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Chapter 1

Introduction

Let C be a smooth projective curve defined over a number field K of genus g. The nature of
the set of rational points CpKq depends heavily on g. As in many other scenarios, we have a
trichotomy corresponding to the cases g “ 0, g “ 1, and g ě 2. Let us give an overview of what
occurs in each case.

1.1 The Hasse principle (g “ 0)

In the case g “ 0, the anticanonical bundle has degree 2. Since 2 ě 2g ` 1 “ 1, the anti-
canonical bundle is very ample and gives a closed embedding C Ñ P2

K of degree 2. Thus C
is isomorphic to a conic. Now there are two possibilities: either CpKq “ H or there exists
some P P CpKq. In the first case there is nothing more to say regarding CpKq; in the second
we may project from P onto some copy of P1

K not going through P . This map gives an iso-
morphism of C onto P1

K . Alternatively, the point P defines a line bundle LpP q of degree 1. By
Riemann-Roch, h0pC,LpP qq “ 2 and thus the two sections define a closed embedding ofC into
P1
K , which must be an isomorphism.

We conclude that eitherC has no rational points or has infinitelymany. TheHasse principle
gives a criterion for determiningwhich of these casesC satisfies. It states that a quadratic form
over a number field K has a solution in K if and only if it has a solution over all completions
Kv with respect to all places (including the infinite ones). Since C is isomorphic to a conic, we
have the following result.

Theorem 1.1.1. Let g “ 0. Then ifC has a solution over all completionsKv, thenC is isomorphic
to P1

K and has infinitely many rational points. Otherwise, C is isomorphic to a conic in P2
K and has

no rational points.

1.2 The Mordell-Weil theorem (g “ 1)

If g “ 1, then C is an elliptic curve which we denote as E. The points of E form an abelian
group; one way to see this is by viewing its points as a complex torus, another way is through
theory of divisors. Furthermore, the sum of two rational points is rational, so EpKq is an
abelian group. Using Galois cohomology and some classical algebraic number theory, one
proves the weak Mordell-Weil theorem, which states that EpKq{nEpKq is finite for each n.
Then by the theory of heights, we arrive at the following result.

Theorem 1.2.1 (Mordell-Weil theorem). Let E{K be an elliptic curve. Then EpKq is a finitely
generated abelian group.
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In fact, this result holds for all abelian varieties (and this is the full statement of the the-
orem). The Hasse principle does not hold for cubic forms. Though every elliptic curve has
a rational point by definition, there may be curves of genus 1 with rational points at every
completion Kv but no global rational point. In fact, one may reformulate the Hasse principle
in terms of Galois cohomology and show that the obstruction to its truth is described by the
Tate-Shafarevich groupXpE{Kq. Indeed, we define

XpE{Kq :“ kerpH1pGK , Eq Ñ H1pGKv , Eq.

Here, H1pGK , Eq classifies torsors over E, which may be interpreted as curves of genus 1
which are isomorphic to E over K. Having a rational point is equivalent to being 0 in this
cohomology class. Interpreting H1pGKv , Eq similarly, we see that if C represents a nontrivial
element inXpE{Kq, then it has rational points in eachKvq but no rational point inK.

We may write EpKq – Zr ‘ G, where G is some finite abelian group. Both the torsion
and the rank of EpKq are of enormous interest. They are described by the famous theorem of
Mazur and the Birch and Swinnerton-Dyer conjecture.

Theorem 1.2.2 (Mazur, Merel). Let E{K be an elliptic curve. Then the torsion part of EpKq is
Z{nZ with 1 ď n ď 10 or n “ 12, or it is Z{2nZˆ Z{2Z with 1 ď n ď 4.

Conjecture 1.2.3 (Birch and Swinnerton-Dyer). Let E{K be an elliptic curve. Then the rank of
EpKq is given by the order of the pole of the Hasse-Weil L-function LpE, sq at s “ 1.

1.3 Faltings’s theorem (g ě 2)

The primary goal of this seminar is to understand the Lawrence-Venkatesh proof of the follow-
ing theorem, previously nown as Mordell’s conjecture.

Theorem 1.3.1 (Faltings’s theorem). LetC{K be a smooth projective curve of genus g ě 2. Then
CpKq is finite.

We will now sketch Faltings’s original proof, which may be found in [1]. We list the main
steps. First, let A{K be an abelian variety over a number field, let GK “ GalpK{Kq, and let
VlpAq “ TlpAq bZl

Ql be the Tate modules of A for some prime l.

1. (Finiteness I) There are finitely many abelian varieties B which are isogenous to A.

2. (Tate conjecture I) a) The representation of GK on VlpAq is semisimple.

b) The natural map HomKpA,Bq bZ Zl Ñ HomGK
pTlpAq, TlpBqq is an isomorphism.

3. (Shafarevich conjecture for AV) Let S be a finite set of places of K and fix a positive
integer g. Then there are only finitely many isomorphism classes of abelian varieties
A{K of dimension g with good reduction outside S.

4. (Shafarevich conjecture) With the notation above, there are only finitely many isomor-
phism classes of smooth projective curves C of genus g with good reduction outside S.

5. (Mordell’s conjecture) If g ě 2, then CpKq is finite.

We will now say something about each step, obviously not trying to give full details.
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1. Actually, Faltings originally proved something slightly different from (Finiteness I). At
any rate, this is one of the most technically difficult parts of the proof, and involves an
intensive analysis of heights. Briefly, we canonically embed the Siegel moduli space of
abelian varieties Ag into Pn; then the height on Pn gives a height functionH defined on
Ag. Then Faltings defined a different height function, now known as the Faltings height.
First, we take a Neron model A1 Ñ SpecOK . Then ωA1{OK

is a metrized line bundle on
SpecOK , and we may define

hpAq “
1

rK : Qs
degpωA1{OK

q.

Now the point of this is to compare these two definitions of height and show that they
are not too different. There are serious technical difficulties that arise when analyzing
them near the boundary of the moduli space. Then Faltings analyzes the behavior of the
Faltings height under isogeny, showing it varies in a controlled way. Then since H and
h are not too different and we have finiteness theorems for h, he is able to deduce the
finiteness of isogeny classes.

1.ñ 2. Next, Faltings proved Tate conjecture I using a similar argument to Tate’s own proof of
this conjecture for abelian varieties over finite fields. Indeed, Tate proved the same state-
ment for finite fields using the fact that there are only finitely many isomorphism classes
of abelian varieties of dimension g over Fq. This fact may be replaced by Finiteness I. The
injectivity of part b) is not too difficult. Moreover, we may assume A “ B by using this
statement on AˆB. Now both statements are proved together in the following way.

First, one shows that all finite subgroups of ApKq stable under GK arise as the kernels
of isogenies A Ñ B. Then every GK-stable Zl-submodule of TlB arises as the image of
some isogeny A Ñ B. Now consider any GK-invariant subspaceW Ă VlpAq. We claim
there is some u P EndpAq b Ql such that uVlA “ W . Indeed, we apply the previous
correspondence between representations and isogenies to the Zl-submodules

pTlpAq XW q ` l
nTlpAq

for each n. Now using Finiteness I along with a compactness argument, we obtain the
desired u. This allows us to construct complementary subspaces to prove semisimplicity.
Finally, semisimplicity applied to a suitable graph construction yields

EndpAq bQl – EndGK
pVlAq,

which gives b).

2.ñ 3. By Finiteness I, we only need to show finiteness up to isogeny. Recall that the Néron-
Ogg-Shafarevich criterion says that if v is a finite place of K not dividing some prime l,
then A has good reduction at v if and only if the representation ofGK on VlA is unrami-
fied at v. This implies that isogenous abelian varieties overK have good reduction at the
same finite places.

Now if A has good reduction over v, let Apvq{Kpvq be the corresponding abelian variety
and letPvpA, tq :“ P pApvq, tq be the characteristic polynomial. We claim that ifPvpA, tq “
PvpB, tq for all v in a certain finite set T , then the corresponding GK-representations
VlA, VlB are isomorphic. This can be proven using some classical algebraic number the-
ory involving Hermite-Minkowski finiteness and the Chebotarev density theorem.
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Now by the Tate conjecture, we have that if VlA and VlB are isomorphic, then A and
B are isogenous. The final step is thus to show that there are finitely many possible
polynomials PvpA, tq where v P T . But PvpA, tq is a monic polynomial of degree 2g whose
roots are the eigenvalues of the Frobenius. These are bounded by the Weil conjectures,
so the result follows.

3.ñ 4. If we have an abelian variety over a field, there are only finitelymany isomorphism classes
of principal polarizations on it. Furthermore, if C has good reduction at a prime v, then
so does its Jacobian. Then using 3) we may apply the Torelli theorem, which for g ě 2
tells us that two curves are isomorphic if their principally polarized Jacobians are.

