KSZ]

(under the help of [Mok15,KMSW]).
(3) In general, it will follow from [KSZ] as long as the full endoscopic classification for

unitary groups is obtained.
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Definition 6.8. Let (π,Vπ) be as in Assumption 3.1. We define a character

χR
π : TR

Qac → Qac,

as follow. Let HR
Wr

be the restricted tensor product of commutative complex algebras H±Wr,v

if εv = ±1 over v ∈ Vfin
F \ R, where H±Wr,v

is defined in [Liu, Definition 2.5] for v ∈ Vint
F and is

simply the spherical Hecke algebra for v ∈ Vspl
F . Using the construction in [Liu, Definition 2.8],

we have a canonical surjective homomorphism θR : HR
Wr
→ TR

C of complex commutative
algebras. Since πv is unramified (resp. almost unramified) when εv = 1 (resp. εv = −1) by
Assumption 3.1(2), the algebra HR

Wr
acts on V [r]R

π by a character χR
π,Wr

: HR
Wr
→ C, which

factors through θR by [Liu, Definition 5.3 & Theorem 1.1(1)]. Since π is cohomological by
Assumption 3.1(1), hence has algebraic Satake parameters, there exists a unique character
χR
π : TR

Qac → Qac such that χR
π,Wr

= (χR
π ⊗Qac C) ◦ θR.

We put mR
π := kerχR

π, which is a maximal ideal of TR
Qac .

Proposition 6.9. Let (π,Vπ) be as in Assumption 3.1. For every open compact subgroup
LR of H(FR), we have
(1) (SR

Qac)0
LR
\mR

π is nonempty;
(2) under Hypothesis 6.6, (SR

Qac)〈`〉LR
\mR

π is nonempty.

Proof. For (1), by Matsushima’s formula, we know that the localization of the SR
C-module

Hi
dR(XLRLR/E) ⊗Q C at mR

π is isomorphic to the direct sum of Hi(π̃∞) ⊗ π̃∞ for all cuspidal
automorphic representations π̃ of uH(AF ) such that the standard base change of π̃v is isomor-
phic to Πv for all but finitely many v ∈ Vspl

F , where Hi(π̃∞) denotes the (g, K)-cohomology
of π̃∞. By [Ram, Theorem A], we know that Π must be the automorphic base change of
π̃. By [KMSW, Theorem 1.7.1], we know that π̃∞ is tempered, hence Hi(π̃∞) vanishes for
i 6= 2r − 1. Therefore, (1) follows as Hi

dR(XLRLR/E) is of finite dimension.
For (2), note that for all but finitely many u ∈ Vfin

E \ V(`)
E , the natural map

H2r(XLRLR,u,Q`(r))→ H2r(XLRLR,u ⊗Eu Eu,Q`(r))

is injective by the Hochschild–Serre spectral sequence and the Weil conjecture. As an SR
Qac-

module, we have

H2r(XLRLR,u ⊗Eu Eu,Q`(r))⊗Q (E ⊗Q Qac) ' H2r
dR(XLRLR/E)⊗Q (Q` ⊗Q Qac).

By (1), we know that there exist elements in SR
Qac \mR

π that annihilate H2r(XLRLR,u,Q`(r)) for
all but finitely many u ∈ Vfin

E \V
(`)
E . Thus, it remains to show that for every given u ∈ Vfin

E \V
(`)
E

and every embedding Qac ↪→ Q`, the localization of H2r(XLRLR,u,Q`(r)) at mR
π vanishes. By

(1) and the Hochschild–Serre spectral sequence, it suffices to show that

H1(Eu,H2r−1(XLRLR ⊗E Qac,Q`(r))mR
π
) = 0.

By Hypothesis 6.6, it suffices to show that H1(Eu, ρc
Πj(r)) = 0 for every j. As shown in the

proof of [Car12, Theorem 7.4], the associated Weil–Deligne representation of ρΠj(r) at u is
pure (of weight not zero), which implies H1(Eu, ρc

Πj(r)) = 0 by [Nek07b, Proposition 4.2.2(1)].
The proposition is proved. �

Till the end of this section, let (π,Vπ) be as in Assumption 3.1, and assume Hypothesis
4.5 on the modularity of generating functions of codimension r.
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Proposition 6.10. In the situation of Definition 4.8 (and suppose that F 6= Q), suppose
that L has the form LRL

R where LR is defined in Notation 2.2(H8). For every elements
ϕ ∈ V [r]R

π and φ∞ ∈ S (V r ⊗AF A∞F )L, we have
(1) s∗Θφ∞(ϕ)L = χR

π(s)c ·Θφ∞(ϕ)L for every s ∈ SR
Qac;

(2) Θφ∞(ϕ)L ∈ CHr(XL)0
C;

(3) under Hypothesis 6.6, Θφ∞(ϕ)L ∈ CHr(XL)〈`〉C for every R-good rational prime `.

Proof. For (1), by Lemma 4.4, we have

s∗Θφ∞(ϕ)L = Θsφ∞(ϕ)L =
∫
Gr(F )\Gr(AF )

ϕc(g)Zsφ∞(g)L dg,

which, by [Liu11a, Proposition A.5] for split places (see also [Ral82, Page 511]), equals∫
Gr(F )\Gr(AF )

(π∨(s)ϕc)(g)Zφ∞(g)L dg,

which equals ∫
Gr(F )\Gr(AF )

(χR
π(s)c · ϕc)(g)Zφ∞(g)L dg = χR

π(s)c ·Θφ∞(ϕ)L.

Part (2) is a consequence of (1) and Proposition 6.9(1).
Part (3) is a consequence of (1) and Proposition 6.9(2). �

We now define the normalized height pairing between the cycles Θφ∞(ϕ) in Definition 4.8,
under Hypothesis 6.6.

Definition 6.11. Under Hypothesis 6.6, for every elements ϕ1, ϕ2 ∈ V [r]
π and φ∞1 , φ

∞
2 ∈

S (V r ⊗AF A∞F ), we define the normalized height pairing
〈Θφ∞1

(ϕ1),Θφ∞2
(ϕ2)〉\X,E ∈ C⊗Q Q`

to be the unique element10 such that for every L = LRL
R as in Proposition 6.10 (with R

possibly enlarged) satisfying ϕ1, ϕ2 ∈ V [r]R
π , φ∞1 , φ∞2 ∈ S (V r⊗AF A∞F )L, and that ` is R-good,

we have
〈Θφ∞1

(ϕ1),Θφ∞2
(ϕ2)〉\X,E = vol\(L) · 〈Θφ∞1

(ϕ1)L,Θφ∞2
(ϕ2)L〉`XL,E,

where vol\(L) is introduced in Definition 3.8,11 and 〈Θφ∞1
(ϕ1)L,Θφ∞2

(ϕ2)L〉`XL,E is well-defined
by Proposition 6.10(3). Note that by the projection formula, the right-hand side of the above
formula is independent of L.

7. Local indices at split places

In this section, we compute local indices at all but finitely many places in Vspl
E . Our goal

is to prove the following proposition.

Proposition 7.1. Let R, R′, `, and L be as in Definition 6.3 such that the cardinality of R′
is at least 2. Let (π,Vπ) be as in Assumption 3.1, for which we assume Hypothesis 6.6. For
every u ∈ Vspl

E such that
10The readers may notice that we have dropped ` in the notation 〈Θφ∞

1
(ϕ1),Θφ∞

2
(ϕ2)〉\X,E . This is because

for those normalized height pairings we are able to compute in this article, the value will turn out to be in
C and is independent of the choice of `.

11In fact, it is a good exercise to show that the total degree of the Hodge line bundle on XL is equal to
2 vol\(L)−1.
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(a) the representation πu is a (tempered) principal series;
(b) V(p)

F ∩ R ⊆ Vspl
F where p is the underlying rational prime of u,

there exist elements su1 , su2 ∈ SR
Qac \mR

π such that

IT1,T2(φ∞1 , φ∞2 , su1s1, su2s2, g1, g2)`L,u = 0

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2) and every pair (T1, T2) in
Herm◦r(F )+. Moreover, we may take su1 = su2 = 1 if u 6∈ R.

Since u splits in E, we may fix an isomorphism H ⊗AF Fu ' GLn,Fu such that Lu is
contained in GLn(OFu), and moreover equal if u 6∈ R. For every integer m > 0, denote by
Lu,m ⊆ GLn(OFu) the principal congruence subgroup of level m.

From now to the end of this section, we assume V(p)
F ∩ R ⊆ Vspl

F . We invoke Notation 5.1
together with Notation 5.6, which is possible since V(p)

F ∩ Vram
F = ∅. To ease notation, we

put Xm := X ′Lu,mLu ⊗E′ K for m > 0. The isomorphism C ∼−→ Qp in Notation 5.6 identifies
Hom(E,C) with Hom(E,Qp). For every v ∈ V(p)

F ∩ Vspl
F \ {u}, let {vc, ve} be the two places

of E above v from Notation 5.6; and identify H ⊗AF Fv with GL(V ⊗AF Eve).
Let S be a locally Noetherian scheme over OK and (A, λ) a unitary OE-abelian scheme of

signature type nΦ−ιw+ιcw over S. Then the p-divisible group A[p∞] admits a decomposition
A[p∞] = ∏

v∈V(p)
F

A[v∞].
For every integer m > 0, we define a moduli functor Xm over OK as follows: For every

locally Noetherian scheme S over OK , Xm(S) is the set of equivalence classes of tuples
(A0, λ0, η

p
0;A, λ, ηp, {ηv}v∈V(p)

F ∩Vspl
F \{u}

, ηu,m) where

• (A0, λ0, η
p
0) is an element in Y(S);

• (A, λ) is a unitary OE-abelian scheme of signature type nΦ− ιw + ιcw over S, such that
– for every v ∈ V(p)

F , λ[v∞] is an isogeny (rather than a quasi-isogeny) whose kernel has
order q1−εv

v ;
– Lie(A[uc,∞]) is of rank 1 on which the action of OE is given by the embedding ιcw;12

• ηp is an Lp-level structure, analogous to the one in Lemma 5.2;
• for every v ∈ V(p)

F ∩Vspl
F \{u}, ηv is an Lv-level structure, that is, an Lv-orbit of Eve-linear

isomorphisms

ηv : V ⊗AF Eve
∼−→ HomOEve

(A0[v∞e ], A[v∞e ])⊗OEve Eve
of Eve-sheaves over S;
• ηu,m : (p−mu /OFu)n → HomOFu

(A0[uc,∞][pmu ], A[uc,∞][pmu ]) is a Drinfeld level-m structure
(see [RSZ20, Section 4.3] for more details).

By [RSZ20, Theorem 4.5], for every m > 0, Xm is a regular scheme, flat (smooth, if m = 0)
and projective over OK , and admits a canonical isomorphism Xm ⊗OK K ' Xm of schemes
over K.13 Note that for every integer m > 0, SR∪V(p)

F naturally gives a ring of étale corre-
spondences of Xm.

12Since Φ is admissible (Notation 5.6), the Eisenstein condition at v 6= u is implied by the Kottwitz
condition, and at u is implied by the Kottwitz condition and that Lie(A[uc,∞]) is of rank 1 on which the
action of OE is given by the embedding ιcw.

13Here, we have to use the fact that K is unramified over Eu to conclude that Xm is regular when m > 0.
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We first prove the follow lemma, which addresses the easy part of Proposition 7.1 as a
warm-up.

Lemma 7.2. Let the situation be as in Proposition 7.1. Suppose that u 6∈ R. Then we have
IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)`L,u = 0

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2) and every pair (T1, T2) in
Herm◦r(F )+.

Proof. It suffices to show that for every x1, x2 ∈ V r ⊗AF A∞F satisfying T (x1), T (x2) ∈
Herm◦r(F )+ and (Lvx1v, Lvx2v) ⊆ (V 2r

v )reg for some v ∈ R′, we have

〈Z(x1)L, Z(x2)L〉`XL,u,Eu = 0.

Since u 6∈ R, by Lemma B.3 and Lemma 5.4, it suffices to show that
〈Z(x1)′L, Z(x2)′L〉`X0,K = 0.(7.1)

We use the integral model X0 just constructed above, which is smooth and projective over
OK of relative dimension n − 1. For i = 1, 2, let Z(xi)′L be the Zariski closure of Z(xi)′L in
X0. We claim that Z(x1)′L and Z(x2)′L have empty intersection. By Proposition B.10, we
obtain (7.1).

For the claim, we assume the converse. Then we can find a point
(A0, λ0, η

p
0;A, λ, ηp, {ηv}v∈V(p)

F ∩Vspl
F \{u}

) ∈ X0(Fp)

that is in the supports of both Z(x1)′L and Z(x2)′L. In particular, for i = 1, 2, we can find
an element x̃i ∈ HomOE(Ar0, A)Q satisfying x̃i,∗ ∈ ηp(Lpxpi ). As (Lvx1v, Lvx2v) ⊆ (V 2r

v )reg
for some v ∈ R′, we know that A is quasi-isogenous to A2r

0 , which is impossible by [RSZ20,
Lemma 8.7]. It follows that the supports of Z(x1)′L and Z(x2)′L have nonempty intersection,
which is a contradiction to Lemma 6.4(1). Thus, the claim and hence the lemma are proved.

�

To study the general case, we need the following vanishing result.

Lemma 7.3. Let the situation be as in Proposition 7.1 with p 6= `. Then for every integer
m > 0, we have (

H2r(Xm,Q`(r))⊗Q Qac
)
m

= 0

where m := mR
π ∩ SR∪V(p)

F
Qac .

