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This exposition of Artin-Verdier duality follows Mazur [2].

1 Cohomology of DVRs and SpecOK

1.1 The localization exact sequence

Given U
j
↪−→ X

i←− Z a decomposition ofX into an open immersion j and a closed immersion i,
we have the following exact sequence of sheaves onXét.

0→ j!j
∗F → F → i∗i

∗F → 0.

Indeed, one can check this on geometric stalks, dividing into cases whether the underlying
point is in the image of U or Z. This allows us to decompose sheaves on Xét into sheaves on
Uét and Zét.

Proposition 1.1. TheSh(Xét) is equivalent to the category of triples (G,H, ϕ)whereG ∈ Sh(Yét),H ∈
Sh(Zét), ϕ : G → i∗j∗H, by associating

F 7→ (FZ ,FU , ϕ).

Indeed, the quasi-inverse is given by taking the following fiber product.

F j∗H

i∗G i∗i
∗j∗H

i∗ϕ

Example 1.2. Let (A,m, k) be a DVR with fraction fieldK where the residue field k is perfect.
In fact, for simplicity, let us just take A = Zp. Then in this scenario we have

U = SpecQp
j
↪−→ SpecZp

i←− SpecFp = Z.

Thus Sh(Spec(Zp)ét) consists of a continuous GFp-module M , a continuous GQp-module N ,
and some GFp-morphism ϕ : M → i∗j∗N = N Ip .

1.2 Cohomology of a DVR

We are mainly interested in the global case, so we will only briefly sketch the local results. In
local Tate duality we need compactly supported cohomology, which we define here. Let A be
a DVR. We define

Hr
c (SpecA,F) := ExtrSh((SpecA)ét)

(i∗Z,F).
Indeed, this is nothing but cohomology with support on a closed subset. Recall that if

Z ⊂ X is a closed immersion, then we can define cohomology with support on Z as the right
derived functors of the functor

ΓZ(X,−) = ker(Γ(X,−)→ Γ(X\Z,−)).
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In our scenario, we are taking cohomology with support on the closed point x : Spec k
i−→

SpecA. From the localization exact sequence we have

HomA(i∗Z,−) = Γx(SpecA,−)⇒ Hr
x(SpecA,F) = Hr

c (SpecA,F).

In our scenario though, we want to compute the cohomology of SpecA where A is a DVR
and we have

U = SpecK
j
↪−→ SpecA

i←− Spec k = Z.

We will assume that A is complete with perfect residue field, so that the results of local
class field theory may be used.

Proposition 1.3. There is an exact sequence of sheaves on (SpecA)ét given by

0→ Gm → j∗Gm,K → i∗Z→ 0.

This can be checked on stalks. Then one uses the long exact sequence in cohomology, along
with Leray spectral sequences and local class field theory, to compute that

H0
ét(SpecA,Gm) = A∗, Hr

ét(SpecA,Gm) = 0 for r > 0.

For the compactly supported version, one must make use of the adjoint pair (i∗, i!), where
i!F is the subsheaf of F with support in Z. Since i∗ is exact, i! preserves injectives and we have
the spectral sequence

ExtpSk
(Z, Rqi!Gm)⇒ Extp+q

SA
(i∗Z,Gm) = Hp+q

c (SpecA,Gm).

One shows that this collapses and again uses local class field theory to compute the following.

H1
c ((SpecA)ét,Gm) = Z, H3

c ((SpecA)ét,Gm) = Q/Z, Hr
c ((SpecA)ét,Gm) = 0 otherwise.

1.3 Cohomology of SpecOK

Let X = SpecOK , where OK is the ring of integers in a number field. For 2-torsion reasons,
we will assume thatK is totally imaginary.

Proposition 1.4. There is an exact sequence of sheaves on (SpecOK)ét given by

0→ Gm → j∗Gm,K →
⊕
p

i∗Z→ 0.

Proposition 1.5. We have

Hq(X,Gm) =



O∗
K q = 0

Pic(X) q = 1

0 q = 2

Q/Z q = 3

0 q > 3.

Proof. Taking the long exact sequence, we have So we have

0→ O∗
K → K∗ → Div(X)

→ Pic(OK)→ H1(Xét, j∗Gm,K)→ H1(Xét,DivX)

→ H2(Xét,Gm)→ H2(Xét, j∗Gm,K)→ H2(Xét,DivX)

→ H3(Xét,Gm)→ H3(Xét, j∗Gm,K)→ H3(Xét,DivX)

→ H4(Xét,Gm)→ · · ·
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Let us computeHr(Xét,DivX). Well, this is just

Hr(Xét,
∐
p

i∗Z) =
⊕
p

Hr((SpecFq)ét,Z).

Thus we are reduced to computing the Galois cohomology Hq(Gk,Z). We have H1(Gk,Z) =
Homc(Ẑ,Z) = 0. For higher q, one can show thatGk has cohomological dimension 1 for torsion
modules. Thus looking at the short exact sequence

0→ Z→ Q→ Q/Z→ 0,

the only positive nonzero one occurs in dimension 2:

H2(Gk,Z) ∼= H1(Gk,Q/Z) = Hom(Ẑ,Q/Z) ∼= Q/Z.

Next, we again have a Leray spectral sequence associated to

Sh(SpecK)
j∗−→ Sh(SpecOK)

Γ−→ Ab.

Since the higher direct images Rqj∗Gm vanish, the spectral sequence degenerates to give

Hr(Xét, j∗Gm,K) ∼= Hn((SpecK)ét,K
∗
) = Hn(GK ,K

∗
).

