
Math V1202. Calculus IV, Section 004, Spring 2007

Solutions to Practice Final Exam

Problem 1 Consider the integral

∫ 2

1

∫ x2

x

12x dy dx +

∫ 4

2

∫ 4

x

12x dy dx

(a) Sketch the region of integration.

Solution: See Figure 1.

x

y

(1, 1)

(2, 4) (4, 4)

y = x

y = x
2

y = 4

Figure 1: {(x, y) | 1 ≤ y ≤ 4,
√

y ≤ x ≤ y}

(b) Reverse the order of integration and evaluate the integral that you get.
Solution:

∫ 2

1

∫ x2

x

12x dy dx +

∫ 4

2

∫ 4

x

12x dy dx =

∫ 4

1

∫ y

√
y

12xdxdy

=

∫ 4

1

6x2
∣

∣

∣

x=y

x=
√

y
dy =

∫ 4

1

(6y2 − 6y)dy = (2y3 − 3y2)
∣

∣

∣

y=4

y=1
= 81

Problem 2 Consider the transformation of R
2 defined by the equations

given by x = u/v, y = v.
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(a) Find the Jacobian ∂(x,y)
∂(u,v)

of the transformaion.

Solution:
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

1
v

− u
v2

0 1

∣

∣

∣

∣

=
1

v

(b) Let R be the region in the first quadrant bounded by the lines y = x,
y = 2x and the hyperbolas xy = 1, xy = 2. Sketch the region S in the
uv-plane corresponding to R.

Solution: The lines y = x and y = 2x in the xy-plane correspond
to v = u/v, v = 2u/v in the uv-plane, respectively. The part in the
first quadrant can be rewritten as v =

√
u and v =

√
2u, respectively.

The hyperbolas xy = 1, xy = 2 in the xy-plane correspond to the lines
u = 1, u = 2 in the uv-plane, respectively.

S

u

v

(1, 1)

(2, 2)

(2,

√
2)

(1,

√
2)

v =
√

u

v =
√

2u

u = 1

u = 2

Figure 2: S = {(u, v) ∈ R | 1 ≤ u ≤ 2,
√

u ≤ v ≤
√

2u}

(c) Evaluate
∫∫

R
y4dA.

Solution:
∫∫

R

y4dA =

∫∫

S

v4

∣

∣

∣

∣

1

v

∣

∣

∣

∣

dudv =

∫ 2

1

∫

√
2u

√
u

v3dvdu =

∫ 2

1

v4

4

∣

∣

∣

v=
√

2u

v=
√

u
dv

=

∫ 2

1

3u2

4
du =

u3

4

∣

∣

∣

u=2

u=1
=

7

4
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Problem 3 Let S be the boundary of the solid bounded by the paraboloid
z = x2 + y2 and the plane z = 4, with outward orientation.

(a) Find the surface area of S. Note that the surface S consists of a portion
of the paraboloid z = x2 + y2 and a portion of the plane z = 4.

Solution: Let S1 be the part of the paraboloid z = x2 + y2 that lies
below the plane z = 4, and let S2 be the disk x2 + y2 ≤ 4, z = 4. Then
S is the union of S1 and S2, and

Area(S) = Area(S1) + Area(S2)

where Area(S2) = 4π since S2 is a disk of radius 2. To find Area(S1),
consider a vector equation of S1 given by

r(x, y) = 〈x, y, g(x, y)〉, (x, y) ∈ D,

where g(x, y) = x2 + y2 and D = {(x, y) ∈ R
2 | x2 + y2 ≤ 4}. We have

rx × ry = 〈−gx,−gy, 1〉 = 〈−2x,−2y, 1〉
|rx × ry| =

√

4x2 + 4y2 + 1

Area(S1) =

∫∫

D

|rx × ry|dxdy =

∫∫

D

√

4x2 + 4y2 + 1dxdy

We use polar coordinates x = r cos θ, y = r sin θ, dxdy = rdrdθ.