Proof. For every integer m > 0, put Ym := Xm ⊗OK k, Ym,0 := Y red
m , and for 0 6 j 6 n − 1,

denote by Ym,j the Zariski closed subset of Ym on which the formal part of A[uc,∞] has
height at least j + 1. By the similar argument of [HT01, Corollary III.4.4], we know that
Y ◦m,j := Ym,j \ Ym,j+1 is smooth over k of pure dimension n − 1 − j.14 Applying Corollary

B.15(2) to S = SR∪V(p)
F , L = Qac, and m = mR

π ∩ SR∪V(p)
F

Qac , it suffices to show that for every
m > 0
(1) (H2r(Xm,Q`(r))⊗Q Qac)m = 0; and
(2) (Hi(Y ◦m,j ⊗k Fp,Q`)⊗Q Qac)m = 0 for every i 6 2r − 2(j + 1) and every 0 6 j 6 n− 1.

14In the notation of [HT01, Section III.4], our Y ◦m,j is parallel to X
(n−1−j)
Up,m .
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Part (1) has already been proved in Proposition 6.9(2) (as we have assumed Hypothesis 6.6).
Part (2) follows from the following stronger statement:
(3) For an arbitrary embedding Qac ↪→ Q`, Hi(Y ◦m,j⊗k Fp,Q`)m = 0 for every m > 0 unless

j = 0 and i = 2r − 1.
The argument for (3) is similar to the proof of [CS17, Theorem 6.3.1]. For m > 0 and
0 6 j 6 n − 1, let Im,j be the Igusa variety (of the first kind) so that Y ◦m,j is the disjoint
union of finitely many Im,j (see [HT01, Section IV.1]). For each j, we obtain a projective
system {Im,j |m > 0} with finite étale transition morphisms. If Hi(Y ◦m,j ⊗k Fp,Q`)m = 0 for
all m > 0, i, and j, then we are done. Otherwise, let j be the maximal integer such that
Hi(Y ◦m,j ⊗k Fp,Q`)m 6= 0 for some m and i. Then lim−→m

Hi(Im,j ⊗k Fp,Q`)m 6= 0. Now we
would like to apply [CS17, Corollary 6.1.4], where in our case, the set B(G, µ−1) is identified
with {0, . . . , n − 1} under which d = n − j = 2r − 1 − j; and Igj is the perfection of
I j

Mant := lim←−m I j
Mant,m [CS17, Proposition 4.3.8] in which I j

Mant,m is a finite Galois cover of
Im,j.15 Then we have Hi(Igj ⊗k Fp,Q`)m 6= 0, which, by [CS17, Corollary 6.1.4]16 (for the
coefficients Q`), implies that i can only be 2r − 1 − j. In particular, combining with the
Poincaré duality, we have [Hc(I j

Mant ⊗k Fp,Q`)]m 6= 0 (where we adopted the notation from
[CS17, Theorem 5.5.7]). By the local-global compatibility at split places ([Shi, Theorem 1.1]
or more generally [KMSW, Theorem 1.7.1]), we have Πu ' πu, where we recall that Π is the
automorphic base change of π in Notation 3.14(1). In particular, Πu is a tempered principal
series by (a). Then by [CS17, Theorem 5.5.7] (together with the modification in the proof of
[LTXZZ, Theorem D.1.3]) and the very strong multiplicity one property [Ram, Theorem A],
we must have j = 0 and hence i = 2r − 1. Thus, (3) follows.

The lemma is proved. �

Remark 7.4. In fact, we conjecture that Lemma 7.3 remains true without condition (a) in
Proposition 7.1. If this is confirmed, then we may remove condition (2) in Assumption 1.3.

Proof of Proposition 7.1. The last part of the proposition has been confirmed in Lemma 7.2.
We prove the first part. We may assume p 6= ` since otherwise it has been covered in Lemma
7.2. Fix an integer m > 0 such that Lu contains Lu,m.

It suffices to show that there exists s ∈ SR∪V(p)
F \mR

π such that for every x1, x2 ∈ V r⊗AF A∞F
satisfying T (x1), T (x2) ∈ Herm◦r(F )+ and (Lvx1v, Lvx2v) ⊆ (V 2r

v )reg for some v ∈ R′ \ {u}
(which is nonempty as we assume |R′| > 2), we have

〈s∗Z(x1)L, s∗Z(x2)L〉`XL,u,Eu = 0.

By Lemma B.3 and Lemma 5.4, it suffices to have
〈s∗Z(x1)′L, s∗Z(x2)′L〉`Xm,K = 0.(7.2)

To compute the local index on Xm, we use the model Xm constructed above. Take s ∈ SR∪V(p)
F

Qac

that is an `-tempered Qac-étale correspondence of Xm, which exists by Lemma 7.3 and

15The Galois cover comes from the fact that in the definition of I j
Mant,m, there is also a level structure

on the formal part of A[uc,∞].
16Strictly speaking, the authors assumed that the level at p is hyperspecial maximal. In our case, we only

require that Lu is hyperspecial. However, by our special signature condition, the argument of [CS17] works
in our case verbatim.
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Corollary B.15(1). Then by Proposition B.13, we have

〈s∗Z(x1)′L, s∗Z(x2)′L〉`Xm,K = [s∗Z(x1)′L].[s∗Z(x2)′L],

where Z(xi)′L is the Zariski closure of Z(xi)′L in Xm for i = 1, 2. By the similar argument
used in the proof of Lemma 7.2, s∗Z(x1)′L and s∗Z(x2)′L have disjoint supports, which implies
s∗Z(x1)′L.s∗Z(x2)′L = 0. Thus, (7.2), hence the proposition hold with su1 = su2 = s. �

8. Local indices at inert places: unramified case

In this section, we compute local indices at places in Vint
E that are not above R ∪ S. Our

goal is to prove the following proposition.

Proposition 8.1. Let R, R′, `, and L be as in Definition 6.3. Take an element u ∈ Vint
E such

that u 6∈ S and whose underlying rational prime p is odd and satisfies V(p)
F ∩ R ⊆ Vspl

F . Then
we have

log qu · vol\(L) · IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)`L,u = ET1,T2((g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2) and every pair (T1, T2) in
Herm◦r(F )+, where the right-hand side is defined in Definition 3.11 with the Gaussian func-
tion Φ0

∞ ∈ S (V 2r ⊗AF F∞) (Notation 2.2(H3)), and vol\(L) is defined in Definition 3.8.

To prove Proposition 8.1, we may rescale the hermitian form on V and hence assume that
ψF,v is unramified and that ΛR

v is either a self-dual or an almost self-dual lattice of Vv for
every v ∈ V(p)

F \ Vspl
F .

Lemma 8.2. Let the situation be as in Proposition 8.1. If the weaker version of Proposition
8.1 where we only consider (R, R′, `, L)-admissible sextuples (φ∞1 , φ∞2 , s1, s2, g1, g2) in which
g1v = g2v = 12r for every v ∈ V(∞)

F ∪ V(p)
F holds, then the original Proposition 8.1 holds.

Proof. Take an arbitrary (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2). For i = 1, 2,
we may find elements ai ∈ GLr(E) and bi ∈ Hermr(F ) such that m(ai)−1n(bi)−1giv ∈ Kr,v

for every v ∈ V(p)
F \ R′. For i = 1, 2, put

T̃i := tac
iTiai, φ̃∞i :=

∏
v∈R′

ωr,v(m(ai)−1n(bi)−1)φ∞i ,

and let g̃i be the away-from-(R′ ∪ V(∞)
F ∪ V(p)

F )-component of the element m(ai)−1n(bi)−1gi.
Then (φ̃∞1 , φ̃∞2 , s1, s2, g̃1, g̃2) is an (R, R′, `, L)-admissible sextuple. By Lemma 4.3, we have

IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)`L,u = C · IT̃1,T̃2
(φ̃∞1 , φ̃∞2 , s1, s2, g̃1, g̃2)`L,u

in which

C =
(
ωr,∞(m(a1)−1n(b1)−1g1∞)φ0

∞(T̃1)
φ0
∞(T̃1)

)
·
(
ωr,∞(m(a2)−1n(b2)−1g2∞)φ0

∞(T̃2)
φ0
∞(T̃2)

)c

.

On the other hand, from Definition 3.11, we have

ET1,T2((g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u = C · ET̃1,T̃2

((g̃1, g̃2),Φ0
∞ ⊗ (s1φ̃

∞
1 ⊗ (s2φ̃

∞
2 )c))u

with the same C. The lemma follows. �
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In order to deal with spherical Hecke operators, we consider the projective system of
Shimura varieties {XL̃} indexed by open compact subgroups L̃ ⊆ L satisfying L̃v = Lv for
v ∈ V(p)

F \ Vspl
F .

We invoke Notation 5.1 together with Notation 5.6, which is possible since V(p)
F ∩ Vram

F =
∅. There is a projective system {XL̃} of smooth projective schemes over OK (see [LZ,
Section 11.2]) with

XL̃ ⊗OK K = X ′L̃ ⊗E′ K = (XL̃ ⊗E Y )⊗E′ K,

and finite étale transition morphisms. In particular, SR is naturally a ring of étale correspon-
dences of XL.

Lemma 8.3. If s is a product of two elements in (SR
Qac)〈`〉LR

, then it gives an `-tempered
Qac-étale correspondence of XL (Definition B.12).

Proof. We have a short exact sequence

H2r
XL⊗OK k

(XL,Q`(r))→ H2r(XL,Q`(r))→ H2r(X ′L,Q`(r)),(8.1)

in which we have

H2r
XL⊗OK k

(XL,Q`(r)) ' H2r−2(XL ⊗OK k,Q`(r − 1))

by the absolute purity theorem [Fuj02], since XL is smooth over OK . By the Hochschild–Serre
spectral sequence and the Weil conjecture, the natural maps

H2r(X ′L,Q`(r))→ H2r(X ′L ⊗K Qp,Q`(r))
H2r−2(XL ⊗OK k,Q`(r − 1))→ H2r−2(XL ⊗OK Fp,Q`(r − 1))

are both injective.
By definition, every element in (SR

Qac)〈`〉LR
annihilates H2r(X ′L⊗K Qp,Q`(r))⊗Q Qac. By the

Poincaré duality and the smooth proper base change theorem, every element in (SR
Qac)〈`〉LR

also
annihilates H2r−2(XL⊗OKFp,Q`(r−1))⊗QQac. In particular, s annihilates H2r(XL,Q`(r))⊗Q
Qac as each factor annihilates a graded piece in the two-step filtration of H2r(XL,Q`(r)) given
by (8.1). The lemma is proved. �

We first recall the uniformization of {XL̃} along the supersingular locus from [LZ, Sec-
tion 13.1]. Fix a complete maximal unramified extension K̆ of K. Recall that we have fixed
a u-nearby space uV and an isomorphism uV ⊗F Au

F ' V ⊗AF Au
F from Notation 2.2(H9).

We have a compatible system of isomorphisms

X ∧L̃ '
(
uH(F )\N ×H(A∞,uF )/L̃u

)
×Spf OK Y∧(8.2)

of formal schemes over OK̆ for every L̃ ⊆ L considered as before. Here, X ∧
L̃

denotes the
completion of XL̃⊗OK OK̆ along its supersingular locus; N is the relative unitary Rapoport–
Zink space over Spf OK̆ as considered in [LZ, Section 2.1]; and Y∧ denotes the completion
of Y along its special fiber.

We then recall the notion of integral special cycles. Take an integer m > 1 and an element
φ∞ ∈ S (V m ⊗AF A∞F )L that is p-basic (Definition 6.5).

For every element T ∈ Herm◦m(F )+, there are following constructions.
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• We have a cycle ZT (φ∞)L ∈ Zm(XL)C (Definition 4.1). When φ∞ is the characteristic
function of some open compact subset of V m ⊗AF A∞F , we have a morphism

Z ′T (φ∞)L → X ′L

defined as the disjoint union of finite and unramified morphisms Z ′(x)L → X ′L (Definition
5.3) for x ∈ L\ supp(φ∞), whose induced cycle coincides with the restriction of ZT (φ∞)L
to X ′L (Lemma 5.4). By moduli interpretation, the morphism Z ′T (φ∞)L → X ′L extends
naturally to a finite and unramified morphism

ZT (φ∞)L → XL

([LZ, Section 13.3]).
• For φ∞ = φ∞1 ⊗ · · · ⊗ φ∞r , where each φ∞j ∈ S (V ⊗AF A∞F )L is p-basic and is the char-
acteristic function of some open compact subset of V ⊗AF A∞F , we denote by KZT (φ∞)L
the component of

OZt1 (φ∞1 )L
L
⊗OXL

· · ·
L
⊗OXL

OZtr (φ∞r )L

supported on ZT (φ∞)L,17 regarded as an element in KZ0 (XL)C (see Appendix B for the
notion of the K-group), where (t1, . . . , tr) is the diagonal of T and Z denotes the image
of ZT (φ∞)L in XL. In general, we may always write φ∞ as a finite complex linear
combination (possibly after shrinking L away from V(p)

F \ Vspl
F ) of those as above, and

we define KZT (φ∞)L by linearity. By [GS87, Proposition 5.5], KZT (φ∞)L belongs to
FrKZ0 (XL)C, hence is an extension of ZT (φ∞)′L (Definition B.9).
• We denote by ZT (φ∞)∧L the restriction of ZT (φ∞)L to X ∧L . Then we have the following
description

ZT (φ∞)∧L =
∑

x∈uH(F )\uVm
T (x)=T

∑
h∈Hx(F )\H(A∞,uF )/Lu

φ∞,u(h−1x) · (N (x), h)L ×Spf OK Y∧,(8.3)

where N (x) is the special cycle of N indexed by x ([KR11, Definition 3.2] or [LZ,
Section 2.3]); (N (x), h)L denotes the corresponding double coset in the expression (8.2);
and Hx is the subgroup of uH of elements that fix every component of x.

In what follows, for x = (x1, . . . , xm) ∈ uV m with T (x) ∈ Herm◦m(Fu), we put

KN (x) := [N (x1)] ∪ · · · ∪ [N (xm)]

as an element in KN (x)
0 (N ). See [Zha21, Appendix B] for the analogue of Gillet–Soulé K-

groups for formal schemes; and we denote similarly by [ ] the associated element in the
K-group.