4.ñ 5. (This was proved by Parshin [? ]) The key is the construction of the so-called Kodaira-
Parshin family, an abelian scheme over C with good ramification properties. To be pre-
cise, if S is a finite set of primes containing the ones dividing 2, we can find a finite ex-
tension L{K and curves CP for each P P CpKq satisfying the following properties. The
genus of CP is bounded, CP has good reduction outside the places dividing S, and there
are finite maps φP : CP Ñ C over L ramified at exactly P . Thus every rational point P
gives a pair pCP , φP q, and by Shafarevich’s theorem the CP fall into finitely many iso-
morphism classes.

Next, we use de Franchis’s theorem, which states that ifC 1 andC{k are fields and gC ě 2,
then there are only finitelymany nonconstantmapsC 1 Ñ C. In particular, there are only
finitely many possibilities for φP corresponding to a fixed isomorphism class CP . The
Mordell conjecture follows.

1.4 The Chabauty-Kim approach

Recall that the Mordell-Weil theorem implies that JpKq is finitely generated, where J is the
Jacobian ofC. Chabauty proved theMordell conjecture in the case that the rank of JpKq is less
than g. The ideas is the following. Take P0 P CpKq; this gives an embedding

φ : C Ñ J φpP q “ rP ´ P0s,

so CpKq “ C X JpKq. Now embedK into L, some finite extension of Qp. The logarithm map
gives a local isomorphism between U Ă JpLq and LiepJq – Og

L. Let Γ be the closure of JpKq in
JpLq. Since JpLq is compact, if the intersection is infinite thenwe get a convergent sequence of
points in the intersection to one of them, which we may assume to be 0. Note that JpKqXU is
free of rank less than g. Changing coordinates, we get a function x1 on the curve with infinitely
many zeroes accumulating at 0; thus x1 “ 0 in a neighborhood of 0 on C. But dx1 has at most
2g ´ 2 zeroes, contradiction.

MinhyongKimgeneralized thismethodbyusing deeper quotients of the fundamental group.
Indeed, Tl may be viewed as the first étale cohomology group of C, which is (more or less) the
abelianization of the étale fundamental group. Roughly, one finds a middle ground between
the étale cohomology and torsor given by the étale fundamental group as described by the
section conjecture, which the rational points of C are mapped to. One then analyzes a p-adic
period map, which as we will see is also done in the Lawrence-Venkatesh approach. Kim has
made significant progress through this approach, though a complete of Faltings’s theorem in
this way has not yet appeared.
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1.5 Outline of the Lawrence-Venkatesh approach

Themethodwewill be studying arose fromBrian Lawrence’s PhD thesis underAkshayVenkatesh.
It gives a full proof of the Mordell conjecture and can also be applied to give results for higher
dimensional varieties. As the authors say, it uses the setup of Faltings’s proof but is close in
spirit to the methods of Chabauty and Kim.

Let Y {K be a curve of genus g ě 2. Actually, we will eventually want to run this argument
for other Y . The starting point is a smooth projective family X Ñ Y based on the Kodaira-
Parshin family used in the last step of Faltings’s proof. This family satisfies certain desired
properties we will now describe.

Let O be the S-integers of K and say X Ñ Y extends to π : X Ñ Y over O. For every p
unramified inK and not dividing any prime in S, every y P YpOq gives a Galois representation

ρy : GK ü H˚etpXy,Qpq.

Now recall that in the step 2Ñ 3 of Faltings’s proof, it was (essentially) proven that there
are only finitely many possibilities for semisimple representations ρssy that are unramified out-
side a finite set of primes that aremoreover these kinds ofGalois representations on étale coho-
mology. As a reminder, classical algebraic number theory results such as Hermite-Minkowski
finiteness and the Chebotarev density theorem are used to show that the representation is de-
termined by its characteristic polynomial for a finite subset of Frobenius elements. By theWeil
conjectures, there are only finitely many such polynomials that come from these representa-
tions.

Now Faltings worked with abelian varieties where he showed that every ρy is semisimple
and determinesXy up to isogeny – this is Tate’s conjecture. In the approach we are now con-
sidering, we take the semisimplification ρss and restrict it to GKv for a suitable place v. Then
it is proven that the fibers of this mapping from Y pKq to these p-adic representations are not
Zariski dense.

To prove this last statement, we use p-adic Hodge theory. Using this theory, each point
y P Y pKvq gives a filtered φ-module overKv:

y ÞÑ pHdRpXy{Kvq,Fil‚, φq.

The Gauss-Manin connection allows us identify HdRpXz{Kvq – HdRpXy{Kvq as we vary z
in a residue disk in Y pKvq around y. What changes is the Hodge filtration. This variation is
described by the p-adic period map, which sends points in the residue disk to Kv-points of a
certain flag variety of subspaces ofHdRpXy{Kvq. The p-adic period map is injective, but there
may be different filtrations which give rise to the isomorphic filtered φ-modules. Thus, we
must also show that the image of the period map has finite intersection with an orbit on the
period domain of the centralizer Zpφq. For example, when Y is a curve we will show that the
Zpφq-orbit of the filtrations is a proper subvariety of the ambient flag variety, and that the im-
age of the p-adic period map is Zariski dense. Then the fiber is given by the intersection points
which are the zeroes of a nonvanishingKv-analytic function in a residue disc, which is finite.

To check Zariski density, one passes to the corresponding complex period map which sat-
isfies the same differential equation coming from the Gauss-Manin connection. Checking the
result here is done through analyzing monodromy representations and mapping class groups.
Finally, for higher dimensions Bakker and Tsimerman used o-minimality to prove the Ax-
Schanuel theorem for period mappings. This gives us better control about the intersection
of the Zpφq-orbit and Yv.
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Part I

Background
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Chapter 2

The Gauss-Manin connection and the
period map

2.1 Local systems, monodromy, and connections

Our goal is to relate isomorphism classes of complex local systems with representations of the
fundamental group of a topological space B, and in the case that B is a complex manifold, to
holomorphic vector bundles overB equipped with a flat connection. In this section, we follow
[3] and [2].

2.1.1 The monodromy representation

LetB be a topological space. We assume it is nice; e.g. path-connected, locally path-connected
and locally simply connected, so it has a nice universal cover.

Definition 2.1.1. A complex local system onB is a locally free sheaf onB whose fibers are complex
vector spaces and transition functions are linear.

Remark. It is important to clearly distinguish the concepts of being locally constant (local sys-
tems) and being locally trivial (vector bundles).

Example 2.1.2. Consider the sheaf of holomorphic global solutions to a homogeneous system of
n linear first order differential equations with holomorphic coefficients on an open subset U Ă C.
They form a local system!

Every (henceforth assumed complex and finite-dimensional) local system H with fiber V
on r0, 1s is constant. This follows from the fact that r0, 1s is compact, so every element of a fiber
Ht extends uniquely to a global section by continuing it along the intersections of the trivial-
izations. Furthermore, we see that this construction gives an isomorphismH0 – H1 along any
path on a general spaceB. If two paths γ1, γ2 are homotopic, then by covering the correspond-
ing square I2 with a trivialization, we see that there is a unique way to extend every element
of a fiber to a global section of this square. The corresponding linear transformation of fibers
at the endpoints coincides with the ones given by both the top and bottom sides of the square.
As a consequence, if B is simply connected, then all local systems over B are constant.

Fix a basepoint b P B. If we have a local system H with fiber V , we have constructed a
representation, known as themonodromy representation,

π1pB, bq Ñ GLpHbq.

10
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Theorem 2.1.3. The functor just defined yields an equivalence between isomorphism classes of
local systems with fiber V and isomorphism classes of representations of the fundamental group
π1pB, bq.

Wesketch the inverse. Let p : pB̃, b̃0q Ñ pB, b0q be a universal covering space. Thenπ1pB, b0q
may be canonically identified with the covering transformations of p. Then we may define a
local system H by first defining a constant sheaf HpB̃q. Then we take H to be the equivariant
sections ofHpB̃q under the action of the fundamental group.

2.1.2 Vector bundles with flat connections

Now let us take B to be a complex manifold. Let E Ñ B be a holomorphic vector bundle.

Definition 2.1.4. A connection∇ on the vector bundle E Ñ B is a C-linear map

∇ : ΓpEq Ñ ΓpEq bOB
ΩB

that satisfies the Leibniz rule:
∇pfσq “ f∇pσq ` σ b df

for σ P ΓpEq and f P OB .

We can further differentiate∇ : ΓpEq b ΩB Ñ ΓpEq b
Ź2 ΩB by the rule

∇pσ b αq “ ∇σ ^ α` σ b dα.

The curvature of a connection is then given by

Θ :“ ∇ ˝∇ : ΓpEq Ñ ΓpEq b
2
ľ

ΩB.

Finally, we say that a connection is flat if it has curvature zero. Another way of expressing
this in terms of vector fields is the condition

r∇X ,∇Y s “ ∇rX,Y s.

Our goal is to now associate a local systemH overB with a holomorphic vector bundle with
a flat connection.

Construction 2.1.5. Let H be a local system over B and define H :“ H bC OB . Then H is a
holomorphic vector bundle over B, and define a connection ∇ : H Ñ H bOB

ΩB on it in the
following way. For σ P H, write σ “

ř

i αiσi with σi a local trivialization ofH. Then set

∇σ “
ÿ

i

σi b dαi.