∫∫

D

√

4x2 + 4y2 + 1dxdy =

∫ 2π

0

∫ 2

0

√
4r2 + 1rdrdθ

Let u = 4r2 + 1, du = 8rdr. Then

∫ 2

0

√
4r2 + 1rdr =

∫

√
17

1

u1/2 du

8
=

u3/2

12

∣

∣

∣

u=
√

17

u=1
=

17
√

17 − 1

12

So

∫ 2π

0

∫ 2

0

√
4r2 + 1rdrdθ =

∫ 2π

0

17
√

17 − 1

12
dθ =

π

6
(17

√
17 − 1)

Area(S) = Area(S1)+Area(S2) =
π

6
(17

√
17−1)+4π =

π

6
(17

√
17+23)
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(b) Use the Divergence Theorem to calculate the surface integral
∫∫

S
F·dS,

where F = (x + y2z2)i + (y + z2x2)j + (z + x2y2)k.

Solution: S = ∂E, where E is the solid bounded by the paraboloid
z = x2 + y2 and the plane z = 4. By the Divergence Theorem,

∫∫

S

F · dS =

∫∫∫

E

div FdV

where

div F =
∂

∂x
(x + y2z2) +

∂

∂y
(y + z2x2) +

∂

∂z
(z + x2y2) = 1 + 1 + 1 = 3.

We use cylindrical coordinates x = r cos θ, y = r sin θ, z = z,
dV = rdzdrdθ.

∫∫

E

div FdV =

∫ 2π

0

∫ 2

0

∫ 4

r2

3rdzdrdθ =

∫ 2π

0

∫ 2

0

3r(4 − r2)drdθ

=

∫ 2π

0

(6r2 − 3

4
r4)

∣

∣

∣

r=2

r=0
dθ =

∫ 2π

0

12dθ = 24π

So
∫∫

S
F · dS = 24π.

Problem 4 Let

F =
−y i + x j

x2 + y2
.

Note that F is defined on {(x, y) ∈ R | (x, y) 6= (0, 0)}.
(a) Evaluate

∫

C1

F · dr, where C1 is the circle x2 + y2 = 1, oriented coun-
terclockwise.

Solution: A vector equation of C1 is given by

r(t) = 〈cos t, sin t〉, 0 ≤ t ≤ 2π

F(r(t)) = F(cos t, sin t) = 〈− sin t, cos t〉
r′(t) = 〈− sin t, cos t〉

∫

C1

F · dr =

∫ 2π

0

F(r(t)) · r′(t)dt =

∫ 2π

0

〈− cos t, sin t〉 · 〈− sin t, cos t〉dt

=

∫ 2π

0

1dt = 2π
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(b) Compute curl F.

Solution:

curlF =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

−y/(x2 + y2) x/(x2 + y2) 0

∣

∣

∣

∣

∣

∣

= k

(

∂

∂x

( x

x2 + y2

)

+
∂

∂y

( y

x2 + y2

)

)

= k

(

(x2 + y2) − x · 2x
(x2 + y2)2

+
(x2 + y2) − y · 2y

(x2 + y2)2

)

= 0.

(c) Use Green’s Theorem to evaluate
∫

C2

F · dr, where C2 is the circle

(x − 2)2 + (y − 2)2 = 1, oriented counterclockwise.

Solution: C2 = ∂D, where D is the disk (x − 2)2 + (y − 2)2 ≤ 1.
Note that D does not contain the origin (0, 0), and the components
−x/(x2 + y2), y/(x2 + y2) of F are defined and has continuous partial
derivatives on D. By the vector form of Green’s theorem,

∫

C2

F · dr =

∫∫

D

curl F · kdA =

∫∫

D

0dA = 0.

(d) Is F conservative?

Solution: F is not conservative because the line integral of F along
the simple closed curve C1 is 2π 6= 0.

Problem 5 Let E be a solid in the first octant bounded by the cone
z2 = x2 + y2 and the plane z = 1. Evaluate

∫∫∫

E
xyz2dV .