Proof of Proposition 8.1. By Lemma B.3 and Definition 3.11, it suffices to show that for every
pair of p-basic elements φ∞1 , φ∞2 ∈ S (V m ⊗AF A∞F )L satisfying that supp(φ∞1v ⊗ (φ∞2v)c) ⊆
(V 2r

v )reg for v ∈ R′, and every pair of elements s1, s2 each of which is a product of two elements

17Here, we note that ZT (φ∞)L is an open and closed subscheme of Zt1(φ∞)L ×XL · · · ×XL Ztr (φ∞)L.
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in (SR
Qac)〈`〉LR

, we have

(8.4) vol\(L)
deg(Y/K)Φ0

∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s∗2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

1
log qu

W ′
T�(0, 14r,1(ΛR

u)2r)
∏
v 6=u

WT�(0, 14r, (Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v).

Now using vol\(Lu) = 1 and ∏v∈VF \{u} γ
2r
Vv ,ψF,v

= 1, (8.4) is equivalent to

(8.5) vol(H(F∞)Lu)
deg(Y/K) Φ0

∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s∗2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

b2r,u(0)
log qu

W ′
T�(0, 14r,1(ΛR

u)2r)
∏
v 6=u

b2r,v(0)
γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ0
∞⊗(s1φ

∞
1 ⊗(s2φ

∞
2 )c))v).

By Proposition B.13 and Lemma 8.3, we have

〈s∗1ZT1(φ∞1 )′L, s∗2ZT2(φ∞2 )′L〉X′L,K =
(
s∗1 KZT1(φ∞1 )L

)
.
(
s∗2 KZT2(φ∞2 )L

)
= χ

(
π∗
(
s∗1 KZT1(φ∞1 )L ∪ s∗2 KZT2((φ∞2 )c)L

))
,

where π : XL → SpecOK denotes the structure morphism. As supp(φ∞1v ⊗ (φ∞2v)c) ⊆ (V 2r
v )reg

for v ∈ R′, the support of s∗1 KZT1(φ∞1 )L ∪ s∗2 KZT2((φ∞2 )c)L is contained in the supersingular
locus of XL. Moreover, since s∗1 and s∗2 preserve the supersingular locus, we have

χ
(
π∗
(
s∗1 KZT1(φ∞1 )L ∪ s∗2 KZT2((φ∞2 )c)L

))
= χ

(
π∧∗
(
s∗1 KZT1(φ∞1 )∧L ∪ s∗2 KZT2((φ∞2 )c)∧L

))
,

where π∧ : X ∧L → Spf OK̆ denotes the structure morphism. To summarize, the left-hand side
of (8.5) equals

vol(H(F∞)Lu)
deg(Y/K) Φ0

∞(T1, T2) · χ
(
π∧∗
(
s∗1 KZT1(φ∞1 )∧L ∪ s∗2 KZT2((φ∞2 )c)∧L

))
.(8.6)

From (8.3), it is straightforward to see that

s∗i KZTi(φ∞i )∧L =
∑

xi∈uH(F )\uV r
T (xi)=Ti

∑
hi∈Hxi (F )\H(A∞,uF )/Lu

(siφ∞,ui )(h−1
i xi) · (KN (xi), hi)L ×Spf OK Y∧

for i = 1, 2. It follows that

s∗1 KZT1(φ∞1 )∧L ∪ s∗2 KZT2((φ∞2 )c)∧L
=

∑
T�∈Herm◦2r(F )+

∂r,rT�=(T1,T2)

∑
x∈uH(F )\uV 2r

T (x)=T�

∑
h∈H(A∞,uF )/Lu

(s1φ
∞,u
1 ⊗(s2φ

∞,u
2 )c)(h−1x)·(KN (x), h)L×Spf OKY∧.

Now by [LZ, Theorem 3.4.1 & Remark 3.4.2], we have

χ
(
π∧∗

KN (x)
)

= b2r,u(0)
log qu

W ′
T�(0, 14r,1(ΛR

u)2r)
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if T (x) = T�. Thus, we have

(8.6) = vol(H(F∞)Lu) · Φ0
∞(T1, T2) ·

∑
T�∈Herm◦2r(F )+

∂r,rT�=(T1,T2)

∑
x∈uH(F )\uV 2r

T (x)=T�

∑
h∈H(A∞,uF )/Lu

(s1φ
∞,u
1 ⊗ (s2φ

∞,u
2 )c)(h−1x) ·

(
b2r,u(0)
log qu

W ′
T�(0, 14r,1(ΛR

u)2r)
)
.

By Definition 3.8, we have

vol(H(Fv)) · Φ0
v(T1, T2) = b2r,v(0)

γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v)

for v ∈ V(∞)
F . By Definition 3.8, for (unique) x ∈ uH(F )\ uV 2r with T (x) = T�, we have

vol(Lv)
∑

hv∈H(Fv)/Lv
(s1φ

∞,u
1 ⊗ (s2φ

∞,u
2 )c)v(h−1

v x)

= b2r,v(0)
γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v)

for v ∈ Vfin
F \ {u}.

Therefore, we obtain (8.5) and hence (8.4). The proposition is proved. �

9. Local indices at inert places: almost unramified case

In this section, we compute local indices at places in Vint
E above S. Our goal is to prove

the following proposition.

Proposition 9.1. Let R, R′, `, and L be as in Definition 6.3. Let (π,Vπ) be as in Assumption
3.1, for which we assume Hypothesis 6.6. Take an element u ∈ Vint

E such that u ∈ S and
whose underlying rational prime p is odd, unramified in E, and satisfies V(p)

F ∩R ⊆ Vspl
F . Recall

that we have fixed a u-nearby space uV and an isomorphism uV ⊗F Au
F ' V ⊗AF Au

F from
Notation 2.2(H9). We also fix a ψE,u-self-dual lattice Λ?

u of uVu. Then there exist elements
su1 , su2 ∈ SR

Qac \mR
π such that

log qu · vol\(L) · IT1,T2(φ∞1 , φ∞2 , su1s1, su2s2, g1, g2)`L,u
= ET1,T2((g1, g2),Φ0

∞ ⊗ (su1s1φ
∞
1 ⊗ (su2s2φ

∞
2 )c))u

− log qu
qru − 1ET1,T2((g1, g2),Φ0

∞ ⊗ (su1s1φ
∞,u
1 ⊗ (su2s2φ

∞,u
2 )c)⊗ 1(Λ?u)2r)

for every (R, R′, `, L)-admissible sextuple (φ∞1 , φ∞2 , s1, s2, g1, g2) and every pair (T1, T2) in
Herm◦r(F )+, where the right-hand side is defined in Definition 3.11 with the Gaussian func-
tion Φ0

∞ ∈ S (V 2r ⊗AF F∞) (Notation 2.2(H3)), and vol\(L) is defined in Definition 3.8.

To prove Proposition 9.1, we may rescale the hermitian form on V , hence assume that
ψF,v is unramified and that ΛR

v is either a self-dual or an almost self-dual lattice of Vv for
every v ∈ V(p)

F \ Vspl
F , and moreover that Λ?

u is a self-dual lattice of uVu.
In order to deal with spherical Hecke operators, we consider the projective system of

Shimura varieties {XL̃} indexed by open compact subgroups L̃ ⊆ L satisfying L̃v = Lv for
v ∈ V(p)

F \ Vspl
F .
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We invoke Notation 5.1 together with Notation 5.6, which is possible since V(p)
F ∩Vram

F = ∅.
There is a projective system {XL̃} of strictly semistable projective schemes over OK (see
[LZ, Section 11.3])18 with

XL̃ ⊗OK K = X ′L̃ ⊗E′ K = (XL̃ ⊗E Y )⊗E′ K,

and finite étale transition morphisms. In particular, SR is naturally a ring of étale correspon-
dences of XL.

Lemma 9.2. Let the situation be as in Proposition 9.1. Then there exists an element in
SR
Qac \mR

π that gives an `-tempered Qac-étale correspondence of XL (Definition B.12).

Proof. The proof relies on Arthur’s multiplicity formula for tempered global L-packets
[KMSW, Theorem 1.7.1], which we first recall, using the language for unitary groups adopted
in [GGP12, Section 25]. Recall that Π = Π1 � · · ·� Πs from Notation 3.14(3), which is the
automorphic base change of π as in Assumption 3.1. Put AΠ := µ

{1,...,s}
2 . For every place

v ∈ VF ,
• Πv determines a conjugate-symplectic representation Mv of WD(Ev) of dimension n;
• there is a finite abelian 2-group AMv attached to Mv;
• every character χv : AMv → C× gives a pair (V χv , πχv) in the Langlands–Vogan packet
of Mv, unique up to isomorphism, in which V χv is a hermitian space over Fv of rank n
and πχv is an irreducible admissible representation of U(V χv)(Fv);
• we have a homomorphism αv : AΠ → AMv .

Denote by α : AΠ →
∏
v∈VF AMv the product of αv for v ∈ VF . We say that a collection

χ = {χv | v ∈ VF} of characters in which all but finitely many are trivial is coherent (resp.
incoherent) if the character∏v∈VF χv◦α : AΠ → C× is trivial (resp. nontrivial). Then Arthur’s
multiplicity formula states that
(a) If χ is incoherent, then either ⊗vV χv is incoherent or it is coherent but ⊗vπχv does not

appear in the discrete spectrum. If χ is coherent, then there exists a hermitian space
V χ over E, unique up to isomorphism, such that V χ

v ' V χv for every v ∈ VF ; and the
representation ⊗vπχv appears in the discrete spectrum of U(V χ) with multiplicity one.
Moreover, every discrete automorphic representation of U(Ṽ )(AF ) for some hermitian
space Ṽ over E of rank n with Π its automorphic base change is obtained from this way.

Now we take a special look at the places w and u.
(b) We may canonically identify AMw with µI

2 from Notation 3.14(2). Then the homomor-
phism αw : µ{1,...,s}2 → µI

2 is the one induced by the map I → {1, . . . , s} given by the
partition I = I1 t · · · t Is.

(c) By (a), Πu is the standard base change of πu. By [LTXZZ, Lemma C.2.3], we have
Mu = M2

u + Mn−2
u , where M2

u corresponds to the Steinberg representation of GL2(Eu)
and Mn−2

u corresponds to a tempered unramified principal series of GLn−2(Eu), which
implies AMu = AM2

u
× AMn−2

u
in which AM2

u
= µ2.

(d) Without lost of generality, we may assume that Π1u is ramified. Then the composition
of αu and the projection AMu → AM2

u
= µ2 coincides with the projection µ{1,...,s}2 → µ2

to the first factor.

18This is the place where we need that u is unramified over Q (and that K is unramified over Eu).
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Next, we recall some facts from [LTXZZ, Sections 5.1, 5.2, 5.4, & 5.5]19 about the reduction
of the scheme XL̃. Denote by L?u ⊆ uH(Fu) the stabilizer of Λ?

u, which is a hyperspecial
maximal subgroup. We have a decomposition

XL̃ ⊗OK Fp = Y ◦L̃
⋃
Y •L̃

that is compatible with changing L̃, in which

• Y ◦
L̃
is a P2r−1-fibration over

uH(F )\ uH(A∞F )/L̃uL?u × (Y ⊗OK Fp);

• Y •
L̃
is proper and smooth over Fp of dimension 2r − 1;

• the intersection Y †
L̃

:= Y ◦
L̃
∩ Y •

L̃
is a relative Fermat hypersurface in Y ◦

L̃
.

By Corollary B.15 and Proposition 6.9(2), it suffices to show that for an arbitrary embedding
Qac ↪→ Q`, we have

(1) Hi(Y ◦L ,Q`)m = 0 for i 6 2r − 2,
(2) Hi(Y •L ,Q`)m = 0 for i 6 2r − 2,
(3) Hi(Y †L ,Q`)m = 0 for i 6 2r − 3,

where m := mR
π ∩ SR

Qac . Note that we have used the Gysin exact sequence and the absolute
purity theorem [Fuj02] to switch the cohomology from open strata to closed strata.

For (1), we have Hi(Y ◦L ,Q`) = 0 when i is odd. When i is even, Hi(Y ◦L ,Q`)m is a direct
sum of Lu × L?u-invariants of π′ for finitely many cuspidal automorphic representation π′ of
uH(AF ) satisfying that π′∞ is trivial and that π′v ' πv for all but finitely many v ∈ Vspl

F .
For every such π′, let Π′ be its automorphic base change, which is isobaric automorphic
representation of GLn(AE) [KMSW, Theorem 1.7.1]. Since Π′u ' Πu for all but finitely
many u ∈ Vspl

E , we must have Π′ ' Π by [Ram, Theorem A]. Therefore, we have

Hi(Y ◦L ,Q`)m '
⊕

χ={χv}
χ◦α=1
V χ'uV

((
⊗v∈Vfin

F \{u}
πχv

)Lu
⊗ (πχu)L

?
u

)⊕ deg(Y/K)
.

However, since Πu is ramified, we have (πχu)L
?
u = 0 for every χu. Thus, (1) follows.

For (3), by the Lefschetz hyperplane theorem and the Poincaré duality, we have
Hi(Y †L ,Q`)m = 0 if i 6= 2r − 2 by (1). Thus, (3) follows.

