
Generalized Jacobians I

Caleb Ji

Weexplain someof the statements of ‘classical’ geometric class field theory, à la Rosenlicht,
Lang, and Serre. Proofs are generally not given; they seem hard for various reasons. I would
be very pleased if someone more competent could give a more comprehensive account, with
proofs, of this material in the language of schemes (note that [6] is written inWeil’s language).

1 Background from algebraic geometry

The exposition in this section is based on [3].

1.1 General results on the Picard scheme

Let f : X → S be a separated morphism of finite type. We write XT = X ×S T and have a
projection q : XT → T .

Definition 1.1. The Picard functor PicX/S is defined by

PicX/S(T ) = Pic(XT )/q
∗ Pic(T ).

In nice cases this is representable, in which case it is a sheaf in the Zariski, étale, and fppf
topologies. Note that if we did not quotient out by q∗ Pic(T ), it would not be a separated
presheaf because under some covering a nontrivial element would become 0; thus it would
not be representable. In any case, we have by taking its sheafification in various topologies we
get a sequence of functors

PicX/S(−) → PicX/S (Zar)(−) → PicX/S (ét)(−) → PicX/S (fppf)(−).

If any of these are representable, then we call the representing scheme PicX/S . There can
only be one such scheme; not that if PicX/S is representable then they are all the same, while
say if PicX/S (ét)(−) is, PicX/S(−) may not be. It turns out that the sheafified versions, e.g.
PicX/S (ét)(−), are the real functors we should try to represent. However, we have the following
result.

Theorem 1.2 ([3], 9.2.5). Assume OS
∼= f∗OX universally. Then all three maps above are injec-

tions, and if f has a section, they are all isomorphisms.

In particular, if S = Spec k and X has a rational point, then if PicX/S exists, it represents
PicX/S . However, for the needs of arithmetic geometry it is important to not assume that this
is the case. The next theorem is a key result of Grothendieck.

Theorem 1.3 ([3], 9.4.8). Assume f : X → S is projective Zariski locally over S, and is flat with
integral geometric fibers. Then PicX/S exists, is separated and locally of finite type over S, and
represents PicX/S (ét).

Let us now restrict to the scenario of the above theorem. In the next section we will sketch
(sketchily) the construction in the case of a relative curve. We will also need to discuss the
components of PicX/S . Let S = Spec k and let Pic0X/k be the connected component of the
identity.
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Theorem 1.4 ([3], 9.5.4). Let X be projective and geometrically integral. Then Pic0X/k exists and
is quasi-projective. OfX is geometrically normal, then Pic0X/k is projective.

We note that this theorem uses Chevalley’s structure theorem, which we will soon discuss.

Recall that the Hilbert polynomial ϕ of a coherent sheaf F on X/S projective, flat with
integral geometric fibers is given by ϕ(n) = χ(F(n)).

Theorem 1.5 ([3], 9.6.20). With the conditions listed above, the PicϕX/S are open and closed sub-
schemes of finite type whose formation commute with changing S. They are disjoint and they cover
PicX/S .

In the case of a curveX/k, we have that PicX/k/Pic
0
X/k

∼= Z, given by the degree of the line
bundle. We usePicrX/k to denote the component corresponding to line bundles of degree r. Re-
call that the degree of the line bundle is given by the formula χ(X,Ln) = n deg(L)+1−g. Note
that ifL is very ample, then theHilbert polynomial ofL is thus given by (degL)n+degL+1−g.
Thus in previous notation we would be using Picrx+r+1−g

X/k . (I think!!) Furthermore, each PicrY/k
is a principal homogeneous space for Pic0X/k. We will be interested in the case r = 1.

In what follows, we will focus on the original PicX/S(−) functor and also use PicX/S for the
representing scheme, rather than PicX/S .

1.2 Chevalley’s structure theorem

Theorem 1.6 (Chevalley). Let G be an algebraic group over a perfect field k (connected smooth
group scheme). Then there is a unique short exact sequence of algebraic groups

1 → H → G → A → 1

with H linear algebraic and A an abelian variety. Moreover, the formation of H commutes with
base change to an arbitrary perfect field extension over k.

There are expositions of the proof by Conrad [1] and Milne [4].

Moreover, we can decompose in the linear algebraic groupH by taking a maximal torus T ;
then H/T is unipotent. If the unipotent part is 0, then we say G is a semi-abelian variety. If
we are thinking about Néron models, then having no affine part corresponds to having good
reduction while having no unipotent part corresponds to having semi-stable reduction. This
paradigm will be used when we compare the Jacobian of a singular (a generalized Jacobian) to
that of its normalization (which is an abelian variety).

2 Construction of generalized Jacobians

2.1 Generalized Jacobians

We follow Serre’s book [6].

Let X be a smooth projective curve over a field k. Let S be a set of closed points of X and
let m =

∑
P nP be a modulus supported on S (i.e. a finite sum of points in S) with degm > 1.