We claim the constructed∇ onH is flat. Indeed, we have

p∇ ˝∇qσ “
ÿ

i

p∇σi b dαi ` σi b d2αiq “ 0,

since∇σi “ σi b dp1q “ 0.

Theorem 2.1.6. The above construction produces a bijection between isomorphism classes of local
systems and isomorphism classes of holomorphic vector bundles equipped with a flat connection.

11
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The inverse map associates to pH,∇q the local system of flat sections ofH, i.e. those anni-
hilated by ∇. Showing this works boils down to showing that if we pick a point in some fiber
x P Hb, there is a unique way to continue it to a flat section around b. The idea is to use the
flatness of the connection to create a suitable integrable distributionD, which then gives by the
Frobenius theorem a local foliation ofH by submanifolds locally isomorphic toB. Then locally
around b, flat sections correspond to the leaves of these local foliations, which are determined
by their fiber inHb.

Here, a distributionE is a subbundle of the tangent bundle of amanifold, and it is integrable
ifX is covered by open sets with a differentiablemap φU : U Ñ Rn´k such that for all x P U , we
have Ex “ ker dφx. In other words, we can find a submanifold with E locally giving its tangent
spaces. The Frobenius theorem says the following.

Theorem 2.1.7 (Frobenius). A distribution E is integrable if and only if it is closed under Lie
bracket.

The flatness of the connection in the previous theorem allows us to check that the corre-
sponding distribution is closed under the Lie bracket.

Remark. The Riemann-Hilbert correspondence is a generalization of this correspondence to
algebraic varieties. In full generality, it is a very deep theorem.

2.2 The Gauss-Manin connection

Given a suitable fiber bundle, we are interested in the local system determined by de Rham
cohomology groups of the fibers. By the theory above, we can study this by looking at the
flat sections of the associated connection, known as the Gauss-Manin connection. This theory
applies both to the manifolds and in the setting of algebraic varieties. We will focus on the
case of manifolds here and discuss the algebraic case in the next chapter. Here we follow [2].

2.2.1 Geometric background

Theorem 2.2.1 (Ehresmann’s theorem). Let φ : X Ñ B be a proper surjective submersion
between two differentiable manifolds, where B is contractible with base point 0. Then there exists
a diffeomorphism

T : X – X0 ˆB

over B.

In particular, ifφ is a proper surjective submersion ofmanifolds, then it gives a fiber bundle.
The proof of this uses the tubular neighborhood theorem, which says that there is a neighbor-
hoodW ofX0 inX with a differentiable retraction T0 : W Ñ X0. The map

T “ pT0, φq : W Ñ X0 ˆB

has invertible differential alongX0, and thus in some open set containingX0, sinceX0 is com-
pact. Then T must be the projection of a direct product in some smaller open set.

In the case of complex manifolds, we will need a slightly stronger result. Namely, that the
fibers of T0 : W Ñ X0 are complex submanifolds ofX.

Next we recall the classical de Rham theorem stating that for a smooth manifold X, we
have

H˚dRpXq – H˚pX,Rq.

12
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Indeed, we have two flasque resolutions of the constant sheaf R given by

0 Ñ RÑ Ω0
X

d0
ÝÑ Ω1

X
d1
ÝÑ ¨ ¨ ¨

and
0 Ñ RÑ C0

sing
B
ÝÑ C1

sing
B
ÝÑ ¨ ¨ ¨

(Note that in the second, we are taking the sheafification, and it takes some work to show
that the cohomology agreeswith singular cohomology.) Thus they both give the cohomology of
the constant sheaf R. The same holds for the complex cohomology, where R is replaced with
C. For complex manifolds there is also a Hodge filtration, which can be calculated with the
Dolbeault resolution. We will discuss this in the following section. There is also a resolution
of C with the holomorphic de Rham complex; in this case we must take the hypercohomology.
When we go to the algebraic setting in the next chapter, we will replace the holomorphic de
Rham complex with the algebraic de Rham complex.

Finally, we state the proper base change theorem in topology, which is actually muchmore
general than what we need.

Theorem 2.2.2. Let F be a sheaf onX. Then the natural map

g˚Rif˚F Ñ Rif 1˚g
1˚F

is an isomorphism of sheaves on A.

X ˆB A X

A B

f

g

f 1

g1

2.2.2 Definition of the Gauss-Manin connection

We will put everything together to define the Gauss-Manin connection. Let π : X Ñ B be
a surjective proper submersion. Consider the sheaf Rkπ˚C on B (we use C for C from now
on). We claim it forms a local system. Indeed, fixing a basepoint 0 P B, Ehresmann’s theorem
implies thatX is isomorphic toX0ˆU in a neighborhood U Ă X0. That is,X ˆB U – X0ˆU .
Then it is evident that Rkπ˚C is constant on U .

X0 X ˆB U X

0 U B

π

i

i1

π1

Next, by the proper base change theorem, each fiber pRkπ˚Cqb for b P U is isomorphic to
pRkπ1˚i

1˚Cqb – HkpXb,Cq. Thus the cohomology of each fiber Xb is the same. Really though,
this is overkill because the fact that we have a fiber bundle T : X ˆB U – X0ˆU Ñ X0 gives a
diffeomorphism betweenXb andX0, and thus we have isomorphismsHkpX0,Cq – HkpXb,Cq.
In fact, since we can make U contractible, we actually obtain canonical isomorphisms.

Now recall that in the previous section, we associated a flat connection to each local system.

13
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Definition 2.2.3 (Gauss-Manin connection). Let Hk “ Rkπ˚C bC OB be the vector bundle
associated to the local system Rkπ˚C. The associated flat connection

∇ : Hk Ñ Hk b ΩB where ∇
´

ÿ

i

αiσi

¯

“
ÿ

i

σi b dαi

is called the Gauss-Manin connection.

The sections of Hk restrict to kth cohomology classes on each fiber. For example, if ω is
a complex differential form of degree k on X such that over b P U , we have that ωb is closed.
Then ω : b ÞÑ rωbs defines a section ofHk over U .

2.2.3 Example: the Picard-Fuchs equation

Let us try to work through a concrete example. Consider the Legendre family

Eλ : y2 “ xpx´ 1qpx´ λq, where λ P P1 ´ t0, 1,8u.

Formally, this is an elliptic surface which looks as follows.

Eλ EU E

λ U P1 ´ t0, 1,8u

WriteB “ P1´t0, 1,8u. The local systemweareworkingwith isH “ R1π˚ConB. Thefiber
of this at λ is given byH1pEλ,Cq, which has dimension 2. A natural way to construct a section
is by taking ω “ dx

y to be the one-form on E that restricts to the holomorphic differential

ωλ “
dx

xpx´ 1qpx´ λq
.

We identify ωλ with its cohomology class. We may apply the connection along the tangent
vector λ to differentiate ∇λpωq “ p∇ωqdλ P Hk. That is, we are using the connection to use
tangent vectors to differentiate the sections. Then ω,∇λω,∇2

λω are linearly dependent when
restricted to any fiberH1pEt,Cq, and thus we obtain a differential equation ...

How to actually find it, how are periods solutions, why are the cycle classes flat sections?

2.3 The period mapping

We follow [2].

2.3.1 Hodge structures

Webeginwith a rapid overview of some basic Hodge theory. IfX is a complexmanifold, letAp,q

denote the sheaf of pp, qq-forms on X and let Ak be its k-forms. Then we have the Dolbeault
resolution

0 Ñ Ωp Ñ Ap,0 Ñ Ap,1 Ñ ¨ ¨ ¨

The cohomology of this complex is denotedHp,qpMq “ HqpM,ΩppMqq.

14
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Now let g be a Riemannian metric onX; this induces an L2 metric on AkpXq. Then we can
define the Hodge star operator, an isomorphism

˚ : AkpXq
–
ÝÑ An´kpXq

such that
pα, βqL2 “

ż

X
α^ ˚β.

Then define d˚ : AkpXq Ñ Ak´1pXq by

d˚ “ p´1qk ˚´1 d ˚ .

By construction, this operator is the adjoint for d:

pα, d˚βqL2 “ pdα, βqL2 .

Finally, define the Laplacian ∆d “ dd˚ ` d˚d. A harmonic form ω is one where ∆dω “ 0. Such
forms are automatically closed. By analytic results involving elliptic differential operators, one
(ideally) proves the following celebrated result, sometimes known as the Hodge theorem.

Theorem2.3.1 (Hodge). The naturalmap from the space of harmonic formsAkpXq to the complex
de Rham cohomologyHdRpXq bR C is an isomorphism.

In the case of a Kähler manifold, one can show that ∆d “ 2∆B “ 2∆
B
. Here, ∆

B
preserves

the type of a differential form, so∆d does too. This implies that the harmonic form decomposi-
tion descends down to the decomposition of forms, and thuswe have theHodge decomposition

HkpX,Cq “
à

p`q“k

Hp,qpXq.

