Mathematics G4402. Modern Geometry
Fall 2014
Assignment 8

Due Monday, November 10, 2014

(1) Let \(\mathcal{H} = \{(y_1, y_2) \in \mathbb{R}^2 \mid y_2 > 0\} \) be the upper half plane, and define a Riemannian metric on \(\mathcal{H} \) by
\[
g = \frac{dy_1^2 + dy_2^2}{y_2^2}.
\]
(a) Compute the Christoffel symbols \(\Gamma^k_{ij}, \ i, j, k \in \{1, 2\} \), for the Levi-Civita connection \(\nabla \) on \((\mathcal{H}, g) \).
(b) Define \(\gamma : \mathbb{R} \to \mathcal{H} \) by \(\gamma(t) = (t, 1) \). Then \(\gamma \) is a smooth curve in \(\mathcal{H} \). Let
\[
V(t) = a(t) \frac{\partial}{\partial y_1} + b(t) \frac{\partial}{\partial y_2}
\]
be the unique parallel (w.r.t. \(\nabla \)) vector field along \(\gamma \) such that \(V(0) = \frac{\partial}{\partial y_2} \). Find \(a(t), b(t) \) for \(t \in \mathbb{R} \).

(2) Let \(F : (M, g) \to (N, h) \) be an isometric immersion. For any \(p \in M \), let \(\pi_p \) be the orthogonal projection from \(T_{F(p)}N \) to the image of \(dF_p : T_p M \to T_{F(p)}N \). Let \(X, Y \) be \(C^\infty \) vector fields on \(M \) which are \(F \)-related to \(C^\infty \) vector fields \(\tilde{X}, \tilde{Y} \) on \(N \), respectively. Let \(\nabla \) and \(\tilde{\nabla} \) be the Levi-Civita connections on \((M, g) \) and on \((N, h) \), respectively. Prove that for any \(p \in M \),
\[
dF_p((\nabla_X Y)(p)) = \pi_p((\tilde{\nabla}_{\tilde{X}} \tilde{Y})(F(p)))
\]

(3) Let \(M \) be a submanifold of \(\mathbb{R}^N \), and let \(g \) be the Riemannian metric induced from the Euclidean metric on \(\mathbb{R}^N \). Let \(\gamma : (a, b) \to M \) be a smooth curve in \(M \). Then \(\gamma(t) = (x_1(t), \ldots, x_N(t)) \) where \(x_i \) are smooth functions on \(I \). Define
\[
\frac{d^2 \gamma}{dt^2} = \sum_{i=1}^N \frac{d^2 x_k}{dt^2} \frac{\partial}{\partial x_k}.
\]
Use Problem 2 to prove that
\[
\frac{D}{dt} \frac{d\gamma}{dt} = \pi_{\gamma(t)}\left(\frac{d^2 \gamma}{dt^2} \right)
\]
where \(\frac{D}{dt} \) is the covariant derivative of the Levi-Civita connection on \((M, g) \), and \(\pi_{\gamma(t)} \) is the orthogonal projection from \(T_{\gamma(t)}\mathbb{R}^N \) to \(T_{\gamma(t)}M \).