The Picard group ofX may be seen as the divisor group ofX modulo div g for g ∈ K(X). Now
consider the construction of the singular curveXm. Its closed points are given byX −S ∪ {Q}
and the structure sheaf is given by setting the stalk at Q to be
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OXm,Q = k + {f ≡ 0 (mod m)}.

Here, f ≡ 0 (mod m) means νP (f) ≥ nP . Then Xm is constructed so that it has X → Xm

as its normalization and its Picard group consists of divisors of X up to m-equivalence; i.e.
D ∼m D′ ifD −D′ = div g with g ≡ 1 (mod m).

Let us now give a few examples. If m = P + Q for distinct P,Q ∈ X(k), then Xm has a
k-rational nodal singularity. If m = P with degk(P ) = 2, then Xm still has nodal singularity,
but it is essentially non-split multiplicative reduction. If m = 2P for P ∈ X(k), thenXm has a
cusp. Working over an algebraically closed field, the nodes give the tori in the Jacobians, while
the more complicated singularities give the unipotent part.

By Hartshorne Ex. II.6.9„ if X̃ → X is a normalization of curves, then there is an exact
sequence

0 →
⊕
P∈X

ÕP
∗
/O∗

P → PicX → Pic X̃ → 0.

Then for instance, if we take the nodal cubic P1 → y2z = x3 + x2z, we see that we obtain Gm,
whereas for the cuspidal cubic P1 → y2z = x3, we obtain Ga.

2.2 Picard of a relative curve

Here we follow Milne [5].
Let f : X → S be a projective flat morphism whose fibers are integral curves. We are

interested in the representability of the following functor.

P r
C (T ) = {L ∈ Pic(C ×S T )|deg(Lt) = r}/f∗

T Pic(T )

We will in fact show that for r > 2g − 2, this is representable. This will also represent
the sheafified version, which will also give the r = 0 version if X has a rational point. The
construction proceeds in several steps.

1. If E is a finite vector bundle on S, then let GrassEn(T ) = {(V, h)}/ ∼ where V is a rank n
vector bundle on T with an epimorphism h : OT ⊗k E ↠ V . Then GrassEn(−) is repre-
sentable by a projective variety GrEn over S.

2. Let DivrX/S(T ) be the set of relative effective Cartier divisors on C × T/T of degree r (so
they are flat over T ). In the case of a smooth curve over a field, it is represented by the
symmetric power of the curve. Assume there is a section s : S → X and use it to identify
DivrX with a closed subscheme of Gr

q∗OX(m)
r .

3. The generalized Abel-Jacobi map DivrX/S → P r
X/S is defined by sending a divisor to its

corresponding line bundle. The fibers of these are projective space bundles, and one show
that the quotient by these is again representable.

2.3 Birational group approach

This is the approach found in Serre’s book [6]. It is hard to read because it is written in Weil’s
language. We will just say the following. In the smooth case, one shows that the Jacobian
J is the unique abelian variety birationally equivalent to X(g) (the symmetric power). Using
Riemann-Roch, one creates a rational group law onX(g), and from this there is a unique bira-
tional homomorphismX(g) → J to some group variety J which is the Jacobian.
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For generalized Jacobians, we use the arithmetic genus π = g + degm− 1 to construct the
generalized Jacobian Jm of Xm. We endow X(π) with a rational group law in a similar way and
proceed as in the smooth case.

3 Properties of generalized Jacobians

The statements of theorems in this section (without proof), may be found in [2].

3.1 Albanese property

Let x0 ∈ X(k) be a closed rational point of a smooth projective variety X/k. Recall that the
Albanese variety of (X,x0) is a pair consisting of an abelian variety over k and a morphism
αX : X → Alb(X) satisfying the following universal property. Fix a closed point x0 ∈ X. Then
αX(x0) = 0 and every morphism f : X → T to an abelian variety T satisfying f(x0) = 0 factors
uniquely through αX and a morphism of abelian varieties g : Alb(X) → T .

In general, theAlbanese variety is the dual of the 0-component of thePicard varietyPic0(X).
In the caseX is a curve, we have Pic0(X) = J(X). But J(X) also turns out to be the Albanese
variety; in other words, J(X) is self-dual. One can prove this using the characterization of J
as being birational toX(g). From this we get a desired rational map from J(X) to T , but since
rational maps from smooth varieties to abelian varieties may be extended to regular ones, we
are done.

Let us now explain the corresponding statement for generalized Jacobians. Instead of just
abelian varieties, we will consider maps to commutative group schemes. Let f : X −S → G be
a morphism. We say that f admits a modulus m if m has support S and for all g ≡ 1 (mod m),
we have f(÷(g)) = 0.

Proposition 3.1. Every such f admits some modulus m.

In the case of k being algebraically closed, we can use Jm directly.