Leaving the Kähler case, we would still like to define a sort of ‘Hodge structure’ with a
‘Hodge filtration’ on an arbitrary complex manifold X. In general, we can define an integral
Hodge structure on any free abelian group V by

V bZ C “
à

p`q“k

V p,q

satisfying V p,q “ V q,p. But this doesn’t work nicely in general for the complex cohomology of
X . Instead we define a Hodge filtration which can be used to define a ‘mixed Hodge structure.’
We do this is by using the holomorphic de Rham complex. Take the resolution

0 Ñ OX
B
ÝÑ ΩX

B
ÝÑ Ω2

X
B
ÝÑ ¨ ¨ ¨

B
ÝÑ Ωn

X Ñ 0.

One shows that the inclusion of the holomorphic de Rham complex into the de Rham com-
plex is a quasi-isomorphism (as complexes of sheaves). Then the de Rham cohomology is given
by the hypercohomology of the holomorphic de Rham complex:

HkpX,Cq “ HkpX,Ω‚Xq.

We can now define the Hodge filtration.

Definition 2.3.2. Let F pΩ‚X be the truncated holomorphic de Rham complex

0 Ñ Ωp
X Ñ Ωp`1

X Ñ ¨ ¨ ¨

The Hodge filtration is defined by

F pHkpX,Cq “ impHkpX,F pΩ‚Xq Ñ HkpX,Ω‚Xqq.

WhenX is Kähler, this coincides with the filtration coming from the Hodge decomposition
where F pH “

À

iěpH
i,n´i.

15
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2.3.2 The period mapping and the period domain

We return to the setting of a fibrationX Ñ B; nowassume thatX is Kähler and shrinkB so that
X is a product of it and a fiber. As before, we have that HkpX0,Cq – HkpX,Cq – HkpXb,Cq.
Moreover, using the Frölicher spectral sequence, more is true: all the Hodge numbers are con-
stant in B. However, the Hodge filtrations differ. Let bp,k “ hp,qpXbq.

Definition 2.3.3. The period map

Pp,k : B Ñ Grpbp,k, HkpX0,Cqq

is the map which sends b P B to the subspace

F pHkpXb,Cq Ă HkpXb,Cq – HkpX0,Cq.

A theorem of Griffiths states that the period map is holomorphic for all p, k. One can prove
this using some version of a base change theorem.

Taking all p for a fixed k, we see that the period mappings sends b to a complete flag of
HkpX,Cq. Denote the set of such flags by FlpHkpX,Cqq. If we restrict to the points b P B such
thatXb is Kähler, then the Hodge filtration must also satisfy the condition

F pHkpXb,Cq ‘ F k´p`1HkpXb,Cq “ HkpXb,Cq.

The open set D Ă FlpHkpX,Cqq which satisfies this conditions is known as a period do-
main. The polarized period domain, P, is a subset which satisfies additional properties.

16



Chapter 3

Algebraic de Rham cohomology and
crystalline cohomology

3.1 Algebraic de Rham cohomology

3.1.1 Background on differentials

Definition 3.1.1 (derivations). Let f : AÑ B be a ring homomorphism and letB be aB-module.
We call γ : B ÑM be an A-linear derivation if γpabq “ aγpbq, γpb1b2q “ b1γpb2q “ b2γpb1q.

Definition 3.1.2 (Kähler differentials). The module of Kähler differentials is a B-module Ω1
B{A

that represents the functor
M ÞÑ DerApB,Mq,

so in particular DerApB,Mq “ HomBpΩ
1
B{A,Mq and we have the universal property

B Ω1
B{A

M

d

γ

D!

We construct Ω1
B{A in two ways. First, take the free B-module generated by the symbols

da, and quotient by relations. Alternatively, define I :“ kerpB bA B Ñ Bq. Then define
Ω1
B{A

:“ I{I2. Then we have d : B Ñ I{I2 by b ÞÑ bb 1´ 1b b.

Properties of differentials on rings.

1. If AÑ A1 is a ring homomorphism, then ΩBbAA1{A1 – ΩB{A bA A
1.

2. ΩS´1B{A – ΩB{A bB S
´1B.

3. Given an exact sequence AÑ B Ñ C, we have an exact sequence

C bB Ω1
B{A Ñ Ω1

C{A Ñ Ω1
C{B Ñ 0.

When B Ñ C is formally smooth, then this sequence is exact on the left and admits a
splitting.

4. Given B � C then
I{I2 δ

ÝÑ C bB Ω1
B{A Ñ Ω1

C{A Ñ 0.

17
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From 1 and 2, we can define a quasi-coherent sheaf on SpecB by taking ˜Ω1
B{A. Furthermore,

we let Ωn
B{A

:“ ^nΩ1
B{A. Then given the differential d : B Ñ Ω1

B{A, this extends to

B Ñ Ω1
B{A

d
ÝÑ Ω2

B{A
d
ÝÑ ¨ ¨ ¨ .

We now extend the sheaf of differentials to general separated schemes.

Definition 3.1.3 (Sheaf of differentials). Let f : X Ñ S be separated. Let I be the ideal sheaf
corresponding to the closed immersionX ∆

ÝÑ X ˆS X. Then we define the sheaf of differentials

Ω1
X{S :“ p∆X{Sq

˚pIq.

The above properties of affine differentials extend to the case of schemes.

3.1.2 Algebraic de Rham cohomology groups

Let π : X Ñ Y be a morphism of schemes. Then the algebraic de Rham cohomology groups
are defined as

HqpX,Ω‚X{Y q “ Rqπ˚pΩ
‚
X{Y q.

We can compute this as the hypercohomology of the complex Rπ˚pΩ‚X{Y q. We get the
Hodge-de Rham spectral sequence

E1 : HqpX,Ωp
X{Y q ñ Rp`qπ˚pΩX{Y q “ Hp`q

dR pXq.

Deligne proved that the spectral sequence degenerates at E1; for Y “ SpecC this gives the
Hodge decomposition.

We can use another filtration. Assume π : X Ñ Y is smooth. Recall there is an exact
sequence

0 Ñ π˚pΩ1
Y {kq Ñ Ω1

X{k Ñ Ω1
X{Y Ñ 0.

We use the fact that the Ω´{´ are locally free. In the Katz-Oda paper, the authors assign a
filtration on Ω‚X{k as follows. Let

F i “ imrΩ‚´iX{K bOX
π˚pΩi

Y {Kq Ñ Ω‚X{Ks.

Then the associated grading is given by

Gri “ π˚pΩi
Y {Kq bOX

Ω‚´iX{Y .

With respect to this filtration, we compute the spectral sequence for Rπ˚pΩ‚X{Kq gives

Ep,q1 “ Ωp
X{k bOY

Rqπ˚pΩ
‚
X{Y q.

Then we get an exact sequence

0 Ñ Hq
dRpX{Y q

d
ÝÑ Ω1

Y {k bOY
Hq
dRpX{Y q

d
ÝÑ Ω2

Y {k bOY
Hq
dRpX{Y q

d
ÝÑ ¨ ¨ ¨

This d is the Gauss-Manin connection with d2 “ 0. This implies thatHq
dRpX{Y q is a crystal on

the crystalline site of Y .

18
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3.1.3 The Gauss-Manin connection arising from the spectral sequence for al-
gebraic de Rham cohomology

Recall:
X Y

Spec k

smooth

Wedefined the relative deRhamcomplexΩ‚X{Y as anOX-module and the deRhamcohomology

HdRpX{Y q :“ Rπ˚pΩ
‚
X{Y q

We showed last time that there is a spectral sequence

Epq1 :“ HqpX,Ωp
X{Y q ùñ Rp`qπ˚pΩ

‚
X{Y q

Over C, when π is proper in addition to smooth, the spectral sequence terminates at E1 page,
get the Hodge decomposition.

This comes from the stupid filtration. We can use a cleverer one (relying heavily on smooth-
ness).

F iΩ‚X{Y :“ Imrπ˚pΩi
Y {kq bOX

Ω‚,iX{kr´is Ñ Ω‚X{ks

0 Ñ π˚pΩ
1
Y {kq Ñ Ω1

X{k Ñ Ω1
X{Y Ñ 0

The filtration essentially takes the forms in ΩX{k that have i forms coming from Ω1
Y {k.

gri » F i{F i`1 “ π˚pΩi
Y {kq bOX

Ω‚,´iX{Y

(write it out). For a filtration on a complex, we get a spectral sequence.

Ep,q0 :“ F pΩp`q
X{k{F

p`1Ωp`q
X{k “ gr

pΩp`q
X{k

We want to compute Rπ˚pΩ‚X{kq.