19Strictly speaking, [LTXZZ] has more conditions on the place u and the level at p. However, for those
facts we will use in this proof, it is straightforward to remove those extra conditions.
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For (2), we consider the weight spectral sequence Ep,q abutting to Hp+q(XL̃ ⊗OK Qp,Q`),
after localization at m. We write down the first page Ep,q

1,m as follows.

q > 2r + 1 0 // Hq(Y •L ,Q`)m // 0

q = 2r H2r−2(Y †L ,Q`(−1))m
d−1,2r

1,m // H2r(Y •L ,Q`)m // 0

q = 2r − 1 0 // H2r−1(Y •L ,Q`)m // 0

q = 2r − 2 0 // H2r−2(Y •L ,Q`)m
d0,2r−2

1,m // H2r−2(Y †L ,Q`)m

q 6 2r − 3 0 // Hq(Y •L ,Q`)m // 0

Ep,q
1 p = −1 p = 0 p = 1

By Proposition 6.9(1), we have Hi(XL̃ ⊗OK Qp,Q`)m = 0 for i 6= 2r − 1, which implies that
Hq(Y •L ,Q`)m = 0 for q 6 2r − 3 and that d0,2r−2

1,m is injective. The spectral sequence then
degenerates at the second page and we have im( d0,2r−2

1,m ) = ker(E1,2r−2
1,m → E1,2r−2

∞,m ). Thus,
it remains to show that the canonical quotient map E1,2r−2

1,m → E1,2r−2
∞,m is an isomorphism.

Consider an arbitrary collection χ∞,u = {χv | v ∈ Vfin
F \ {u}} in which all but finitely many

are trivial and such that V χv ' Vv for every v ∈ Vfin
F \ {u}. Put πχ∞,u := ⊗v∈Vfin

F \{u}
πχv . By

a similar argument for (1), it suffices to show the following statement:

(4) The canonical quotient map E1,2r−2
1 [πχ∞,u ]→ E1,2r−2

∞ [πχ∞,u ] is an isomorphism.

Now we show (4). Without lost of generality, we may replace K by a finite unramified
extension in Qp such that Y is a finite disjoint union of SpecK. Define the character χ+

u

(resp. χ−u ) to be the inflation of the trivial (resp. nontrivial) character of AM2
u

= µ2 along
the quotient homomorphism AMu → AM2

u
. Then we have V χ+

u ' uVu and V χ−u ' uVu.
If E1,2r−2

1 [πχ∞,u ] = 0, then we are done. Otherwise, we have H2r−2(Y †L ,Q`)[πχ
∞,u ] 6= 0.

By (the proof of) [LTXZZ, Proposition 5.5.4], πχ∞,u can be complemented to a cuspidal
automorphic representation π′ of uH(AF ) such that π′∞ is trivial and that π′u is almost
unramified with respect to the hyperspecial subgroup L?u. In other words, the collection
{χv = 1 | v ∈ V(∞)

F } ∪ χ∞,u ∪ {χ+
u } is coherent, and we have

E1,2r−2
1 [πχ∞,u ] = H2r−2(Y †L ,Q`)[πχ

∞,u ] '
((
⊗v∈Vfin

F \{u}
πχv

)Lu)⊕ deg(Y/K)
.(9.1)
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On the other hand, since the representation πχ−u is the only member in the Langlands–Vogan
packet of Mu realized on uVu that has nonzero invariants under LR

u, we have an isomorphism

H2r−1(XL̃ ⊗OK Qp,Q`)[πχ
∞,u ] '

(
ρ[π̃∞]|Gal(Qp/K)

)
⊗
((
⊗v∈Vfin

F \{u}
πχv

)Lu)⊕ deg(Y/K)

of representations of Gal(Qp/K), where π̃∞ = πχ
∞,u ⊗ πχ

−
u . By (a–d) above, it is easy

to see that, in the notation of Lemma 3.15(b), we must have j(π̃∞) = 1, hence that the
semisimplification of ρ[π̃∞] is isomorphic to ρc

Π1 by Hypothesis 6.6. Thus, ρ[π̃∞]|Gal(Qp/K)
has nontrivial monodromy, which implies that the dimension of E1,2r−2

∞ [πχ∞,u ] is at least the
dimension of ((

⊗v∈Vfin
F \{u}

πχv
)Lu)⊕ deg(Y/K)

.

Therefore, (4) follows from (9.1). The lemma is proved. �

Proof of Proposition 9.1. The proof of Proposition 9.1 is parallel to that of Proposition 8.1.
Take elements su1 , su2 ∈ SR

Qac \mR
π that give `-tempered Qac-étale correspondences of XL, which

is possible by Lemma 9.2.
By Lemma B.3 and Definition 3.11, it suffices to show that for every pair of p-basic

elements φ∞1 , φ∞2 ∈ S (V m⊗AF A∞F )L satisfying that supp(φ∞1v⊗ (φ∞2v)c) ⊆ (V 2r
v )reg for v ∈ R′,

and every pair of elements s1, s2 ∈ (SR
Qac)〈`〉LR

that give `-tempered Qac-étale correspondences
of XL, we have

(9.2) vol\(L)
deg(Y/K)Φ0

∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s∗2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

1
log qu

(
W ′
T�(0, 14r,1(ΛR

u)2r)− log qu
qru − 1WT�(0, 14r,1(Λ?u)2r)

)

×
∏
v 6=u

WT�(0, 14r, (Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v).

As vol(Lu) = (qu + 1)(q2r
u − 1)−1, (9.2) is equivalent to

(9.3) vol(H(F∞)Lu)
deg(Y/K) Φ0

∞(T1, T2)〈s∗1ZT1(φ∞1 )′L, s∗2ZT2(φ∞2 )′L〉X′L,K

=
∑

T�∈Herm◦2r(F )+

Diff(T�,V )={u}
∂r,rT�=(T1,T2)

b2r,u(0)
log qu

(
q2r
u − 1
qu + 1 W

′
T�(0, 14r,1(ΛR

u)2r)− log qu
qu + 1WT�(0, 14r,1(Λ?u)2r)

)

×
∏
v 6=u

b2r,v(0)
γ2r
Vv ,ψF,v

WT�(0, 14r, (Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))v),

parallel to (8.5).
The proof of (9.3) is same to that of (8.5) except that now we have

χ
(
π∧∗

KN (x)
)

= b2r,u(0)
log qu

(
q2r
u − 1
qu + 1 W

′
T�(0, 14r,1(ΛR

u)2r)− log qu
qu + 1WT�(0, 14r,1(Λ?u)2r)

)
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if T (x) = T�, by [LZ, Theorem 10.5.1 & Remark 10.5.4]. The proposition is proved. �

10. Local indices at archimedean places

In this section, we compute local indices at places in V(∞)
E .

Proposition 10.1. Let R, R′, `, and L be as in Definition 6.3. Let (π,Vπ) be as in As-
sumption 3.1. Take an element u ∈ V(∞)

E . Consider an (R, R′, `, L)-admissible sextuple
(φ∞1 , φ∞2 , s1, s2, g1, g2) and an element ϕ1 ∈ V [r]R

π . Let K1 ⊆ Gr(A∞F ) be an open compact
subgroup that fixes both φ∞1 and ϕ1, and F1 ⊆ Gr(F∞) a Siegel fundamental domain for the
congruence subgroup Gr(F ) ∩ g∞1 K1(g∞1 )−1. Then for every T2 ∈ Herm◦r(F )+, we have

(10.1) vol\(L) ·
∫
F1
ϕc(τ1g1)

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)L,u dτ1

= 1
2

∫
F1
ϕc(τ1g1)

∑
T1∈Herm◦r(F )+

ET1,T2((τ1g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u dτ1,

in which both sides are absolutely convergent. Here, the term ET1,T2 is defined in Definition
3.11 with the Gaussian function Φ0

∞ ∈ S (V 2r ⊗AF F∞) (Notation 2.2(H3)), and vol\(L) is
defined in Definition 3.8.

Remark 10.2. The relation between IT1,T2 and ET1,T2 for each individual pair (T1, T2) in the
style of Proposition 8.1 is much more complicated, which involves the so-called holomorphic
projection (see [Liu11b, Section 6A] for the case where r = 1). The main technical innovation
in the archimedean computation in this article is that we do not need to compare IT1,T2 and
ET1,T2 in order to obtain the main theorems; it suffices for us to compare both sides after
taking summation and convolution for any of the two variables like in Proposition 10.1, which
does not require holomorphic projection.

As we have promised in Section 6, we start by recalling the definition of the archimedean
local index in the decomposition (6.1).

Let X be a smooth projective complex scheme of pure dimension n − 1. For an element
Z ∈ Zr(X)C, recall that a Green current for Z is an (r − 1, r − 1)-current gZ on X(C) that
is smooth away from the support of Z and satisfies

ddcgZ + δZ = [ωZ ]

for a unique smooth (r, r)-form ωZ onX(C), which we call the tail form of gZ . If Z ∈ Zr(X)0
C,

then we say that a Green current gZ for Z is harmonic if ωZ = 0, and we use g♥Z to indicate
a harmonic Green current. For two elements Z1, Z2 ∈ Zr(X)0

C with disjoint supports, we
define

〈Z1, Z2〉X,C := 1
2

∫
X(C)

g♥Z1 ∧ δZc
2
,(10.2)

which is independent of the choice of harmonic Green current g♥Z1 .
By Lemma 5.5, we may assume u = u without lost of generality in the proof of Proposition

10.1. Now we apply the above discussion to the complex scheme XL ⊗E C. For i = 1, 2,
• we denote by g♥Ti(φ

∞
i , si, g∞i )L a harmonic Green current for s∗iZTi(ω∞r (g∞i )φ∞i )L onXL⊗E

C;
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• for every element gi ∈ Gr(AF ) with finite part g∞i , there is a particular Green current
for s∗iZTi(ω∞r (g∞i )φ∞i )L on XL ⊗E C, known as the Kudla–Milson Green current (see
the proof of [Liu11a, Theorem 4.20]), denoted by gKM

Ti
(φ∞i , si, gi)L, with the tail form

ωKM
Ti

(φ∞i , si, gi)L.

Proof of Proposition 10.1. As we have pointed out, it suffices to prove the proposition for
u = u. By (10.2), we have

(10.3) IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)L,u

= 1
2CT1,T2(g1∞, g2∞)

∫
XL(C)

g♥T1(φ∞1 , s1, g
∞
1 )L ∧ δ(s∗2ZT2 (ω∞r (g∞2 )φ∞2 )L)c ,

where
CT1,T2(g1∞, g2∞) := ωr,∞(g1∞)φ0

∞(T1) · (ωr,∞(g2∞)φ0
∞(T2))c.

We need a variant of (10.3). Put

(10.4) IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)KM
L,u :=

1
2CT1,T2(g1∞, g2∞)

(∫
XL(C)

gKM
T1 (φ∞1 , s1, g1)L ∧ δ(s∗2ZT2 (ω∞r (g∞2 )φ∞2 )L)c

+
∫
XL(C)

ωKM
T1 (φ∞1 , s1, g1)L ∧ gKM

T2 (φ∞2 , s2, g2)c
L

)
.

By [Liu11a, Theorem 4.20]20, we have

vol\(L) · IT1,T2(φ∞1 , φ∞2 , s1, s2, g1, g2)KM
L,u = 1

2ET1,T2((g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ (s2φ

∞
2 )c))u.(10.5)

We first check the absolute convergence of the two sides of (10.1). It is clear that the
assignment

τ1 7→
∑

T1∈Herm◦r(F )+

∣∣∣ET1,T2((τ1g1, g2),Φ0
∞ ⊗ (s1φ

∞
1 ⊗ s2φ

∞
2 ))u

∣∣∣
is slowly increasing on F1, which implies that the right-hand side of (10.1) is absolutely
convergent since ϕ is a cusp form.

For the left-hand side, by (10.5), it suffices to show that the expression∑
T1∈Herm◦r(F )+

∣∣∣IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)KM
L,u − IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)L,u

∣∣∣
is absolutely convergent and is slowly increasing on τ1. For short, put

η := −g♥T2(φ∞2 , s2, g
∞
2 )c

L,

which is an (r − 1, r − 1)-current on XL(C) satisfying

ddcη = δ(s∗2ZT2 (ω∞r (g∞2 )φ∞2 )L)c .(10.6)

20There is a sign error in [Liu11a, Theorem 4.20]: the correct sign should be
∏
v γ

2n
Vv , which is 1, rather

than
∏
v γVv , which is −1 (the root of this sign error is that in the formula for ωχ(wr) on [Liu11a, Page 858],

the constant γV should really be γrV ). This result was later reproved in [GS19, Corollary 5.12] by a different
method.
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Then for every T1 ∈ Herm◦r(F )+,
JT1(τ1) := IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)KM

L,u − IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)L,u

= CT1,T2(τ1g1∞, g2∞)
∫
XL(C)

(
gKM
T1 (φ∞1 , s1, τ1g1)L − g♥T1(φ∞1 , s1, τ1g1)L

)
∧ ddcη

+ CT1,T2(τ1g1∞, g2∞)
∫
XL(C)

ωKM
T1 (φ∞1 , s1, τ1g1)L ∧ gKM

T2 (φ∞2 , s2, g2)c
L

= CT1,T2(τ1g1∞, g2∞)
∫
XL(C)

ddc
(
gKM
T1 (φ∞1 , s1, τ1g1)L − g♥T1(φ∞1 , s1, τ1g1)L

)
∧ η

+ CT1,T2(τ1g1∞, g2∞)
∫
XL(C)

ωKM
T1 (φ∞1 , s1, τ1g1)L ∧ gKM

T2 (φ∞2 , s2, g2)c
L

= CT1,T2(τ1g1∞, g2∞)
∫
XL(C)

ωKM
T1 (φ∞1 , s1, τ1g1)L ∧

(
η + gKM

T2 (φ∞2 , s2, g2)c
L

)
.

By the claim (∗) below and the fact that η + gKM
T2 (φ∞2 , s2, g2)c

L is a smooth form on XL(C),
we know that ∑T1∈Herm◦r(F )+ |JT1(τ1)| is convergent and is slowly increasing in τ1 ∈ F1, which
implies that the left-hand side of (10.1) is absolutely convergent as we have pointed out.

We claim that
(∗) The summation ∑

T1∈Herm◦r(F )+

CT1,T2(τ1g1∞, g2∞) · ωKM
T1 (φ∞1 , s1, τ1g1)L

is convergent in the space of smooth (r, r)-form on XL(C) with respect to the C∞-
topology, and is locally uniformly slowly increasing in τ1 ∈ F1.