Putting these together, we currently have the exact sequence

0→ H2(Xét,Gm)→ H2(GK ,K
∗
)→

⊕
p

Q/Z→ H3(Xét,Gm)→ H3(GK ,K
∗
)→ 0

and the isomorphism
Hr(Xét,Gm) ∼= Hr(GK ,K

∗
)

for r > 3.

Now we use results from global class field theory:

0→ H2(GK ,K
∗
)→

⊕
p

Q/Z→ Q/Z→ 0, Hr(GK ,K
∗
) = 0 for r ≥ 3.

The maps to
⊕

pQ/Z are the same, so at last we obtain

H3(Xét,Gm) ∼= Q/Z, Hr(Xét,Gm) = 0 for all other r > 1.

2 Duality statements

2.1 Tate duality and Artin-Verdier duality

Proposition 2.1. Let k be a finite field. Then setting M̃ = Homc(M,Q/Z), for finiteM we have a
perfect pairing

Hr(Gk,M)×H1−r(Gk, M̃)→ Q/Z

Proof. For r ̸= 0, 1 this follows form the fact that Gk
∼= Ẑ has cohomological dimension 1 for

finite modules. For r = 0, 1 this is just Pontryagin duality.
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Theorem 2.2 (Local Tate duality). Let k be a local field and let M̃ = Homc(M,k
∗. Then for finite

M of order prime to char k, we have a perfect pairing given by the cup product:

Hr(Gk,M)×H2−r(Gk, M̃)→ H2(Gk, k
∗
)

∼=−→ Q/Z.

Note that the last isomorphism comes from local class field theory.

For convenience we recall the local results. LetX = SpecA be the spectrum of a complete
DVR with field of fractions K and finite residue field k. Then compact cohomology is just
cohomology supported at the closed point x : Spec k → X, and we have

Hr
c (X,Gm) =



0 r = 0

Z r = 1

0 r = 2

Q/Z r = 3

0 r > 3.

Moreover,Hr
c (X,Gm)was originally defined asExtrX(i∗Z,F), sowe can feed it into aYoneda

pairing
ExtrX(F,Gm)×H3−r

x (X,F)→ H3
x(X,Gm) ∼= Q/Z.

Theorem 2.3 (Local Artin-Verdier duality). The Yoneda pairing defined above is a perfect pairing
for all constructible sheaves F .

In fact, this proof follows from duality in the residue field and local Tate duality. Indeed,
the localization exact sequence reduces duality of a sheaf F to sheaves of the form i∗i

∗F and
j!j

∗F , which correspond to duality in residue fields and local fields respectively.

Now letX = SpecOK be the spectrum of the ring of integers of a totally imaginary number
field.

Theorem 2.4 (Artin-Verdier duality). The Yoneda pairing

Hr(X,F)× Ext3−r
X (F ,Gm)→ H3(X,Gm) ∼= Q/Z

is perfect for all constructible sheaves F .

2.2 The Yoneda product

We recall that the Yoneda product is a pairing on Ext groups in some abelian category:

Extp(M,N)⊗ Extq(L,M)→ Extp+q(L,N).

The simplest definition is through viewingExt groups as equivalence classes of extensions and
splicing them together.

0→ N → E1 → · · · → Ep →M

0→M → F1 → · · · → Fq → L

0→ N → E1 → · · · → Ep → F1 → · · · → Fq → L.

Alternatively, this is just composition in the derived category.
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3 Proof of Artin-Verdier duality

A full proof is quite long, and can be found in [1].

Letmr(F) : Hr(X,F)→ ˜Ext3−r
X (F ,Gm) be the map in the theorem which we wish to show

is an isomorphism. We will perform induction on r. Since the base cases are when r < 0, so we
first need to know thatHr(X,F) and ExtrX(F ,Gm) vanish for r > 3. This is not trivial, but one
can in fact show it for all open subschemes U ⊂ X using a variety of cohomological methods.

The next step is to reduce to the case where F = Z/p and (charX, p) = 1. To do this, one
first shows that F may be replaced by something of the form j!G where G is a locally constant
sheaf and j is some open immersion intoX. Then one embedsF into the pushforward of some
constant sheaf over some finite étale scheme overX. The usual arguments involving the long
exact sequence and diagram chasing reduces us to the constant case as desired.

Next, the effaceability of Hr(X,−) in the category of constructible sheaves implies that
given the inductive hypothesis up through r − 1, thenmr(F) is injective.
Remark. All the arguments so far are also used in a proof of the proper base change theorem.

By some group-theoretic arguments, we can show thatHr(U,F) andExtrU (F ,Gm) are finite
groups. Thus injectivity means that we just have to show that

|Hr(X,Z/p)| ≥ |Ext3−r
X (Z/p,Gm)|

for 0 ≤ r ≤ 3. This is fairly straightforward for r = 0, 1. Indeed, we can calculateExtqX(Z/p,Gm)
through the long exact sequence associated to

0→ Z p−→ Z→ Z/p→ 0.

Indeed, we have already computed Hq(X,Gm) = ExtqX(Z,Gm). We obtain the following re-
sults.

ExtqX(Z/p,Gm) =



µp(OK) q = 0

??? q = 1

PicX/p q = 2

Z/p q = 3

0 q > 3.

For r = 0 we have H0(X,Z/p) = Z/p, which is good. For r = 1 we have thatH1(X,Z/p) =
Homc(PicX,Z/p) which has the same cardinality as PicX/p.

The other calculations are more difficult and we do not explain them here. We simply note
that Mazur deduces them using the nondegeneracy of the Hilbert symbol, interpreted coho-
mologically.
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