Ep,q1 “ Rp`qπ˚grppΩ‚X{kq ùñ Rp`qπ˚ pΩX{kq

“ Rp`qπ˚pπ
˚Ωp

Y {kq b Ω‚,´pX{S

“ Rqπ˚pπ
˚pΩp

Y {kq bOX
Ω‚X{Y q

“ Ωp
Y {k bOY

Rqπ˚Ω
‚
X{Y

“ Ωp
Y {k bOY

H‚dRpX{Y q

We have Fi ^ Fj Ă Fi`j with Rπ˚ respecting multiplication
ľ

: Ep,qr ˆ Ep
1,q1

r Ñ Ep`p
1,q`q1

r

pe, e1q Ñ e^ e1 “ p´1qpp`qqpp
1`q1qe1 ^ e, drpe^ e

1q “ drpeq ^ e1 ` p´1qp`qe^ drpe1q

along E‚,01 : dr{Rb k with a section Ωi
Y {k, e a section ofHqpq, Y q.

di,qq pw ^ eq “ dY {Kw ^ e` p´1qi`qw ^ d1,qe

Hq
drpX{Y q

∇
ÝÑ Ω1

Y {k bH
q
dRpX,Y q

∇
ÝÑ ...

where∇ “ d1,0
q with∇2 “ 0. We get an integrable connection: the Gauss-Manin connection.
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∇GM gives us a connection on the OX module Hq
dRpX{Y q, this connection means that it

will have good properties for the soon to be defined crystalline site. Connection we claim is
the same data as infinitesimal firest order descent information.

Descent data: X π
ÝÑ Y , X Ñ X ˆY X, sheaf of ideals I defining this, X Ñ ∆1

X where ∆1
X

is the closed subscheme associated to I2. AndX Ñ ∆1
X the sheaf of ideals is Ω1

X{Y .
There are two projections pr1,pr2 : ∆1

X induced by the two projections X ˆY X Ñ X.
In general, given an OX-moduleM , there is no canonical way to identify pr˚1pMq,pr˚2pMq as
∆1
X-modules.
Claim: having an ∆1

X-linear isomorphism pr˚1pMq
»
ÝÑ pr˚2pMq is equivalent to defining a

connection on M . Stipulating that X Ñ X ˆY X ˆY X satisfying cocycle then in fact is
equivalent to∇2 “ 0.

Definition 3.1.4. ∇ : M Ñ Ω1
X{k bOX

M , by∇pamq “ dabm` a∇pmq.

Defining a connection in terms of descent data is more generally aGrothendieck connection.
What’s the point of all this? This comparison with descent data will give us essentially that

having a sheaf that has an integral connection defines a crystal on the crystalline site.

3.2 PD structures remedying the lack of a Poincaré lemma

We have `-adic cohomology which, given a Zp-variety gives us a good cohomology theory for
all ` ‰ p. When ` “ p it is not a Weil-cohomology theory. And de Rham cohomology is a good
cohomology theory, so you might be tempted to define, say, for an Fp-varietyX a lift X̃ to Zp
and takeHdRpX̃{Zpq. But if we rely on lifts, we don’t know if it will be intrinsic or even exist.

So, will the de Rham cohomology have good properties for Zp varieties?

SpecpZprtsq

Zprts
d
ÝÑ Zprtsdt, tpp Ñ tp´1dt

No Poincare lemma.
Now we talk about PD (divided power structure).

Definition 3.2.1. Let A be a ring, I Ă A an ideal, γně1 : I Ñ I. Then pA, I, γq is a PD structure
if for all x, y P I

1. γ0pxq “ 1, γ1pxq “ x, γipxq P I

2. γnpx` yq “
ř

γipxqγn´ipyq

3. For a P A we have γnpaxq “ anγnpxq

4. γnpxqγmpxq “
`

n`m
m

˘

γn`mpxq

5. γppγ1pxqq “ Cp,qγpqpxq with Cp,q “
ppqq!
p!qp .

Example 3.2.2. For aQ-algebra, γnpxq “ xn

n! (missed a bit).

Proposition 3.2.3. Given PD structure pA, I, γq and f : A Ñ B, we get an extension of the PD
structure to pB, IBq in the following cases:

• IB “ 0

• I bA B – IB (if f is flat)
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Theorem 3.2.4. If pA, I, γq is a PD-algebra and B is a finite A-algebra, J Ď B, and f : A Ñ B.
Then there exists a ring pD, J, γq such that

pD, J, γq

pB, Jq pA, γ, Iq

pC, J̃, Ỹ q

D!

Proof sketch. Consider the graded ring Γ defined by

Γ0 :“ B

Γ1 “ J ` IB

Γn :“ generated by symbols rxsn, x P J ` IB modulo the PD-relations γnpxq “ rxsn, x “ rxs1

Proposition 3.2.5. Let pA, I, γq be a PD, B an A-algebra, J Ď B, then

• B1 is a flat B-algebra,DB1,γpJB
1q “ DB,γpJq bB B

1

• pA, I, γq Ñ pA1, I 1, γ1q,DBbAA1,γ1pJ bA Aq “ DB,γpJq bA A
1

3.3 Crystalline cohomology

Recall: we showed thatOX-moduleM has infinitesimal descent data if it admits an integrable
connection. That is, a map

M
∇
ÝÑM b Ω1

X{S Ñ

such that the extension∇2 “ 0.
Hq
dRpX{Y q as anOY -module admitted a Gauss-Manin connection, so as anOY module we

have infinitesimal descent.
PD0structure: for A, I Ď A, maps γnI Ñ I satisfying γ0pxq “ 1, γ1pxq “ x and

• γnpx` yq “
řn
i“0 γipxqγn´ipyq

• γnpaxq “ anγnpxq

• γnpxqγmpxq “
`

n`m
n

˘

γn`mpxq

• These imply n!γnpxq “ xn

Example 3.3.1. • ForQ-algebras, there exists a unique PD-structure γnpxq “ xn

n! .

• IfmA “ 0, in I, xm “ 0 @ x P I we havem!γnpxq “ xm.

• Z{2Z has a PD-structure
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we also defined a universal PD-algebra over a PD-algebra pA, I, γ0q and B, J Ď B

DB,γpJq

pB, Jq pA, I, γq

pC, I 1, γq

This construction is compatible with flat base change. This means that given

XZ

X Z

pS,Xq

whereX Ñ Z is a closed immersion AÑ A{I, thenXZ will beDA,γpIq.

Example 3.3.2. Given Arts, we can put a PD-structure on ptq by Arγnptqs “ Axty the free PD-
polynomial algebra over A.

The PD structure will be the thing that allows you to let the Poincaré lemma work.

Zpxty Ñ Zpxtydt, dpγnptqq Ñ γn´1ptqdt

taking xn

n! Ñ
xn´1

pn´1q! .
The idea of Crystalline cohomology: if we have an Fp variety X, the l-adic cohomology

groups for l ‰ p form a good cohomology theory, but for l “ p we do not have that.
One possible remedy is to consider a lift to Zp, X̃ overX, smooth over Zp, then define

H i
cryspX,Fpq “ H i

dRpX̃{Zpq

Two problems: there may be no such lift, and it depends on the left if it exists.
But you can lift locally on affine stuff (that’s deformation theory). Grothendieck’s solution

was to consider all possible lifts of affine objects pU, T q where U is open in X and U ãÑ T is a
nil-immersion.

Now, we have to introduce notions of a site on a fibered category.

Definition 3.3.3. Let C be a fibered category. A Grothendieck Top consists of covering families
pUi Ñ Uq such that

• id : U Ñ U is in the covering family

• Given a morphism V Ñ U and covering family tUi Ñ Uu, then tV ˆU Ui Ñ V u is also a
covering family

• If tUi Ñ Uu and tVij Ñ Uju are covering families, then tUij Ñ Uu is a covering family.

This is sort of an axiomatization of open sets of a topological space.
Now, Crystalline Site. LetW “ SpecpZpq andX finite type overW when p is locally nilpo-

tent. X will be a finite type Zp{pNZp-algebra.
We say a closed immersionX Ñ T overW is a PD-thickening if pT, I, γq is compatible with

pZp, ppq, γq.
Claim: X Ñ T is a nil-immersion. γn : I Ñ I with pNA “ 0, n!γnpxq “ xn for n “ pN .
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Definition 3.3.4. Let k “ Fp so X is overW pkq. The crystalline site X{W pkqcrys consists of all
PD-thickenings (nil-immersions) pU, T q, with U Ă X open. And tpUi, Tiq Ñ pU, T qu is a covering
if Ti Ñ T is a Zariski covering.

We also have truncated sites: X{Wn,crys will consist of pU, T q PD-thickenings of X for T a
Wn-scheme.

Given a sheaf F on a crystalline site and pU, T, γq, we have a Zariski sheaf FT pW q :“ F pU X
W,W, γ|W q for each openW Ă T .

Given a map f : T Ñ T 1 we have a comparison between pU, T, δq and pU 1, T 1, δ1q for fpUq Ă
U 1

Cf : f´1FT 1 Ñ FT

givenW 1 Ă T 1, f induces a morphism

f |f´1W : pU X f´1pW 1q, f´1W 1, δ|f´1W 1q Ñ pU 1 XW 1,W 1, δ|W q

Key point: given Zariski sheaves FT for each pU, T, δq and comparison maps pf, f : T Ñ T 1,W 1q

which is an isomorphism for open immersions and satisfies transitivity, then get a sheaf on
pX{Wcrysq.

Definition 3.3.5. A quasi-coherent sheaf on X{Wcrys is called a crystal if all comparison maps
are isomorphisms.