Note that since XL(C) is a finite disjoint union compact quotients of the real Lie group
uH(R), the C∞-topology on XL(C), which is a Fréchet topology, can defined by a natural
family of semi-norms given by the upper bound of |Df | on a compact neighbourhood of the
identity in uH(R), where D runs through invariant differential operators on uH(R). Take
such a semi-norm ‖ ‖. By the construction of the Kudla–Millson form ([Mil85, Section III.1]
or [KM86, Section 3]), it suffices to consider semi-norms ‖ ‖ satisfying that there exists
φ∞ ∈ S (uV r ⊗F F∞) such that∥∥∥ωr,∞(τ1g1∞)φ0

∞(T1) · ωKM
T1 (φ∞1 , s1, τ1g1)L

∥∥∥ = sup
h∈uH(F )\uH(AF )

{∣∣∣θφ∞⊗s1φ∞1 ,T1(τ1g1, h)
∣∣∣} ,

for every τ1 ∈ F1 and every T1 ∈ Herm◦r(F )+, where θφ∞⊗s1φ∞1 ,T1 denotes the T1-component
of the classical theta function of φ∞⊗ s1φ

∞
1 . Now since uH(F )\ uH(AF ) is compact, and the

assignment
τ1 7→

∑
T1∈Herm◦r(F )+

∣∣∣θφ∞⊗s1φ∞1 ,T1(τ1g1, h)
∣∣∣

is slowly increasing on F1, locally uniformly in h, the claim follows.
Now we continue to prove (10.1). By (10.5), it suffices to show that

(10.7)
∫
F1
ϕc(τ1g1)

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)KM
L,u dτ1

=
∫
F1
ϕc(τ1g1)

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)L,u dτ1,

in which we have already known that both sides are absolutely convergent.
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Take an element T1 ∈ Herm◦r(F )+. We put
ϕg♥T1

:=
∫
F1
ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞)g♥T1(φ∞1 , s1, g

∞
1 )L dτ1,

which is a harmonic Green current for
ϕZT1 :=

(∫
F1
ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞) dτ1

)
· s∗1ZT1(ω∞r (g∞1 )φ∞1 )L.

We also put
ϕgKM
T1

:=
∫
F1
ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞)gKM

T1 (φ∞1 , s1, τ1g1)L dτ1,

which is a Green current for ϕZT1 , whose tail form is
ϕωKM

T1
:=
∫
F1
ϕc(τ1g1)CT1,T2(τ1g1∞, g2∞)ωKM

T1 (φ∞1 , s1, τ1g1)L dτ1.

Then by (10.3), (10.4), and (10.6), we have
ϕJT1 :=

∫
F1
ϕc(τ1g1)IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)KM

L,u dτ1

−
∫
F1
ϕc(τ1g1)IT1,T2(φ∞1 , φ∞2 , s1, s2, τ1g1, g2)L,u dτ1

=
∫
XL(C)

(ϕgKM
T1
− ϕg♥T1

) ∧ ddcη +
∫
XL(C)

ϕωKM
T1 ∧ gKM

T2 (φ∞2 , s2, g2)c
L

=
∫
XL(C)

ddc(ϕgKM
T1
− ϕg♥T1

) ∧ η +
∫
XL(C)

ϕωKM
T1 ∧ gKM

T2 (φ∞2 , s2, g2)c
L

=
∫
XL(C)

ϕωKM
T1 ∧

(
η + gKM

T2 (φ∞2 , s2, g2)c
L

)
.

Therefore, the difference between the two sides of (10.7) equals
∑

T1∈Herm◦r(F )+

ϕJT1 =
∫
XL(C)

 ∑
T1∈Herm◦r(F )+

ϕωKM
T1

 ∧ (η + gKM
T2 (φ∞2 , s2, g2)c

L

)
.(10.8)

Here, to validate the exchange of summation and integration, it suffices to show that the
summation ∑T1∈Herm◦r(F )+

ϕωKM
T1 is convergent in the space of smooth (r, r)-form on XL(C)

with respect to the C∞-topology, since XL(C) is compact. However, this follows from the
claim (∗).

We then continue by computing the right-hand side of (10.8). Since supp(φ∞1v) ⊆ (V r
v )reg

for some v ∈ R′, we have ∑
T1∈Herm◦r(F )+

ϕωKM
T1 =

∑
T1∈Hermr(F )+

ϕωKM
T1 ,

where ϕωKM
T1 for T1 ∈ Hermr(F )+ \ Herm◦r(F )+ is defined similarly. However,∑

T1∈Hermr(F )+

ϕωKM
T1 = (ωr,∞(g2∞)φ0

∞(T2))c ·
∫
F1
ϕc(τ1g1)ωKM(τ1g1) dτ1,

where ωKM(g1) is the Kudla–Milson form for the generating function Zs1φ∞1
(g1)L. By [Mil85,

Theorem III.2.1], we know that∫
F1
ϕc(τ1g1)ωKM(τ1g1) dτ1 =

∫
Γ1\Gr(F∞)

ϕc(g′1g1)ωKM(g′1g1) dg′1(10.9)
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is a harmonic (r, r)-form on XL(C). Since Zs1φ∞1
(g1)L is cohomologically trivial, the coho-

mology class of (10.9) is also trivial, which implies that (10.9) vanishes. Therefore, we obtain
(10.7). The proposition is proved. �

11. Proof of main results

In this section, we prove our main results in Section 1. Thus, we put ourselves in Assump-
tion 1.3. In particular, we have Vram

F = ∅, V(2)
F ⊆ Vspl

F .
Let (π,Vπ) be as in Assumption 1.3 with |Sπ| odd, for which we assume Hypothesis 6.6.

Take
• a totally positive definite hermitian space V over AE of rank 2r as in Notation 2.2
satisfying that ε(Vv) = −1 if and only if v ∈ Sπ (so that V is incoherent and V = Vπ as
in Section 1),21

• S = Sπ (so that every underlying rational prime of S is unramified in E),
• R a finite subset of Vspl

F containing Rπ and of cardinality at least 2, and R′ = R,
• an R-good rational prime ` (Definition 6.1),
• for i = 1, 2, a nonzero element ϕi = ⊗vϕiv ∈ V [r]R

π satisfying that 〈ϕc
1v, ϕ2v〉πv = 1 for

v ∈ VF \ R,
• for i = 1, 2, an element φ∞i = ⊗vφ∞iv ∈ ⊗vφ∞iv ∈ S (V r ⊗AF A∞F ) satisfying

– φ∞iv = 1(ΛR
v)r for v ∈ Vfin

F \ R;
– supp(φ∞1v ⊗ (φ∞2v)c) ⊆ (V 2r

v )reg for v ∈ R,
• an open compact subgroup L of H(A∞F ) of the form LRL

R where LR is defined in Notation
2.2(H8), that fixes both φ∞1 and φ∞2 ,
• an open compact subgroup K ⊆ Gr(A∞F ) that fixes ϕ1, ϕ2, φ

∞
1 , φ

∞
2 ,

• a set of representatives {g(1), . . . , g(s)} of the double coset Gr(F )\Gr(A∞F )/K satisfying
g(j) ∈ Gr(A∞,RF ) for 1 6 j 6 s, together with a Siegel fundamental domain F(j) ⊆ Gr(F∞)
for the congruence subgroup Gr(F ) ∩ g(j)K(g(j))−1 for each 1 6 j 6 s,
• for i = 1, 2, si a product of two elements in (SR

Qac)〈`〉LR
satisfying χR

π(si) = 1 (which is
possible by Proposition 6.9(2)),
• for i = 1, 2, an element sui ∈ (SR

Qac)〈`〉LR
for every u ∈ Vspl

E ∪SE, where SE denotes the subset
of Vint

E above S, as in Proposition 7.1 and Proposition 9.1, satisfying χR
π(sui ) = 1 and that

sui = 1 for all but finitely many u.
In what follows, we put s̃i := si ·

∏
u∈Vspl

E ∪SE
sui for i = 1, 2.

Lemma 11.1. Let the situation be as above.
(1) For every T2 ∈ Herm◦r(F )+ and every t ∈ TR

Qac, the identity

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

∑
T1∈Herm◦r(F )+

IT1,T2(tφ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j), g2)`L dτ (j)

= χR
π(t)c

∫
Gr(F )\Gr(AF )

ϕc
1(g1)E ′(0, (g1, g2),Φ0

∞ ⊗ Φ∞)−,T2 dg1

− χR
π(t)c

∑
u∈SE

log qu
qru − 1

∫
Gr(F )\Gr(AF )

ϕc
1(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2 dg1

21We have changed the use of V from Section 1 since in the proofs below, we need to consider all nearby
spaces of Vπ. In particular, V in Section 1 is now uV .
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holds for every g2 ∈ Gr(AR
F ), where Φ∞ := s̃1φ

∞
1 ⊗(s̃2φ

∞
2 )c; Λ?

u is the lattice in Proposi-
tion 9.1; and E(s, (g1, g2),Φ)−,T2 denotes the T2-Siegel Fourier coefficient of the Eisen-
stein series E(s, (g1, g2),Φ) with respect to the second variable g2.

(2) The identity

vol\(L)
s∑

j2=1

s∑
j1=1

∫
F(j2)

∫
F(j1)

ϕ2(τ (j2)g(j2))ϕc
1(τ (j1)g(j1))

∑
T2∈Herm◦r(F )+

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j1)g(j1), τ (j2)g(j2))`L dτ (j1) dτ (j2)

=
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c)

holds.

Proof. For (1), pick an element h ∈ HR
Wr

such that θR(h) = t as in Definition 6.8. Then there
exist finitely many pairs (ck, hk) ∈ C × Gr(A∞,RF ) such that hφ∞1 = ∑

k ckω
∞
r (hk)φ∞1 and

hϕ1 = ∑
k ckπ(hk)ϕ1. By [Liu, Theorem 1.1] for inert places and [Liu11a, Proposition A.5]

for split places (see also [Ral82, Page 511]), we have

tφ∞1 = hφ∞1 =
∑
k

ckω
∞
r (hk)φ∞1 .

Thus, we have

IT1,T2(tφ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j), g2)`L =

∑
k

ckIT1,T2(tφ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j)hk, g2)`L.(11.1)

By Lemma 6.4, we have

(11.2) IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j)hk, g2)`L =

∑
u∈V(∞)

E

2IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j)hk, g2)L,u

+
∑
u∈Vfin

E

log qu · IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j)hk, g2)`L,u.

Combining (11.1), (11.2), Proposition 7.1, Proposition 8.1, Proposition 9.1, and Proposition
10.1, we have

(11.3) vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

∑
T1∈Herm◦r(F )+

IT1,T2(tφ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j), g2)`L dτ (j)

=
∑
k

s∑
j=1

ck

∫
F(j)

ϕc
1(τ (j)g(j))

∑
T1∈Herm◦r(F )+

ES
T1,T2((τ (j)g(j)hk, g2),Φ0

∞ ⊗ Φ∞),

where we put

ES
T1,T2((g1, g2),Φ0

∞ ⊗ Φ∞) :=∑
u∈VE\Vspl

E

ET1,T2((g1, g2),Φ0
∞ ⊗ Φ∞)u −

∑
u∈SE

log qu
qru − 1ET1,T2((g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r).
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By Proposition 3.10 and Remark 3.12, we have∑
T1∈Herm◦r(F )+

ES
T1,T2((τ (j)g(j)hk, g2),Φ0

∞ ⊗ Φ∞) = E ′(0, (τ (j)g(j)hk, g2),Φ0
∞ ⊗ Φ∞)−,T2

−
∑
u∈SE

log qu
qru − 1E(0, (τ (j)g(j)hk, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2

for every 1 6 j 6 s and every k. It follows that

(11.3) =
∑
k

ck

∫
Gr(F )\Gr(AF )

ϕc
1(g1)E ′(0, (g1hk, g2),Φ0

∞ ⊗ Φ∞)−,T2 dg1

−
∑
u∈SE

log qu
qru − 1

∑
k

ck

∫
Gr(F )\Gr(AF )

ϕc
1(g1)E(0, (g1hk, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2 dg1

=
∫
Gr(F )\Gr(AF )

(hϕc
1)(g1)E ′(0, (g1, g2),Φ0

∞ ⊗ Φ∞)−,T2 dg1

−
∑
u∈SE

log qu
qru − 1

∫
Gr(F )\Gr(AF )

(hϕc
1)(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r)−,T2 dg1.

Part (1) follows as hϕc
1 = χR

π(t)c · ϕc
1.

For (2), we apply (1) to t = 1 and g2 = τ (j2)g(j2) for 1 6 j2 6 s, hence obtain

(11.4) vol\(L)
s∑

j2=1

s∑
j1=1

∫
F(j2)

∫
F(j1)

ϕ2(τ (j2)g(j2))ϕc
1(τ (j1)g(j1))

∑
T2∈Herm◦r(F )+

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j1)g(j1), τ (j2)g(j2))`Lrdτ (j1) dτ (j2)

=
∫∫

[Gr(F )\Gr(AF )]2
ϕ2(g2)ϕc

1(g1)E ′(0, (g1, g2),Φ0
∞ ⊗ Φ∞) dg1 dg2

−
∑
u∈SE

log qu
qru − 1

∫∫
[Gr(F )\Gr(AF )]2

ϕ2(g2)ϕc
1(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r) dg1 dg2.

By the classical Rallis inner product formula (see, for example, [Liu11a, (2-6)]) and Propo-
sition 3.6(2), we have∫

Gr(F )\Gr(AF )

∫
Gr(F )\Gr(AF )

ϕ2(g2)ϕc
1(g1)E(0, (g1, g2),Φ0

∞ ⊗ Φ∞,u ⊗ 1(Λ?u)2r) dg1 dg2 = 0

for every u ∈ SE. Together with χR
π(s̃1) = χR

π(s̃2) = 1, we have

(11.4) =
∫
Gr(F )\Gr(AF )

∫
Gr(F )\Gr(AF )

ϕ2(g2)ϕc
1(g1)E ′(0, (g1, g2),Φ0

∞ ⊗ (φ∞1 ⊗ (φ∞2 )c)) dg1 dg2.