Solution: We use cylindrical coordinates x = r cos θ, y = r sin θ, z = z,
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dV = dxdydz = rdrdθdz.
∫∫∫

W

xyz2dV =

∫ π/2

0

∫ 1

0

∫ 1

r

r cos θr sin θz2rdzdrdθ

=

∫ π/2

0

∫ 1

0

sin(2θ)

6
r3z3

∣

∣

∣

∣

z=1

z=r

drdθ =

∫ π/2

0

∫ 1

0

sin(2θ)

6
(r3 − r6)drdθ

=

∫ π/2

0

sin(2θ)

6

(

r4

4
− r7

7

)
∣

∣

∣

∣

r=1

r=0

dθ =

∫ π/2

0

sin(2θ)

56
dθ

=
− cos(2θ)

112

∣

∣

∣

∣

θ=π/2

θ=0

=
1

56

Problem 6 Use the Divergence Theorem to evaluate
∫∫

S
F · dS, where

F = ey2

i + (y + sin(z2))j + (z − 1)k,

and S is the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0, oriented upward.
Note that the surface S does NOT include the bottom of the hemisphere.

Solution : Consider the solid E = {(x, y, z) | x2 + y2 + z2 ≤ 1, z ≥ 0}. Its
boundary ∂E is the union of S and the disk

S1 = {(x, y, z) ∈ R
3 | x2 + y2 ≤ 1, z = 0},

where S1 is oriented downward. By the Divergence Theorem
∫∫

S

F · dS +

∫∫

S1

F · dS =

∫∫∫

W

div FdV

where

div F =
∂

∂x
(ey2

) +
∂

∂y
(y + sin(z2)) +

∂

∂z
(z − 1) = 2

∫∫∫

E

div FdV =

∫∫∫

E

2dV = 2volume(E) = volume(B) =
4π

3

where B is the unit ball x2 + y2 + z2 ≤ 1.
The downward unit normal of S1 is the constant vector −k = 〈0, 0,−1〉,

so
∫∫

S1

F·dS =

∫∫

S1

F·(−k)dS =

∫∫

S1

(−z+1)dS =

∫∫

S1

1dS = Area(S1) = π

∫∫

S

F · dS =

∫∫∫

E

div FdV −
∫∫

S1

F · dS =
4π

3
− π =

π

3
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Problem 7 Use Stokes’ Theorem to evaluate
∫

C
F · dr, where

F = x2yi− xy2j + z3k,

and C is the curve of intersection of the plane 3x + 2y + z = 6 and the
cylinder x2 + y2 = 4, oriented clockwise when viewed from above.

Solution: Let S be the part of the plane 3x + 2y + z = 6 that lies inside
the cylinder x2 + y2 = 1, oriented downward. Then C = ∂S. By Stokes’
Theorem,

∫

C

F · dr =

∫∫

S

curlF · dS

where

curl F =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x2y −xy2 z3

∣

∣

∣

∣

∣

∣

= (−y2 − x2)k.

A vector equation of S is given by

r(x, y) = 〈x, y, g(x, y)〉, (x, y) ∈ D

where g(x, y) = 6 − 3x − 2y and D = {(x, y) ∈ R
2 | x2 + y2 ≤ 4}. We have

curlF(r(x, y)) = 〈0, 0,−x2 − y2〉
rx × ry = 〈−gx,−gy, 1〉 = 〈3, 2, 1〉

rx × ry is upward, so

∫∫

S

curlF · dS =

∫∫

D

curl F(r(x, y)) · (−rx × ry)dxdy

=

∫∫

D

〈0, 0,−x2 − y2〉 · 〈−3,−2,−1〉dxdy =

∫∫

D

(x2 + y2)dxdy

We use polar coordinates x = r cos θ, y = r sin θ, dxdy = rdrdθ.

∫∫

D

(x2 + y2)dxdy =

∫ 2π

0

∫ 2

0

r3drdθ =

∫ 2π

0

r4

4

∣

∣

∣

r=2

r=0
dθ =

∫ 2π

0

4dθ = 8π.
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Problem 8 Use Stokes’ theorem to evaluate
∫∫

S
curlF · dS, where

F = (sin(y + z) − yx2 − y3

3
) i + x cos(y + z) j + cos(2y)k,

and S consists of the top and the four sides (but not the bottom) of the cube
with vertices (±1,±1,±1), oriented outward.