Two things

• We’re asking for a lifting problem

? B

A A{I

• Another thing we can see is the following. Given X Ñ X ˆS X with X Ñ S smooth,
there is a sheaf of ideals I defining the closed immersion. But we can also define the
infinitesimal neighborhood ∆1pXq by X Ñ ∆1pXq Ñ I2 Ă X ˆS X. For X Ñ ∆1pXq a
closed immersion, we can assign a PD-structure and pX,∆1Xq will be inX{Wcrys. Recall
we have two projections pr1,pr2 : ∆1pXq Ñ X. The isomorphism condition on compar-
ison maps implies pr´1

1 pXq – pr´1
2 pXq and the data that gives this is a connection. The

point is that given a quasi-coherent sheaf F on X{Wcrys pU, T, δq, Ω̃T {S it will be ΩT {S

quotient by dγnpxq “ γn´1pxqdx. It’s saying that F is a crystal iff there exists an integral
connection of F onX{Wcrys,

FT Ñ F bOT
Ω̃T {S

There is a structure sheaf on X{Wcrys which assigns to every pU, T, δq as ΓpT,OXq. Check
that this forms a crystal.

For pU, T, δq, assign H i
dRpT {Sq; this is a crystal. But Ω̃ipT {Sq is not, as it doesn’t a priori

have descent data.

Theorem 3.3.6. IfX admits a smooth Zp lifting X̃, then

H i
cryspX{Wcrys,OX{crysq “ H i

dRpX̃{W q
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So this says that H i
dRpX̃{W q only depends on the special fiber. If we have two liftings X̃

1

and X̃, then

H i
dRpX̃{W q H i

dRpX̃
1{W q

H i
cryspX{crys, DX{W q

»,∇GM

they are isomorphic by the Gauss Manin connection.
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Chapter 4

p-adic Hodge theory

Three rings for the Elven-kings under the sky,

Bcris,Bst,BdR.

Seven for the Dwarf-lords in their halls of stone,

EQp
,AQp

,BQp
,E,A,B, rA.

Nine for mortal Men doomed to die,

Qp,Zp,Fp,Qp,Fp,Cp,OCp ,Qur
p ,BHT

One ring to rule them all,

Ainf .

Fontaine

Notation:

• K is a finite extension ofQp (in fact, the results holdwhenK is a complete discrete valued
field of characteristic 0 with perfect residue field k of characteristic p).

• OK is the ring of integers ofK, with maximal ideal mK and uniformizer π “ πK .

• k “ OK{mK is the residue field ofK. In our case, k is a finite extension of Fp.

• Cp is the completion ofK “ Qp with respect to the p-adic metric.

• GK “ GalpK{Kq.

• Kur is the maximal algebraic unramified extension ofK.

• Ktr is the maximal tame extension ofK.

• IK “ GalpK{Kurq Ă GK is the inertia group ofK.

• PK “ GalpK{Ktrq Ă IK is the wild inertia subgroup.

• µn is the group of nth roots of unity.
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4.1 l-adic and p-adic Galois representations

4.1.1 Preliminaries on local fields

Studying representations of GQ “ GalpQ{Qq is a big deal. There is an important local variant:
the representations of GQp . These are related in the following way.

Proposition 4.1.1. There is an injectionGQp ãÑ GQ identifyingGQp with the decomposition group
of the place ppq in GQ.

Proof. First we exhibit an injectionGQp ãÑ GQ. Indeed, fixing inclusionsQ ãÑ Qp andQ ãÑ Qp,
we obtain a map GQp Ñ GQ. To show this is an injection, it suffices to show two things: first,
GQp acts continuously on Qp, and second, Q is dense in Qp.

For the first, note that GQp sends Zp to Zp, because it preserves the ring of integers. It
follows easily that GQp also preserves pZp and acts by an isometry with respect to the p-adic
metric. The second follows from Krasner’s lemma, which in fact gives that Q is dense in Cp.
Now we see that GQp is identified with the stabilizer of the place ppq of Q, so it is identified
with the decomposition group of ppq in GQ as desired.

Given this,GQp fits into an exact sequence involving the inertia group and the Galois group
of the residue field. More generally, this holds forK as well. Recall that there is a unique way
to extend the valuation on Qp toK, by setting

νppαq “
1

rK : Qps
νppNK{Qp

q.

Then OK is also a complete PID with some uniformizer π. The same proof as above shows
that GK preserves OK and mK , so we have an exact sequence

1 Ñ IK Ñ GK Ñ Gk – pZÑ 1.

Evidently, IK consists of the elementsσ P GK such thatσpxq´x P mK . It corresponds to the
Galois group GalpK{Kurq, while Gk is given by GalpKur{Kq. Indeed, the finite extensions of
the residue field k correspond bijectively to the finite unramified extensions ofK. The inertia
group IK is also known as G0, with the higher ramification groups Gi being defined as the
subgroups of GK with σpxq ´ x P mi`1

K . We are particularly interested in G1 “ PK , which fits
into another exact sequence

1 Ñ PK Ñ IK Ñ
ź

l‰p

Zlp1q Ñ 1.

This deserves some explanation. First, a tamely ramified extension L{K is one for which
p - eL{K . ThusKtr is the union of all extensions ofKur with degree relatively prime to p. Then
PK is the wild inertia group, corresponding toGalpK{Ktrq. Thus this exact sequence is saying
that the tamely ramified portion,GalpKtr{Kurq, is well-understood as just

ś

l‰p Zlp1q. To show
this, we use the following fact.

Proposition 4.1.2. If L{Kur is a totally tamely ramified extension of degree e (so p - e), then
L “ Krπ

1{e
Kurs.

Proof. Being totally ramified means that OKur{pπKurq – OL{pπLq and πKur “ upπLq
e for some

u P OˆL . Furthermore, it also means that L “ KurrπKs
1. Thus it suffices to choose a different

uniformizer π1L which is an eth root of πKur . By an appropriate choice of πKur , we may assume
that u ” 1 pmod πLq. Then by Hensel’s lemma, we have a solution to xe “ u in OL (this uses
the fact that p - e). We conclude by setting π1L “ πL{x.

1In fact,OL “ OKur rπLs and πL is the root of an Eisenstein polynomial.
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From here, it follows that GalpKtr{Kurq – lim
ÐÝp-n

Z{nZ –
ś

l‰p Zl. Moreover, sinceKtr can
be viewed as a cyclotomic extension of Kur, it naturally carries the action of the cyclotomic
character, which is why we write

ś

l‰p Zlp1q. The ‘p1q’ is known as a Tate twist.

The moral is the following: we have a filtration

1 Ă PK Ă IK Ă GK corresponding to K Ą Ktr Ą Kur Ą K.

The parts GK{IK “ GalpKur{Kq – pZ and IK{PK “ GalpKtr{Kurq –
ś

l‰p Zlp1q are well-
understood. The wild ramification group, PK “ GalpK{Ktrq, is where the difficulty lies. But
one can show, essentially due to a ‘clash of topologies,’ that the image of PK under any (con-
tinuous, as always) representation is finite. This is already pretty good. To take this the full
way, we have Grothendieck’s monodromy theorem. We call an l-adic representation ρ poten-
tially semi-stable if there is an open subgroup on which ρ acts unipotently. Equivalnetly, there
is a finite extension ofK such that ρ is semi-stable.

Theorem 4.1.3 (Grothendieck’s monodromy theorem). Every l-adic representation of GK is
potentially semistable.

4.1.2 Good reduction

Recall that a varietyX overK is said to have good reduction if it admits a smooth model over
OK , namely a smooth variety X{OK with the following Cartesian diagram.

X X

SpecK SpecOK

Now consider the action of GK on H1
etpX,Zlq. The Néron-Ogg-Shafarevich theorem says

that for elliptic curves, X has good reduction if and only if this representation is unramified;
i.e. the action of IK is trivial. Using Néron models, Serre and Tate extended this to abelian
varieties.

Theorem 4.1.4 (Serre-Tate). Let X{K be an abelian variety and let l ‰ p be a prime. Then X
has good reduction if and only if the representationH1

etpX,Zlq is unramified.

In their original paper, Serre-Tate used TlpAq, which gives essentially the same thing. Let
us briefly describe why for elliptic curves, good reduction implies the Galois representation is
unramified. If E{K has good reduction, then we may pass to its reduction E{Fp. The point is
that as GK-representations, we have

TlpEq – TlpEq,

where the representation on TlpEq is obtained through the surjection GK Ñ Gk. This implies
that the action of GK factors through Gk, so TlpEq is unramified.

This never works if l “ p, because in this case TppEFpq has dimension either 0 or 1, not 2 –we
can’t simply divide by p in characteristic p. Thus beingunramified is not the correct criterion for
having good reduction when l “ p. Grothendieck found the correct answer through Barsotti-
Tate groups, which turned out to give one of the first incarnations of p-adic Hodge theory. In
more modern terms, X has good reduction when its etale cohomology groups are crystalline
representations, a term which we will explain in the following section.