(11.5)

By Proposition 3.7, we have

(11.5) =
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c).

Part (2) is proved. �
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Proof of Theorem 1.5. First, it suffices to prove the theorem for R satisfying Rπ ⊆ R ⊆ Vfin
F

and |R| > 2. Take an element w ∈ V(∞)
F and put ourselves in the setup of Section 4. We

prove that the localization of the TR
C-module CHr(XL)0

C at mR
π, is nonvanishing.

Assume the converse. Then for every element T2 ∈ Herm◦r(F )+, we can find tT2 ∈ TR
Qac

satisfying χR
π(tT2) = 1 and t∗T2ZT2(ω∞r (g(j))φ∞2 )L = 0 for every 1 6 j 6 s. Let t̂T2 be the

adjoint of tT2 . Then we have

〈s̃∗1ZT1(ω∞r (g∞1 )(t̂T2φ
∞
1 ))L, s̃∗2ZT2(ω∞r (g(j))φ∞2 )L〉`XL,E

= 〈t̂∗T2 s̃∗1ZT1(ω∞r (g∞1 )φ∞1 )L, s̃∗2ZT2(ω∞r (g(j))φ∞2 )L〉`XL,E
= 〈s̃∗1ZT1(ω∞r (g∞1 )φ∞1 )L, t∗T2 s̃∗2ZT2(ω∞r (g(j))φ∞2 )L〉`XL,E = 0

for every T1 ∈ Herm◦r(F )+, g∞1 ∈ Gr(A∞,RF ), and 1 6 j 6 s. In particular, we have

IT1,T2(t̂T2φ
∞
1 , φ

∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L = 0

for every g2 ∈ Gr(AR
F ) with g∞2 ∈ {g(1), . . . , g(s)}. It follows that

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

∑
T1∈Herm◦r(F )+

IT1,T2(t̂T2φ
∞
1 , φ

∞
2 , s̃1, s̃2, τ

(j)g(j), g2)`L dτ (j) = 0

for every g2 ∈ Gr(AR
F ) with g∞2 ∈ {g(1), . . . , g(s)} and every T2 ∈ Herm◦r(F )+. Now applying

Lemma 11.1(1) twice with t = t̂T2 and t = 1, respectively, we obtain

vol\(L)
s∑
j=1

∫
F(j)

ϕc
1(τ (j)g(j))

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j)g(j), g2)`L dτ (j) = 0

for every g2 ∈ Gr(AR
F ) with g∞2 ∈ {g(1), . . . , g(s)} and every T2 ∈ Herm◦r(F )+. By Lemma

11.1(2), we obtain

L′(1
2 , π)

b2r(0) · C
[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c) = 0,

that is, ∏
v∈S

(−1)rqr−1
v (qv + 1)

(q2r−1
v + 1)(q2r

v − 1) ·
∏
v∈R

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c) = 0.

Now by Proposition 3.13, we may choose ϕ1, ϕ2, φ
∞
1 , φ

∞
2 such that

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c) 6= 0

for every v ∈ R. As L′(1
2 , π) 6= 0, we obtain a contradiction. The theorem is proved. �

Proof of Theorem 1.7 and Corollary 1.9. By Definition 6.11 and Proposition 6.10(1), we
have

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E = vol\(L)
s∑

j2=1

s∑
j1=1

∫
F(j2)

∫
F(j1)

ϕ2(τ (j2)g(j2))ϕc
1(τ (j1)g(j1))

∑
T2∈Herm◦r(F )+

∑
T1∈Herm◦r(F )+

IT1,T2(φ∞1 , φ∞2 , s̃1, s̃2, τ
(j1)g(j1), τ (j2)g(j2))`L dτ (j1) dτ (j2).
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By Lemma 11.1(2) and Proposition 3.7, we obtain

〈Θφ∞1
(ϕ1),Θφ∞2

(ϕ2)〉\X,E =
L′(1

2 , π)
b2r(0) · C

[F :Q]
r ·

∏
v∈Vfin

F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c).(11.6)

By Proposition 3.13, we may choose ϕ1, ϕ2, φ
∞
1 , φ

∞
2 such that∏

v∈Vfin
F

Z\πv ,Vv(ϕ
c
1v, ϕ2v, φ

∞
1v ⊗ (φ∞2v)c) 6= 0.

Now we claim that (11.6) holds for arbitrary vectors ϕ1, ϕ2, φ
∞
1 , φ

∞
2 (not necessarily those

in the beginning of this section) as in the statement of Theorem 1.7(1). This is a consequence
of Proposition 3.6(1) as both sides of (11.6) give elements in the space⊗

v∈Vfin
F

HomGr(Fv)×Gr(Fv)(I�r,v(0), πv � π∨v ),

which is of dimension one. Thus, Theorem 1.7(1) follows.
By Proposition 6.10(2), the assignment (ϕ, φ∞) 7→ Θφ∞(ϕ) gives an element in

HomH(A∞F )

(
HomGr(A∞F )(S (V r ⊗AF A∞F ), π∞), lim−→

L

CHr(XL)0
C

)
,

in which HomGr(A∞F )(S (V r ⊗AF A∞F ), π∞) is simply the theta lifting of π∞ to H(A∞F ) by
Proposition 3.6(3). Thus, Theorem 1.7(2) is a consequence of (11.6) and the fact that∏
v∈Vfin

F
Z\πv ,Vv is nontrivial.

Finally, Corollary 1.9 is a consequence of (11.6) and Proposition 3.7 (where one may take
R = ∅). �

Appendix A. Two lemmas in Fourier analysis

In this appendix, we prove two lemmas in Fourier analysis that are only used in the proof
of Proposition 3.13. Both the lemmas and their proofs are variants of [AN04, Theorem 1]
(in the non-archimedean setting).

Let F be a non-archimedean local field (of arbitrary characteristic). Denote the maximal
ideal of OF by pF and put q := |OF/pF |. We fix a nontrivial additive character ψ : F → C×
that is used to define the Fourier transform.

Lemma A.1. Consider a finite dimensional F -vector space X, a nonzero homogeneous
polynomial ∆ on X, and a real number r > 0. Let f be a nonzero locally constant function
on an open subset Ω ⊆ X on which ∆ is nonvanishing. Suppose that f is locally integrable
on X and satisfies that for every ε > 0, we have∫

Ω
|f(x)|2+ε|∆(x)|rεF dx <∞.

Then the support of the Fourier transform of f , as a distribution on X∨, can not be contained
in an analytic hypersurface.

Proof. Let n > 1 be the dimension of X. Without lost of generality, we may identify both
X and X∨ with F n, take dx to be the measure that gives OF volume 1, and assume that
ψF has conductor OF . For every integer N , we put Bn

N := (pNF )n, which is an open compact
subset of F n.
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Let u be the Fourier transform of f . For every integerN > 0, put χN := qNn1BnN ∈ S (F n),
and put uN := u ∗ χN , which is a locally constant function on F n. Take two real numbers
0 6 δ < 1 and ε > 0 to be determined later. Let p > 2 satisfy 1

2−δ + 1
p

= 1. Since the Fourier
transform is a bounded operator from L2−δ(F n) to Lp(F n), we have

‖uN‖2−δ
p 6 Cδ

∫
Fn
|f(x)|2−δ|χ̂N(x)|2−δ dx

= Cδ

∫
Fn
|f(x)|2−δ|1Bn−N (x)|2−δ dx

= Cδ

∫
Bn−N

|f(x)|2−δ dx

for some constant Cδ > 0 depending only on δ. By Hölder’s inequality, we have

‖uN‖2−δ
p 6 Cδ

(∫
Bn−N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx
) δ+ε

2+ε
(∫

Bn−N

|f(x)|2+ε|∆(x)|rεF dx
) 2−δ

2+ε

.

Let d be the degree of ∆. There exists a real number 0 < ρ∆ < n/d depending only on ∆
such that as long as r (2−δ)ε

δ+ε < ρ∆, the function |∆(x)|−r
(2−δ)ε
δ+ε

F is locally integrable. In this
case, there exists a constant Cδ,ε > 0 such that∫

Bn−N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx = Cδ,ε · qN(n−dr (2−δ)ε
δ+ε ).

By the integrability condition on f , there is a new constant C ′δ,ε > 0 depending only on δ
and ε such that

‖uN‖2−δ
p 6 C ′δ,ε · q

N(n−dr (2−δ)ε
δ+ε ) δ+ε2+ε(A.1)

holds for every N > 0.
Now suppose that the support of u is contained in an analytic hypersurface U . For N > 0,

put UN := U + Bn
N ⊆ F n as a tubular neighbourhood of U , which contains the support of

uN . Then for every g ∈ S (F n), we have

lim
N→∞

qN
∫
UN
g(x) dx =

∫
U
g(y) dy.(A.2)

Then by Hölder’s inequality, (A.1), and (A.2), we have
|〈u, g〉|2−δ = lim

N→∞
|〈uN , g〉|2−δ

6 lim
N→∞

‖uN‖2−δ
p ·

∫
UN
|g(x)|2−δ dx

6 C ′δ,ε · lim
N→∞

qN((n−dr (2−δ)ε
δ+ε ) δ+ε2+ε−1) · qN

∫
UN
|g(x)|2−δ dx

= C ′δ,ε ·
∫
U
|g(y)|2−δ dy · lim

N→∞
qN((n−dr (2−δ)ε

δ+ε ) δ+ε2+ε−1).

Choose suitable δ, ε such that

r
(2− δ)ε
δ + ε

< ρ∆, n− dr (2− δ)ε
δ + ε

<
2 + ε

δ + ε
.

Then the above limit is zero, that is, 〈u, g〉 = 0 for every g ∈ S (F n). Thus, we have u = 0.
The lemma is proved. �
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Lemma A.2. Consider a finite dimensional F -vector space X, a nonzero homogeneous
polynomial ∆ on X, and a real number r > 0. Denote by Ω ⊆ X the nonvanishing locus
of ∆. Let f be a nonzero locally constant function on Ω that is locally integrable on X,
satisfying the following condition: there exists a decomposition X = X1 ⊕ X2 ⊕ X3 with
dimF X1 = dimF X2 > 0 such that
(1) Ω is disjoint from X1 ⊕X3 ∪X2 ⊕X3;
(2) |∆(αx1, α

−1x2, x3)|F = |∆(x1, x2, x3)|F for every α ∈ F× and xi ∈ Xi;
(3) |f(αx1, α

−1x2, x3)| = |f(x1, x2, x3)| for every α ∈ F× and xi ∈ Xi;
(4) for every ε > 0, we have∫

F×\Ω
|f(x)|2+ε|∆(x)|rεF dx <∞,

where the action of α ∈ F× on Ω is given by α.(x1, x2, x3) = (αx1, α
−1x2, x3).

Then the support of the Fourier transform of f , as a distribution on X∨, can not be contained
in an analytic hypersurface.
Proof. Let n > 1 be the dimension of X. Without lost of generality, we may identify the
decomposition X = X1⊕X2⊕X3 with F n = Fm⊕Fm⊕F n−2m, identify X∨ with F n, take
dx to be the measure that gives OF volume 1, and assume that ψF has conductor OF . For
every integers N and l > 0, we put Bl

N := (pNF )l and AlN := Bl
N \ Bl

N+1, which are open
compact subsets of F l. It is clear that the natural map $Z×(Am0 ×Fm×F n−2m)→ F n given
by the action in (4) is injective; and by (1) that Ω is contained in $Z.(Am0 × Fm × F n−2m).

Let u be the Fourier transform of f . For every integerN > 0, put χN := qNn1BnN ∈ S (F n),
and put uN := u ∗ χN , which is a locally constant function on F n. Take three real numbers
0 6 δ < γ < 1 and ε > 0 to be determined later. Let p > 2 satisfy 1

2−γ + 1
p

= 1. Since the
Fourier transform is a bounded operator from L2−γ(F n) to Lp(F n), we have

‖uN‖2−γ
p 6 Cγ

∫
Fn
|f(x)|2−γ|χ̂N(x)|2−γ dx

= Cγ

∫
Fn
|f(x)|2−γ|1Bn−N (x)|2−γ dx

= Cγ

∫
Bn−N

|f(x)|2−γ dx

for some constant Cγ > 0 depending only on γ. By (3) and Hölder’s inequality, we have∫
Bn−N

|f(x)|2−γ dx

=
∞∑

i=−2N
(i+ 2N + 1)

∫
Am0 ×A

m
i ×B

n−2m
−N

|f(x)|2−γ dx

6
∞∑

i=−2N
(i+ 2N + 1)

(∫
Am0 ×A

m
i ×B

n−2m
−N

dx
) γ−δ

2−δ
(∫

Am0 ×A
m
i ×B

n−2m
−N

|f(x)|2−δ dx
) 2−γ

2−δ

6
∞∑

i=−2N
(i+ 2N + 1)(q−imqN(n−2m))

γ−δ
2−δ

(∫
Am0 ×A

m
i ×B

n−2m
−N

|f(x)|2−δ dx
) 2−γ

2−δ

= Cγ,δ · qNn
γ−δ
2−δ

(∫
Am0 ×A

m
i ×B

n−2m
−N

|f(x)|2−δ dx
) 2−γ

2−δ
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for some constant Cγ,δ > 0. Together, we obtain

‖uN‖2−δ
p 6 C ′γ,δ · q

Nn γ−δ2−γ ·
∫
Am0 ×A

m
i ×B

n−2m
−N

|f(x)|2−δ dx(A.3)

for a new constant C ′γ,δ > 0 depending only on γ and δ. By Hölder’s inequality, we have∫
Am0 ×A

m
i ×B

n−2m
−N

|f(x)|2−δ dx

6

(∫
Am0 ×A

m
i ×B

n−2m
−N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx
) δ+ε

2+ε
(∫

Am0 ×A
m
i ×B

n−2m
−N

|f(x)|2+ε|∆(x)|rεF dx
) 2−δ

2+ε

6

(∫
Bn−2N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx
) δ+ε

2+ε
(∫

Am0 ×A
m
i ×B

n−2m
−N

|f(x)|2+ε|∆(x)|rεF dx
) 2−δ

2+ε

.