Solution: Let S1 be the bottom of the cube, oriented by the upward unit
normal k, and let C be the boundary of S1 (with the positive orientation).
Then ∂S = C = ∂S1. By Stokes’s theorem,

∫∫

S

curlF · dS =

∫

C

F · dr =

∫∫

S1

curlF · dS =

∫∫

S1

curlF · kdS

curl F =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

sin(y + z) − yx2 − y3

3
x cos(y + z) cos(2y)

∣

∣

∣

∣

∣

∣

curl F · k =
∂

∂x
(x cos(y + z)) − ∂

∂y
(sin(y + z) − yx2 − y3

3
)

= cos(y + z) −
(

cos(y + z) − x2 − y2
)

= x2 + y2

∫∫

S1

curlF · kdS =

∫∫

S1

(x2 + y2)dS =

∫ 1

−1

∫ 1

−1

(x2 + y2)dxdy

=

∫ 1

−1

(
x3

3
+ xy2)

∣

∣

∣

x=1

x=−1
dy =

∫ 1

−1

(
2

3
+ 2y2)dy =

(

2y

3
+

2y3

3

)

∣

∣

∣

y=1

y=−1
=

8

3

So

∫∫

S

curlF · dS =
8

3
.

Problem 9 Write in the form of a + bi:

(a) Find all the fourth roots of −4.

Solution: −4 = 4(cosπ + i sin π), so the fourth roots of −4 are

41/4

(

cos(
π + 2kπ

4
) + i sin(

π + 2kπ

4
)

)

, k = 0, 1, 2, 3
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k = 0 :
√

2(cos
π

4
+ i sin

π

4
) = 1 + i

k = 1 :
√

2(cos
3π

4
+ i sin

3π

4
) = −1 + i

k = 2 :
√

2(cos
5π

4
+ i sin

5π

4
) = −1 − i

k = 3 :
√

2(cos
7π

4
+ i sin

7π

4
) = 1 − i

The fourth roots of −4 are 1 + i, −1 + i, −1 − i, 1 − i.

(b) Evaluate (1 − i)10.

Solution:

1 − i =
√

2(
1√
2
− 1√

2
i) =

√
2(cos(−π

4
) + i sin(−π

4
))

(1 − i)10 =
√

2
10

(cos(−10π

4
) + i sin(−10π

4
) = 25(−i) = −32i

(c) Find all the possible values of (−2)i.

Solution: −2 = 2eπi, so

ln(−2) = ln 2 + i(π + 2kπ)

where k is any integer.

(−2)i = ei ln(−2) = ei ln 2−π(2k+1) = e−π(2k+1)(cos(ln 2) + i sin(ln 2))

= e−π(2k+1) cos(ln 2) + e−π(2k+1) sin(ln 2)i

where k is any integer.

Problem 10 Let f(z) = eiz.

(a) Write f(z) in the form u + iv.

Solution:

f(z) = eiz = ei(x+iy) = e−y+ix = e−y(cos x + i sin x)

= e−y cos x + ie−y sin x
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(b) Is f(z) analytic?

Solution: f(z) = u(x, y) + iv(x, y), where

u(x, y) = e−y cos x, v(x, y) = e−y sin x,

∂u

∂x
= −e−y sin x,

∂u

∂y
= −e−y cos x,

∂v

∂x
= e−y cos x,

∂v

∂y
= −e−y sin x.

u, v satisfy the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

so f(z) is analytic.

Problem 11 Let f(z) be an analytic function which only takes real values,
i.e., Imf(z) = 0. Show that f(z) is a constant function. (Hint: Use Cauchy-
Riemann equations.)

Solution: Let u = Ref , so that f(x + iy) = u(x, y). It suffices to show that
u(x, y) is a constant function. f(z) is analytic, so u and v = 0 satisfy the
Cauchy-Riemann equations:

∂u

∂x
= 0,

∂u

∂y
= 0.

So u(x, y) is a constant function.
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