27



Caleb Ji Faltings-Lawrence-Venkatesh Fall 2021

4.2 Cohomological comparison theorems

Remark. Fontaine was the primary architect of these period rings. The proofs of the hardest
theorems are initially due to Fontaine-Messing-Kato-Tsuji. Faltings also proved them around
the same time using an independent method: his theory of almost mathematics. Niziol and
Beilinson have also proved them with different methods. We refer the reader to https://
arxiv.org/pdf/2005.07919.pdf for an excellent survey.

4.2.1 The Hodge-Tate decomposition

Let us recall the classical theorems in the complex case.

Theorem 4.2.1 (Hodge decomposition). Let X be a compact Kähler manifold. Then there is a
canonical isomorphism

Hk
singpX

an,Rq b C –
à

p`q“k

HppX,Ωq
X{Cq.

Using étale cohomology rather than singular cohomology, p-adic Hodge theory will not
only give analogues of this decomposition, but also do so in a way that respects filtrations
and the Galois and Frobenius actions that arise when considering étale cohomology. Rather
than tensoring with C, which can be thought of as a ring of periods, we will tensor with p-adic
analogues. The most obvious idea is to tensor with CK “ Cp, and this does indeed give the
desired ‘Hodge-Tate’ decomposition.

Theorem 4.2.2 (Hodge-Tate decomposition). Let X be a proper smooth variety over K. Then
there is a canonical isomorphism

Hn
etpXK ,Qpq bQp CK –

à

i`j“n

HjpX,Ωi
X{Kq bK CKp´iq.

compatible with GK-actions.

Note that here, GK acts on every term except for HjpX,Ωi
X{Kq. This means that the in-

formation we get from the right hand side is essentially limited to the ‘Hodge-Tate weights’
appearing in CKp´iq. For instance, we could write the right hand side as

À

i`j“nCKp´iqh
i,j .

This is great, but note that the left hand side doesn’t have a grading, while the right hand
side does. In particular, we don’t have a formula for the Hodge numbers of X using the étale
cohomology. To remedy this, we define

BHT :“
à

nPZ
CKpnq.

With this new period ring, the Hodge-Tate decomposition becomes

Hn
etpXK ,Qpq bQp BHT –

´

à

i`j“n

H ipX,Ωj
X{Kq

¯

bK BHT,

and this is a graded isomorphism. Here, the grading on the left is given by the natural grading
on BHT, and the grading on the right is given by the sum of i forHjpX,Ωi

X{Kq and the grading
on BHT. Now we use the following important theorem.

Theorem 4.2.3 (Ax-Sen-Tate). We have BGK
HT “ K.

In particular, this copy ofK is coming from the weight 0 portion CGK
K “ K. We have

pHn
etpXK ,Qpq bQp BHTq

GK –
à

i`j“n

HjpX,Ωi
X{Kq.

The ith graded piece of the left hand side therefore recovers the Hodge number hi,j .
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4.2.2 Étale to de Rham

Recall that there is a Hodge-de Rham spectral sequence

Ep,q1 “ HqpX,Ωp
X{Kq ñ Hp`q

dR pX{Kq.

In fact, this degenerates at theE1 page, so we know that the de Rham cohomology is abstractly
(as C-vector spaces) isomorphic to

À

i`j“nH
ipX,Ωj

X{Kq. Although the Hodge-Tate decompo-
sition respects grading, it doesn’t respect the filtration of Hk

dRpX{Kq. For this we will need
another ring, BdR, which has a fairly complicated construction.

This ringBdR itself has a filtration such that its associated graded ring isBHT. Furthermore,
it also carries an action of GK such that BGK

dR “ K. Then we have the following comparison
theorem

Theorem 4.2.4 (CdR theorem). LetX be a proper smooth variety overK. Then there is a canon-
ical isomorphism

Hn
etpXK ,Qpq bQp BdR – Hn

dRpX{Kq bK BdR.

compatible with GK-actions and filtrations.

The filtration on the left hand side comes from the one on BdR, while the one on the right
hand side is the convolution of theHodge filtration and the one onBdR. Furthermore, by taking
GK-invariants, we obtain

´

Hn
etpXK ,Qpq bQp BdR

¯GK

– Hn
dRpX{Kq.

4.2.3 Étale to crystalline: the mysterious functor

There is evenmore structure involved once we reflect on the fact that ifX admits a smoothOK

lifting X (i.e., has good reduction), then the de Rham cohomology is given by the crystalline
cohomology of the special fiber ofX. Moreover, the crystalline cohomology carries a Frobenius
action, something not seen by the étale cohomology alone becausewe are in the situation l “ p.

Grothendieck conjectured the existence of a “mysterious functor" which would allow one
to go from the étale cohomology to the crystalline cohomology. Fontaine reformulated this
conjecture in terms of a comparison theorem involving another period ring Bcris equipped with
an action of GK and a Frobenius-semilinear endomorphism with the following property.

Theorem 4.2.5 (Ccris theorem). SupposeX{K has good reduction with a proper smooth X{OK .
Then there is a canonical isomorphism

Hn
etpXK ,Qpq bQp Bcris – Hn

crispXk{W pkqqr1{ps bK0 Bcris

compatible with GK-actions, filtrations, and Frobenius actions.

The mysterious functor is none other than the fully faithful functor (requires extra work)

DBcris
: tcrystalline representationsu Ñ tFilteredK0 vector spaces ` Frobenius.u

Finally, if we are interested in varieties with semistable reduction2, there is yet another
period ring Bst, satisfying Bcris Ă Bst Ă BdR, that satisfies a suitable semistable comparison
theorem. These have additional structure, namely a monodromy action.

2proper and flat model that is regular, generically smooth, with special fiber a reduced divisor with normal
crossings
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4.2.4 Recap: connection to representations

Let us explain the meaning of crystalline representations and put all these statements in the
context of p-adic representations. We saw earlier that l-adic representations are reasonably
well-understood. For p-adic representations V P RepQp

pGKq, we classify them based off of
whether they satisfy an appropriate comparison theorem when tensored with various period
rings B. To be precise, define

DBpV q :“ pV bQp Bq
GK .

Definition 4.2.6 (B-admissibility). We say that V is B-admissible if the natural morphism

αV : DBpV q bBGK B Ñ V bQp B

is an isomorphism.

We can now call a representation Hodge-Tate if it is BHT-admissible, etc. We have that the
inclusions

tcrystalline representationsu Ă tde Rham representationsu Ă tHodge-Tate representationsu.

The various comparison theorems say that various representations coming from geometry are
crystalline, etc. In particular, if X has good reduction, then its associated representation is
crystalline. Moreover, DB respects the structures of the ring B. For example, when we apply
DBcris

, the filtration and Frobenius action on Bcris are reflected by that on what we get, which
is crystalline cohomology.

The semistable representations fit in too, along with potentially semistable representa-
tions, which are those that become semistable after a finite extension of the base field. We
have

tcrystallineu Ă tsemistableu Ă tpotentially semistableu “ tde Rhamu Ă tHodge-Tateu.

The equality, saying that all de Rham representations (and thus all those coming from ge-
ometry) are potentially semistable, is a recently obtained deep theorem known as the p-adic
monodromy theorem. It is an analogue of Grothendieck’s monodromy theorem.

4.3 More on the period rings

4.3.1 Cp and BHT

First, we revisit the definition of B-admissibility. A period ring B is aK-algebra that satisfies
various properties – all the period rings mentioned so far will work. Taking V P RepKpGKq
finite-dimensional and setting W “ B bK V , we say that V is B-admissible if any of the
equivalent conditions hold.

1. W is trivial; i.e. isomorphic to Bd as a GK-representation.

2. The natural morphism αW : B bBGK WGK ÑW is an isomorphism.

3. dimBGK WGK “ dimK V .

Then we have the following characterization of Cp-admissible representations.

Theorem 4.3.1. V is Cp-admissible if and only if IK acts on V through a finite quotient.

Thus, Cp-admissibility is equivalent to being potentially unramified. This theorem is not
easy to prove, and in particular requires the Ax-Sen-Tate theorem, which we recall below.
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Theorem 4.3.2 (Ax-Sen-Tate). We have CGK
p “ K and CppnqGK “ 0 for n ‰ 0.

Actually, it uses the fact that CGK
p “ K, and can be used to prove that CppnqGK “ 0 for

n ‰ 0. Indeed, the cyclotomic character is infinitely ramified, as it includes the action of
Kpµprq{K for all r, which comes from the inertia group.

Using this, we can also prove that Hodge-Tate weights are well-defined. Indeed, it suffices
to show that

dim HomGK
pCppmq,Cppnqq “ δmn.

But HomGK
pCppmq,Cppnqq “ Cppn´mqGK , so we are done by the Ax-Sen-Tate theorem.

4.4 BdR,Bcris,Bst

The construction is very complicated. See, we aren’t messing around:

Bµ,K Bcris,K Bµ,K Bmax,K BdR

Bµ Bcris Bµ Bmax

B`inf,K B`µ,K B`cris,K B`µ,K B`max,K B`dR

B`inf B`µ B`cris B`µ B`max

pµ ą p´ 1q p1 ď µ ď p´ 1q

(from Caruso’s article An Introduction to p-adic period rings)

We will only describe B`inf , at the base of all these, which itself is built up from Ainf
3 via

B`inf “ Ainf r1{ps.

