An open interval in \(\mathbb{R} \) is of the form \((a, b)\), where \(-\infty \leq a < b \leq +\infty\).

1. Let \(M \) be a smooth submanifold of a smooth manifold \(N \), and let \(X, Y \) be smooth vector fields on \(M \). Let \(p \in M \) and let \(U \) be an open neighborhood of \(p \) in \(N \).
 (a) Suppose that \(\tilde{X}, \tilde{Y} \in C^\infty(U, T U) \) are smooth vector fields on \(U \) such that for all \(q \in U \cap M \)
 \[\tilde{X}(q) = X(q) \in T_q M, \quad \tilde{Y}(q) = Y(q) \in T_q M. \]
 Show that \([\tilde{X}, \tilde{Y}](q) \in T_q M\) for all \(q \in U \cap M \).
 (b) Let \(f \) be a smooth function on \(M \), and let \(\tilde{f} \) be a smooth function on \(U \) such that \(\tilde{f}(q) = f(q) \) for all \(q \in U \cap M \).
 Let \(g = [X, Y]f \in C^\infty(M) \) and let \(\tilde{g} = [\tilde{X}, \tilde{Y}]\tilde{f} \in C^\infty(U) \).
 Show that \(\tilde{g}(q) = g(q) \) for all \(q \in U \cap M \).

2. Let \(X \) be a smooth vector field on a smooth manifold \(M \), and let \(\gamma : I \to M \) be a nonconstant integral curve of \(X \), where \(I \) is an open interval in \(\mathbb{R} \). Prove the following statements.
 (a) \(\gamma \) is an immersion.
 (b) If \(\gamma \) is not injective, then there exists a smooth embedding \(i : S^1 \to M \) such that \(i(S^1) = \gamma(I) \).

3. Let \(X \) be the vector field on \(\mathbb{R} \) defined by \(X(x) = x^2 \frac{\partial}{\partial z} \). Given \(x \in \mathbb{R} \), let \(\phi_x : I_x \to \mathbb{R} \) be the unique integral curve of \(X \) such that \(\phi_x(0) = x \), where \(I_x \) is an open interval containing 0, and \(\phi_x \) cannot be extended to a larger open interval containing \(I_x \). Find \(\phi_x \) and \(I_x \) for all \(x \in \mathbb{R} \).

4. Let \(X, Y, Z \) be the vector fields defined on \(\mathbb{R}^3 \) by
 \[X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}, \quad Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}, \quad Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}. \]
 (a) Show that the map \((a, b, c) \mapsto aX + bY + cZ \) is an isomorphism from \(\mathbb{R}^3 \) onto a subspace of the space of smooth vector fields on \(\mathbb{R}^3 \), and that the bracket of vector fields on \(\mathbb{R}^3 \) corresponds to the cross product on \(\mathbb{R}^3 \).
 (b) Compute the flow of the vector field \(aX + bY + cZ \) where \(a, b, c \in \mathbb{R} \).