Theorem 3.2. Assume k is algebraically closed (so there is a rational point.) Then there is a
morphism fm : X − S → Jm such that for each morphism to a commutative algebraic group
f : X − S → G admitting the modulus m, then there is a unique morphism θ such that f = θ ◦ fm.

X − S Jm

G

fm

θ
f

As alluded to already, the correct thing to work with is J1
m. When X has a rational point,

we can use it to translate Jm into J1
m. Note that we have a canonical map

fm : X − S → J1
m

defined by sending x 7→ O(x) for each S-point x. Here, O(x) is the inverse ideal sheaf of the
section given by x ofXS → S.

Theorem 3.3. LetX be a smooth projective and geometrically connected curve over a perfect field
k, and let S ⊆ X be a finite set of closed points. LetG be a smooth connected commutative k-group,
and let f : X − S → G1 be a map to a principal homogeneous space for G.
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Then there exists a modulus m with support in S and a k-morphism θ1 : J1
m → G1 equivariant

to a k-group map θ : Jm → G such that f = θ1 ◦ fm.

X − S Jm

G1

fm

θ1
f

3.2 Abelian coverings

Let us recall how it works for the unramified case. For now say there is a k-rational point
x ∈ X(k), which gives a map fx : X → J . Say we are interested in finite abelian Galois covers
ofX. We can obtain them through taking coverings of J – which are all abelian – and pulling
them back to X. IfM is a finite abelian group, thenM-coverings of X are given by surjective
morphisms Hom(π1(X, 0),M). Thus to show we get all abelian coverings of C this way, we
need to show that

fx
∗ : Hom(π1(J, 0),M) → Hom(π1(C, x),M)

is an isomorphism for all finite abelian groupsM . Since we can factor coverings by subgroups,
we just need to show the result forM = Z/nZ. We divide into two cases: (n, char k) = 1 and
n = pi where char k = p.

In the first case, we use the Kummer sequence

1 → µn → Gm
•n−→ Gm → 1.

The long exact sequence gives an exact sequence

1 → OX(X)∗/OX(X)∗n → H1
ét(X,µn) → Pic(X)n → 1

where we use the fact that H1(X,Gm) = Pic(X) and H2(X,µn) = 1. If X is projective over
k = ksep, then OX(X)∗/OX(X)∗n = k∗/k∗n = 1 and we have an isomorphism H1

ét(X,µn) →
Pic(X)n.

we obtain a commutative diagram

Hom(π1(J),Z/nZ) Hom(π1(C, x),Z/nZ)

Pic(J)n Pic(C)n

∼= ∼=

Here the horizontal maps are both obtained functorially from the map fx : C → J . As J is
an abelian variety, it is its own Albanese. J is also the Albanese of C. We thus conclude that
the bottom arrow is an isomorphism, as desired. For n = pk we may use the Artin-Schreier
sequence and Witt vectors.

Let us now give the statement that works for ramified covers as well.

Theorem 3.4. LetX be a smooth projective and geometrically connected curve over a perfect field
k. Let π : X ′ → X be a finite covering map of smooth connected curves with ramification locus
S ⊆ X. Then there exists a modulus m with support S and a connected finite abelian covering
G1 → J1

m with the following Cartesian diagram.

X ′ − π−1(S) G1

X − S J1
m

π
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In Serre’s book [6], it seems that the way this is proven is as follows. First, one shows
a finite Galois covering with group N can be realized as the pullback of a certain isogeny
G(N) → G(N)/N . These G(N), apparently the “bilinear groups" of Elie Cartan, are con-
structed through Kummer theory and Artin-Schreier theory in the cyclic case. Then one uses
the Albanese property of the generalized Jacobians Jm to construct the desired isogeny. More-
over, the isogeny can be shown to be unique by studying the group Ext1(Jm, N).

We note that in Deligne’s Arcata lectures, he claims that Serre’s book [6] gives an isomor-
phism Hom((Jm)n,Z/n) → H1

ét(X,Z/n). This is consistent with our calculation in the unram-
ified case, and would seem useful to showing we get the coverings we desire. However, I could
not find this statement in [6]. It seems that one can at least get something close to this from a
ramified version of the Kummer sequence.

4 Structure of generalized Jacobians

(Incomplete)

We can compare Jm to Jm′ where m ≥ m′, and in doing so apparently get a projective limit
that might be called the generalized Jacobian (I will try to think about this more.) But just in
the basic case for m′ = 0, let us consider the structure of the affine part H of the generalized
Jacobian, given by

1 → H → Jm → J → 1.

This kernel H consists of those divisors linearly equivalent to 0, so they must be of the
form div(h) with h ≡ 1 (mod m). This should look something like Rm/Gm, where Gm consists
of nonzero constants which give rise to the trivial divisor. The group Rm should look like

Rm =
∏
P∈S

UP /U
nP
P .

Each of these components should be a (semidirect?) product of Gm and some unipotent part;
the unipotent part admits a composition sequence of factors isomorphic to Ga.
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