Let d be the degree of ∆. There exists a real number 0 < ρ∆ < n/d depending only on ∆
such that as long as r (2−δ)ε

δ+ε < ρ∆, the function |∆(x)|−r
(2−δ)ε
δ+ε

F is locally integrable. In this
case, there exists a constant Cδ,ε > 0 such that∫

Bn−2N

|∆(x)|−r
(2−δ)ε
δ+ε

F dx = Cδ,ε · q2N(n−dr (2−δ)ε
δ+ε ).

On the other hand, by (4), we have(∫
Am0 ×A

m
i ×B

n−2m
−N

|f(x)|2+ε|∆(x)|rεF dx
) 2−δ

2+ε

6 C ′δ,ε

for a constant C ′δ,ε > 0. Thus, continuing (A.3), we have a constant Cγ,δ,ε > 0 depending
only on γ, δ, ε such that

‖uN‖2−δ
p 6 Cγ,δ,ε · qN(n γ−δ2−γ+2(n−dr (2−δ)ε

δ+ε ) δ+ε2+ε)(A.4)

holds for all N > 0.
Now suppose that the support of u is contained in an analytic hypersurface U . For N > 0,

put UN := U + Bn
N ⊆ F n as a tubular neighbourhood of U , which contains the support of

uN . Then for every g ∈ S (F n), we have

lim
N→∞

qN
∫
UN
g(x) dx =

∫
U
g(y) dy.(A.5)

Then by Hölder’s inequality, (A.4), and (A.5), we have

|〈u, g〉|2−δ = lim
N→∞

|〈uN , g〉|2−δ

6 lim
N→∞

‖uN‖2−δ
p ·

(∫
UN
|g(x)|2−γ dx

) 2−δ
2−γ

6 Cγ,δ,ε · lim
N→∞

qN(n γ−δ2−γ+2(n−dr (2−δ)ε
δ+ε ) δ+ε2+ε−

2−δ
2−γ ) ·

(
qN
∫
UN
|g(x)|2−γ dx

) 2−δ
2−γ

= Cγ,δ,ε ·
(∫

U
|g(y)|2−γ dy

) 2−δ
2−γ
· lim
N→∞

qN(n γ−δ2−γ+2(n−dr (2−δ)ε
δ+ε ) δ+ε2+ε−

2−δ
2−γ ).
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Choose suitable γ, δ, ε such that

r
(2− δ)ε
δ + ε

< ρ∆, n
γ − δ
2− γ + 2

(
n− dr (2− δ)ε

δ + ε

)
δ + ε

2 + ε
<

2− δ
2− γ .

Then the above limit is zero, that is, 〈u, g〉 = 0 for every g ∈ S (F n). Thus, we have u = 0.
The lemma is proved. �

Appendix B. Remarks on Beilinson’s non-archimedean local indices

In this appendix, we review Beilinson’s notion of non-archimedean local indices between
algebraic cycles [Bĕı87] and make some complementary remarks.

Let K be a non-archimedean local field, with the ring of integers OK and the residue field
k. Take a rational prime ` that is invertible on k. Let X be a smooth projective scheme over
K of pure dimension n− 1. For every integer d > 0, we have the cycle class map

clX,` : Zd(X)→ H2d(X,Q`(d)),

whose kernel we denote by Zd(X)〈`〉.

Remark B.1. A priori, Zd(X)〈`〉 depends on the rational prime `. However, if K is of charac-
teristic zero and we assume the monodromy–weight conjecture for X, then one can replace
clX,` by the geometric cycle class map, hence Zd(X)〈`〉 does not depend on `.

For a Zariski closed subset Z of X, we denote by ZdZ(X) the subgroup of Zd(X) consisting
of cycles whose support is contained in Z,

Definition B.2. For every pair of integers d1, d2 > 0 satisfying d1 + d2 = n, we define the
subgroups

Zd1,d2(X) :=
∑
Z1,Z2

Zd1
Z1(X)C × Zd2

Z2(X)C ⊆ Zd1(X)C × Zd2(X)C,

Zd1,d2(X)〈`〉 :=
∑
Z1,Z2

(Zd1
Z1(X)C ∩ Zd1(X)〈`〉C )× (Zd2

Z2(X)C ∩ Zd2(X)〈`〉C ) ⊆ Zd1(X)C × Zd2(X)C,

where the sum is taken over all pairs (Z1, Z2) of disjoint Zariski closed subsets of X. It is
clear that Zd1,d2(X)〈`〉 is stable under switching the two factors.

Take a pair of integers d1, d2 > 0 satisfying d1 + d2 = n. In [Bĕı87, Section 2], Beilinson
defined a map

〈 , 〉`X,K : Zd1,d2(X)〈`〉 → C⊗Q Q`(B.1)

called local index, satisfying the following properties
• its restriction to every subspace (Zd1

Z1(X)C∩Zd1(X)〈`〉C )×(Zd2
Z2(X)C∩Zd2(X)〈`〉C ) is complex

linear in the first variable;
• 〈 , 〉`X,K is conjugate symmetric.
We briefly recall the definition. Take a pair (c1, c2) ∈ Zd1,d2(X)〈`〉. By linearity, we may

assume c1 ∈ Zd1
Z1(X) and c2 ∈ Zd2

Z2(X) with Z1∩Z2 = ∅. For i = 1, 2, put Ui := X \Zi. Then
we have the refined cycle class clZiX,`(ci) ∈ H2di

Zi
(X,Q`(di)), which goes to 0 under the natural

map H2di
Zi

(X,Q`(di))→ H2di(X,Q`(di)). Thus, we can choose a class γi ∈ H2di−1(Ui,Q`(di))
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that goes to clZiX,`(ci) under the coboundary map H2di−1(Ui,Q`(di))→ H2di
Zi

(X,Q`(di)). Then
we define 〈c1, c2〉`X,K to be the image of γ1 ∪ γ2 under the composite map

H2n−2(U1 ∩ U2,Q`(n))→ H2n−1(X,Q`(n)) TrX−−→ H1(SpecK,Q`(1)) = Q`,

in which the first map is the coboundary in the Mayer–Vietoris exact sequence for the
covering X = U1 ∪ U2. It is easy to check that 〈c1, c2〉`X,K does not depend on the choices of
γ1, γ2, and that 〈c1, c2〉`X,K = 〈c2, c1〉`X,K .

Lemma B.3. Take a pair (c1, c2) ∈ Zd1,d2(X)〈`〉.
(1) Let K ′ be a finite extension of K. Put X ′ := X ⊗K K ′ regarded as a scheme over

K ′. Then we have (c′1, c′2) ∈ Zd1,d2(X ′)〈`〉 and 〈c′1, c′2〉`X′,K′ = 〈c1, c2〉`X,K, where c′i is the
restriction of ci on X ′ for i = 1, 2.

(2) Let u : X ′ → X be a finite étale morphism. Then we have (c′1, c′2) ∈ Zd1,d2(X ′)〈`〉 and
〈c′1, c′2〉`X′,K = deg u · 〈c1, c2〉`X,K, where c′i is the restriction of ci on X ′ for i = 1, 2.

Proof. In both statements, it is clear that (c′1, c′2) ∈ Zd1,d2(X ′)〈`〉.
Part (1) follows from the following commutative diagram

H2n−2(U1 ∩ U2,Q`(n)) //

��

H2n−1(X,Q`(n)) TrX //

��

H1(SpecK,Q`(1))

��

Q`

H2n−2(U ′1 ∩ U ′2,Q`(n)) // H2n−1(X ′,Q`(n))
TrX′ // H1(SpecK ′,Q`(1)) Q`

in which U ′i is the restriction of Ui on X ′, and the construction of the local index.
Part (2) follows from the following commutative diagram

H2n−2(U1 ∩ U2,Q`(n)) //

u∗

��

H2n−1(X,Q`(n)) TrX //

u∗

��

H1(SpecK,Q`(1))
deg u·id
��

H2n−2(U ′1 ∩ U ′2,Q`(n)) // H2n−1(X ′,Q`(n))
TrX′ // H1(SpecK,Q`(1))

in which U ′i is the restriction of Ui on X ′, and the construction of the local index. �

In what follows, π : X → SpecOK is a projective morphism such that X ⊗OK K = X. We
put Y := X ⊗OK k.

Lemma B.4. Consider elements c1 ∈ Zd1
Z1(X) and c2 ∈ Zd2

Z2(X) with Z1 ∩Z2 = ∅. For every
β1 ∈ H2d1

Y ∪Z1(X ,Q`(d1)) whose image in H2d1
Z1 (X,Q`(d1)) coincides with clZ1

X,`(c1) and whose
image in H2d1(X ,Q`(d1)) vanishes, and every β2 ∈ H2d2−2(n−1)

Y ∪Z2 (X , π!Q`(d2−n+1)) whose im-
age in H2d2−2(n−1)

Z2 (X, π!Q`(d2−n+1)) = H2d2
Z2 (X,Q`(d2)) coincides with clZ2

X,`(c2), the image of
β1 ∪ β2 ∈ H2

Y (X , π!Q`(1)) under the trace map H2
Y (X , π!Q`(1))→ H2

Spec k(SpecOK ,Q`(1)) =
Q` coincides with 〈c1, c2〉`X,K.

This is claimed in [Bĕı87, Lemma-definition 2.1.1] without proof. For completeness, we
include a proof here (though straightforward).

Proof. Before the proof, let us make a remark on cup products. Let S be a Noetherian
scheme on which ` is invertible. Given F,G,H ∈ Db(S,Q`), the bounded derived category
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of `-adic sheaves on S, together with a map

κ : F
L
⊗G→ H,

we have a cup product map
∪κ : Hi(S, F )× Hj(S,G)→ Hi+j(S,H)

for every integers i, j, which is the composition of the cup product for (hyper)cohomology

Hi(S, F )× Hj(S,G)→ Hi+j(S, F
L
⊗G)

and the induced map Hi+j(S, κ) : Hi+j(S, F
L
⊗ G) → Hi+j(S,H). In particular, if we have

maps f : F → F ′ and h : H → H ′ rendering the following diagram

F
L
⊗G κ //

f⊗id
��

H

h

��
F ′

L
⊗G κ′ // H ′

commutative (in Db(S,Q`)), then the induced diagram

Hi(S, F )× Hj(S,G) ∪κ //

Hi(S,f)×id
��

Hi+j(S,H)
Hi+j(S,h)
��

Hi(S, F ′)× Hj(S,G)
∪κ′ // Hi+j(S,H ′)

commutes.
Put Ui := X \ Zi for i = 1, 2 as before. For i = 1, 2, choose a class γi ∈ H2di−1(Ui,Q`(di))

that goes to clZiX,`(ci) under the coboundary map H2di−1(Ui,Q`(di)) → H2di
Zi

(X,Q`(di)). De-
note by 〈γ1, c2〉 to be the image of γ1∪clZ2

X,`(c2) ∈ H2n−1
Z2 (U1,Q`(n)) = H2n−1

Z2 (X,Q`(n)) under
the composite map

H2n−1
Z2 (X,Q`(n))→ H2n−1(X,Q`(n)) TrX−−→ H1(SpecK,Q`(1)) = Q`.

We break the proof into two steps.
(1) 〈γ1, c2〉 = 〈c1, c2〉`X,K ;
(2) the image of β1 ∪ β2 ∈ H2

Y (X , π!Q`(1)) under the trace map H2
Y (X , π!Q`(1)) → Q`

coincides with 〈γ1, c2〉.
For (1), it is easy to see that the coboundary map H2n−2(U1∩U2,Q`(n))→ H2n−1(X,Q`(n))

in the Mayer–Vietoris exact sequence is the composition of the coboundary map
δ : H2n−2(U1 ∩ U2,Q`(n)) → H2n−1

Z2 (U1,Q`(n)) in the Gysin sequence and the natural map
H2n−1
Z2 (U1,Q`(n)) = H2n−1

Z2 (X,Q`(n)) → H2n−1(X,Q`(n)). Thus, it suffices to show that the
following diagram

H2d1−1(U1,Q`(d1))× H2d2−1(U2,Q`(d2)) //

id×δ
��

H2n−2(U1 ∩ U2,Q`(n))

δ
��

H2d1−1(U1,Q`(d1))× H2d2
Z2 (X,Q`(d2)) // H2n−1

Z2 (U1,Q`(n))

(B.2)
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commutes. Denote morphisms ιi : Ui → X and i : Zi → X for i = 1, 2, and ι : U1 ∩U2 → X.
Then in view of the remark on the cup products, the first row of (B.2) is induced by the
natural map

ι1∗ι
∗
1Q`(d1)

L
⊗ ι2∗ι∗2Q`(d2)→ ι∗ι

∗Q`(n),
and the second row of (B.2) is induced by the map

ι1∗ι
∗
1Q`(d1)

L
⊗ 2!

!
2Q`(d2)→ 2!

!
2ι
∗
1Q`(n),

which is the cone (of columns) of the natural commutative diagram

ι1∗ι
∗
1Q`(d1)

L
⊗Q`(d2) //

��

ι1∗ι
∗
1Q`(n)

��
ι1∗ι

∗
1Q`(d1)

L
⊗ ι2∗ι∗2Q`(d2) // ι∗ι

∗Q`(n)

in Db(X,Q`). It follows that (B.2) commutes. In particular, 〈c1, c2〉`X,K does not depend on
the choices of γ1 and γ2, which justifies the notation.

For (2), we may assume that β1 is the coboundary of γ1. We have the commutative
diagram

H1(X, π!Q`(1)) TrX //

��

H1(SpecK,Q`(1))

��
H2
Y (X , π!Q`(1)) TrX // H2

Spec k(SpecOK ,Q`(1))

for the trace maps. Thus, as H1(X, π!Q`(1)) ' H2n−1(X,Q`(n)), it remains to show that the
following diagram

H2d1−1(U1,Q`(d1))× H2d2−2(n−1)
Y ∪Z2 (X , π!Q`(d2 − n+ 1)) //

δ×id
��

H1
Z2(U1, π

!Q`(1))

δ

��
H2d1
Y ∪Z1(X ,Q`(d1))× H2d2−2(n−1)

Y ∪Z2 (X , π!Q`(d2 − n+ 1)) // H2
Y (X , π!Q`(1))

commutes. The argument is similar to (1), which we leave to the readers.
The lemma is proved. �

Remark B.5. In Lemma B.4, when X is regular, the natural map π!Q`[2− 2n](1− n)→ Q`

is an isomorphism, which is a consequence of the absolute purity theorem [Fuj02].

Now we provide a refined method to compute (B.1) in the presence of a regular model of
X. Till the end of this section, X will be regular.

We first review some constructions from [GS87]. For every Zariski closed subset Z of X ,
we have the K-group KZ0 (X ) of complexes with support in Z defined in [GS87, Section 1.1],
equipped with the codimension filtration

· · · ⊃ Fd−1KZ0 (X ) ⊃ FdKZ0 (X ) ⊃ Fd+1KZ0 (X ) ⊃ · · · .
We have
• the pushforward map π∗ : KY

0 (X )→ KSpec k
0 (SpecOK) = K0(Spec k);
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• for Z ′ ⊆ Z, a natural linear map KZ′0 (X ) → KZ0 (X ), which preserves the codimension
filtration;
• a cup-product map ∪ : KZ1

0 (X )×KZ2
0 (X )→ KZ1∩Z2

0 (X );
• a natural linear map

[ ] :
⊕
d′>d

Zd′Z (X )→ FdKZ0 (X )(B.3)

sending a closed subscheme Z ′ of X contained in Z to the class of the structure sheaf
OZ′ .

See [GS87, Section 1 & Section 5] for more details.
Note that since X is regular, KZ0 (X ) coincides with Quillen’s K-theory with support (see

the proof of [GS87, Theorem 8.2]). Then by [Gil81, Definition 2.34(ii)] in which we take the
base scheme S to be SpecOK and Γ to be the `-adic cohomology theory, we obtain the d-th
Chern class map

clZX ,` : FdKZ0 (X )→ H2d
Z (X ,Q`(d))

for every integer d > 0.
For the generic fiber X, we have K-groups the KZ

0 (X) for Zariski closed subsets Z of X
with similar properties as well. The following lemma is probably known, but we can not find
an exact reference.

Lemma B.6. For every c ∈ ZdZ(X), the element clZX,`([c]) ∈ H2d
Z (X,Q`(d)) coincides with

the refined cycle class clZX,`(c) of c.

Proof. We may assume Z irreducible and c = Z. Let Z ′ be the smooth locus of Z over K and
put X ′ := X \ (Z \Z ′). As a consequence of the semi-purity theorem [Fuj02, Section 8], the
restriction map H2d

Z (X,Q`(d))→ H2d
Z′(X ′,Q`(d)) is an isomorphism. Thus, we may assume Z

smooth over K as well. Then the lemma follows from [Gil81, Theorem 3.1] (with S = SpecK
and k = q = 0). �

Definition B.7. Let Z1 and Z2 be two Zariski closed subsets Z of X satisfying Z1∩Z2 ⊆ Y .
We define a pairing

KZ1
0 (X )C ×KZ2

0 (X )C → C
(C1, C2) 7→ C1.C2

that is complex linear in the first variable, conjugate complex linear in the second variable,
and such that for Ci ∈ KZi0 (X ) with i = 1, 2, we have

C1.C2 := χ (π∗(C1 ∪ C2)) ,

where χ denotes the Euler characteristic function on K0(Spec k). Note that as Z1 ∩Z2 ⊆ Y ,
C1 ∪ C2 can be regarded as element in KY

0 (X )C.

Lemma B.8. Let Z1 and Z2 be two Zariski closed subsets of X satisfying Z1 ∩ Z2 ⊆ Y .
For Ci ∈ FdiKZi0 (X ) with i = 1, 2, C1.C2 coincides with the image of clZ1

X ,`(C1) ∪ clZ2
X ,`(C2) ∈

H2n
Z1∩Z2(X ,Q`(n)) under the natural composite map

H2n
Z1∩Z2(X ,Q`(n))→ H2n

Y (X ,Q`(n)) π∗−→ H2
Spec k(SpecOK ,Q`(1)) = H0(Spec k,Q`) = Q`.



62 CHAO LI AND YIFENG LIU

Proof. By [GS87, Proposition 5.5], we have C1 ∪ C2 ∈ FnKZ1∩Z2
0 (X )Q. By (the same proof

of) [Gil81, Proposition 2.35], clZ1
X ,`(C1) ∪ clZ2

X ,`(C2) and clZ1∩Z2
X ,` (C1 ∪ C2) have the same image

in H2n
Z1∩Z2(X ,Q`(n)).22 Since the map Zn(X )Q → FnKY

0 (X )Q is surjective, the diagram

FnKY
0 (X )Q

clYX ,` //

π∗
��

H2n
Y (X ,Q`(n))

π∗

��
F1KSpec k

0 (SpecOK)Q
clSpec k

SpecOK,` // H2
Spec k(SpecOK ,Q`(1))

commutes. Thus, the proposition follows since the diagram

F1KSpec k
0 (SpecOK)Q

clSpec k
SpecOK,` //

=
��

H2
Spec k(SpecOK ,Q`(1))

=
��

K0(Spec k)Q
clSpec k,` //

χ

��

H0(Spec k,Q`)
=
��

Q // Q`

commutes. �

Definition B.9. For an element c ∈ Zd(X)C, we say that an element C ∈ FdKY ∪supp(c)
0 (X )C

is an extension of c if C|X ∈ FdK0(X)C coincides with [c] under the map (B.3), and that C
is an `-flat extension if the image of clY ∪supp(c)

X ,` (C) in H2d(X ,Q`(d))⊗Q C vanishes.

Proposition B.10. Consider a pair (c1, c2) ∈ Zd1,d2(X)〈`〉 satisfying supp(ci)∩supp(c2) = ∅.
If Z1 and Z2 are two Zariski closed subsets of X satisfying Z1∩Z2 ⊆ Y , and Ci ∈ FdiKZi0 (X )C
is an extension of ci for i = 1, 2 in which at least one is `-flat, then we have

〈c1, c2〉`X,K = C1.C2.

In particular, when π is smooth, we can take Ci to be the one given by the Zariski closure of
ci in X via (B.3), hence 〈c1, c2〉`X,K belongs to C and is independent of `.

Proof. By Lemma B.6, for i = 1, 2, the image of clZiX ,`(Ci) in H2di
Zi∩X(X,Q`(di))⊗QC coincides

with clZi∩XX,` (ci). Without lost of generality, we assume that C1 is `-flat. Then the lemma
follows from Lemma B.8, and Lemma B.4 with βi := clZiX ,`(Ci) for i = 1, 2 (together with
Remark B.5). �

Remark B.11. Suppose thatX admits smooth projective reduction over OK . Then the source
of (B.1) is independent of `. Moreover, by Proposition B.10, the map (B.1) takes value in
C and is independent of `. Thus, in this case, (B.1) makes sense for an arbitrary rational
prime ` of which it is independent.

22Although [Gil81, Proposition 2.35] only implies the statement when Z1 = Z2, its proof works more
generally. In fact, in the proof of [Gil81, Proposition 2.35], if Ci is represented by a map [αi] : S 0

Zi →
ΩBQPX , then the product C1 ∪ C2 is represented by the composite map

S 0
Z1∩Z2

= S 0
Z1
∧S 0

Z2
→ ΩBQPX ∧ ΩBQPX

µ−→ ΩBQPX ;

and the remaining argument is same.
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In the remaining discussion, we only consider the case where n = 2r for some integer
r > 1, and d1 = d2 = r. We say that a correspondence

t : X p←− X ′ q−→ X

of X is étale if both p and q are finite étale. In what follows, we take a subfield L of C.

Definition B.12. We say that an L-étale correspondence t, that is, an L-linear combination
of étale correspondences, of X is `-tempered if t∗ annihilates H2r(X ,Q`(r))⊗Q L.

Proposition B.13. Let t be an `-tempered L-étale correspondence of X . Then for every
pair (c1, c2) ∈ Zr(X)C×Zr(X)C satisfying supp(t∗c1)∩ supp(t∗c2) = ∅, we have (t∗c1, t

∗c2) ∈
Zr,r(X)〈`〉 and

〈t∗c1, t
∗c2〉`X,K = t∗C1.t

∗C2,

where Ci ∈ FrKY ∪supp(ci)
0 (X )C is an arbitrary extension of ci in X for i = 1, 2. In particular,

we have 〈t∗c1, t
∗c2〉`X,K ∈ C.

Proof. For i = 1, 2, put Zi := supp(ci), Zt
i := supp(t∗ci), and

βi := clY ∪ZiX ,` (Ci) ∈ H2r
Y ∪Zi(X ,Q`(r))⊗Q C.

Note that we have the commutative diagram

H2r
Y ∪Zi(X ,Q`(r))⊗Q L //

t∗

��

H2r(X ,Q`(r))⊗Q L

t∗

��
H2r
Y ∪Zti

(X ,Q`(r))⊗Q L // H2r(X ,Q`(r))⊗Q L

induced by t. Since t is `-tempered, the image of t∗βi in H2r(X ,Q`(r))⊗Q C vanishes. Now
for i = 1, 2, since t∗βi = clY ∪Z

t
i

X ,` (t∗Ci), we know that t∗Ci is an `-flat extension of t∗ci. In
particular, we have (t∗c1, t

∗c2) ∈ Zr,r(X)〈`〉. Finally, the formula for 〈t∗c1, t
∗c2〉`X,K follows

from Proposition B.10. �

Now we provide a criterion for an L-étale correspondence to be `-tempered.

Proposition B.14. Put Y0 := Y red, the induced reduced subscheme of Y . Suppose that we
have a finite stratification Y0 ⊃ Y1 ⊃ · · · of Zariski closed subsets such that Y ◦j := Yj \ Yj+1
is regular and has pure codimension nj > 1 in X for j > 0. If t is an L-étale correspondence
of X stabilizing the stratification Y0 ⊃ Y1 ⊃ · · · and such that
(1) t∗ annihilates H2r(X,Q`(r))⊗Q L;
(2) t∗ annihilates Hi(Y ◦j ⊗k Fp,Q`)⊗Q L for every integer i 6 2r − 2nj and every j,

then some positive power of t annihilates H2r(X ,Q`(r))⊗Q L.

Proof. It suffices to prove that (tm)∗ annihilates H2r
Y (X ,Q`(r))⊗Q L for some integer m > 1,

since then tm+1 is `-tempered.
We prove by decreasing induction on j that (tmj)∗ annihilates H2r

Yj
(X ,Q`(r))⊗QL for some

integer mj > 1. We have

H2r
Yj+1

(X ,Q`(r))⊗Q L→ H2r
Yj

(X ,Q`(r))⊗Q L→ H2r
Y ◦j

(X \ Yj+1,Q`(r))⊗Q L.
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As Y ◦j is a regular closed subscheme of the regular scheme X \ Yj+1, by the absolute purity
theorem [Fuj02], we have

H2r
Y ◦j

(X \ Yj+1,Q`(r)) ' H2r−2nj(Y ◦j ,Q`(r − nj)).

By condition (2) and the Hochschild–Serre spectral sequence, we know that (t2)∗ annihilates
H2r−2nj(Y ◦j ,Q`(r − nj)) ⊗Q L. Thus, we may take mj = mj+1 + 2. In particular, (tm0)∗
annihilates H2r

Y0(X ,Q`(r))⊗Q L, which is same as H2r
Y (X ,Q`(r))⊗Q L. �

Corollary B.15. Let X and L be as above. Let S be a ring of étale correspondences of X ,
and m a maximal ideal of SL.
(1) If (H2d(X ,Q`(d))⊗Q L)m = 0, then there exists an `-tempered element in SL \m.
(2) Suppose that we have a finite stratification Y0 ⊃ Y1 ⊃ · · · of Zariski closed subsets

that is stabilized by the action of S, such that Y ◦j := Yj \ Yj+1 is regular and has pure
codimension nj > 1 in X for j > 0. If
• (H2r(X,Q`(r))⊗Q L)m = 0 and
• (Hi(Y ◦j ⊗k Fp,Q`)⊗Q L)m = 0 for every integer i 6 2r − 2nj and every j,

then (H2d(X ,Q`(d))⊗Q L)m = 0.

Proof. For (1), since H2r(X ,Q`(r)) is of finite dimension over Q`, H2r(X ,Q`(r)) ⊗Q L is a
finitely generated SL-module. Then (1) follows from Definition B.12.

For (2), since both H2r(X,Q`(r)) and ⊕i<2r−1
⊕

j Hi(Y ◦j ⊗k Fp,Q`) are of finite dimension
over Q`, both H2r(X,Q`(r))⊗QL and⊕i<2r−1

⊕
j Hi(Y ◦j ⊗kFp,Q`)⊗QL are finitely generated

SL-modules. Then there exists t ∈ SL \m satisfying the two conditions in Proposition B.14.
By the same proposition, some power of t annihilates H2d(X ,Q`(d)) ⊗Q L, which implies
(H2d(X ,Q`(d))⊗Q L)m = 0. Thus, (2) follows. �
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