Note that the Frobenius is a ring homomorphism onOCp{pOCp – OK{pOK . Then we letR
be the projective limit of the system

OCp{pOCp

x ÞÑxp
ÝÝÝÑ OCp{pOCp

x ÞÑxp
ÝÝÝÑ OCp{pOCp

x ÞÑxp
ÝÝÝÑ ¨ ¨ ¨

In other words,R is the perfection ofOCp{pOCp . THenwe defineAinf to be theWitt vectors
W pRq.

3the one ring to rule them all
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Part II

Ingredients of the proof
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Chapter 5

A prototype result

In this chapter we will explain the proof of a prototype result, Proposition 5.1.1. This state-
ment gives a general bound on the number of S-integer points of Y given various conditions.
We do not make many assumptions about Y here; in particular we do not take it to be the
Kodaira-Parshin family used for the proof of Faltings’s theorem. However, the proof strategy
and ingredients in this chapter will be present in the further applications of the Lawrence-
Venkatesh approach.

Notation:

• K is a number field

• GK “ GalpK{Kq

• S is a finite set of places ofK including the archimedean places

• O “ OS is the ring of S-integers ofK

• p a prime that does not divide any place of S

• Kw the completion ofK at some w P SpecO

• v somefinite place ofK such thatKv is unramified overQp and the rational prime p below
v is not 2 and does not lie in S.

5.1 Basic strategy

Let π : X Ñ Y be a proper smooth morphism over K. Suppose π extends to a proper smooth
morphism π : X Ñ Y of smoothO-schemes. Then we have a natural inclusion YpOq ãÑ Y pKq.
Given y0 P YpOq, we will use the Galois representation ρ on the p-adic étale cohomology ofXy0

to bound |YpOq|. Because there is a smooth model of Y , by definition Y has good reduction.
By p-adic Hodge theory, this implies that this representation is crystalline. Then we can use
p-adic Hodge theory again to translate crystalline representations into certain filtered vector
spaces, which we can then analyze through the period map and the Gauss-Manin connection.
We describe this in more detail in the following steps.

1. Prove that there are only finitely many isomorphism classes of semisimple representa-
tions ρ : GK Ñ GLdpQpq unramified outside S that come from geometry (i.e. satisfy Weil
conjectures). This was proven by Faltings as part of the original proof of the Mordell
conjecture.
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2. It now suffices to show that the map

y ÞÑ ρy,v : GKv ãÑ GK Ñ AutHq
etppXyqK ,Qpq

has finite fibers, wherewe chose an appropriate place v. Moreover, fixing some y0 P YpOq,
we may restrict our consideration to the y satisfying y ” y0 pmod vq.

3. The existence of a smooth proper model Y implies that implies that all the representa-
tions are crystalline, so by p-adic Hodge theory each y corresponds to a triple

pHq
dRpXy{Kvq, φv,Ψvpyqq.

Here φv is a Frobenius-semilinear automorphism acting on the de Rham cohomology and
the third entry is the Hodge filtration.

4. Use the Gauss-Manin connection to conclude an isomorphism

Hq
dRpXy0{Kvq – Hq

dRpXy{Kvq

for all y ” y0 pmod vq. This isomorphism respects the associated Frobenius actions, but
not the filtrations. A similar isomorphism holds in the complex case.

5. The filtration is determined by the period map. Show that the image of the period map
is large; it’s closure has dimension at least that of the monodromy Γ ¨ hι0.

6. Show that the set of possible filtrations is determined by the size of the centralizer of
the Frobenius. If this is smaller than monodromy, then the set of possible filtrations is a
proper Zariski closed subset of the period map.

Then we have the following general bound, which we will explain in more detail in the
following sections.

Proposition 5.1.1. With the notation above, suppose that

dimKv

´

Zpφ
rKv :Qps
v q

¯

ă dimC Γ ¨ hι0.

Then the set
ty P Y pOq|y ” y0 pmod vq, ρy semisimpleu

is contained in a properKv-analytic subvariety of the residue disk of Y pKvq at y0.

5.2 Finiteness of Galois representations

This theorem was proven by Faltings. As of now, a proof is not included here. I will probably
add it when I revisit this.

5.3 The complex and p-adic Gauss-Manin connections

Recall that we have extended π : X Ñ Y to a proper smooth morphism π : X Ñ Y. Recall that
the relative de Rham cohomology sheaf is defined by Hq “ Rqπ˚Ω

‚
X {Y . By a result of Deligne

(in his degeneration of the Leray spetral sequence paper), these are coherent and locally free
over the generic point of O. Enlarging S, we can assume they are locally free OY -modules.
Then by Katz-Oda, we obtain a Gauss-Manin connection

∇ : Hq Ñ Hq bOY
Ω1
Y{O.
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Fixing a basis tv1, . . . , vru forHq in a neighborhood of some y0 P YpOq, we may write∇vi “
řn
j“1Aijvj where Aij are sections of Ω1

Y . Recalling that ∇pfiviq “ dpfiqvi ` fi∇vi, we see that
a local section

ř

fivi is flat precisely when it satisfies the equation

dpfiq “ ´
ÿ

j

Ajifj .

We may write down a formal solution to this equation in power series, but we want it to
converge. That is why we introduce a finite place v of K. We pick it so that if it lies over
p P SpecZ, then p ą 2 and does not lie below anything in S, andKv{Qp is unramified. Denote
the residue field ofKv by Fv. Now consider the set

U :“ ty P YpOq|y ” y0 pmod vqu.

One checks that the solutions to the Gauss-Manin equation are convergent in this case,
and in fact we have an isomorphism

GM : Hq
dRpXy0{Kvq – Hq

dRpXy{Kvq

for all y P YpOvq with y ” y0 pmod vq (call this set Ωv). Similarly, there is an isomorphism in
the complex case for y P Y pCq sufficiently close to y0.

Finally, by results on crystalline cohomologywe also have an isomorphism to the crystalline
cohomology, which comes with a semilinear Frobenius action. The Gauss-Manin connections
is compatible with the Frobenius action.

5.4 Bounding period mappings with monodromy

Recall that the goal was to show that the y P U that give rise to isomorphic representations,
or filtered vector spaces with Frobenius, is small. Through the Gauss-Manin connection, we
know they all have isomorphic de Rham cohomologies with Frobenius, so it remains to analyze
their Hodge filtrations. The period mapping sends each Hodge filtration to a flag:

ΦC : ΩC Ñ HCpCq and Φv : Ωv Ñ HpKvq.

We are interested in analyzing the image of the p-adic period map. In particular, we are
interested in first bounding it below by the image of some monodromy representation. The
filtrations equivalent to that of y0 come from the centralizer of the Frobenius φv. Thus if the
dimension of this centralizer is less than that of monodromy, it cannot be Zariski dense in the
entire image of the period map.

We begin by bounding the image of the period map below by monodromy. In the complex
case, the period map extends to a map

ΦC : ĂYC Ñ HCpCq

that is equivariant for the monodromy action of π1pYCq on HCpCq. In some sense it ‘contains’
the monodromy action, since monodromy is essentially just restriction to the points of ĂYC
that project back down to y0. Let Γ be the Zariski closure of the image of the monodromy
representation. Fix the initial flag h0 “ ΦCpy0q. Then we have that

Γ ¨ h0 Ă ΦCpΩCq

where on the right we are taking the Zariski closure insideHC.

The key to relating the p-adic version to this comes from the fact that the coefficients of
the Gauss-Manin equation are defined overK, and the following lemma.
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Lemma 5.4.1. Suppose B0, . . . BN P Krrz1, . . . , zmss are absolutely convergent power series with
on common zero in both v-adic and complex discs Uv and UC. If Z Ă PNK is the subscheme cut out
by all polynomials killing pB0, . . . , Bnq, then the base-extension of Z toKv and C gives the Zariski
closures of BpUvq and BpUCq respectively.

Apply this to the power series of the Gauss-Manin connection. This implies that the di-
mension of the Zariski closure of ΦvpΩvq in HKv is at least the complex dimension of Γ ¨ h0.
In particular, if we have a subset Hbad

v Ă Hv of dimension less than that of monodromy, then
Φ´1
v pHbad

v q is contained in a properKv-analytic subset of Ωv.

We now recall the desired statement.

Proposition 5.4.2. With the notation above, suppose that

dimKv

´

Zpφ
rKv :Qps
v q

¯

ă dimC Γ ¨ hι0.

Then the set
ty P Y pOq|y ” y0 pmod vq, ρy semisimpleu

is contained in a properKv-analytic subvariety of the residue disk of Y pKvq at y0.

Proof. In light of the discussion above, the set of interest can be identifiedwith triples pVv, φv,Φvpyqq,
which are all isomorphic to one of a finite number of representatives pVv, φv, hiq. This means
that each such y must satisfy

Φvpyq P
ď

i

Zpφvq ¨ hi.

But we have Zpφvq Ă Zpφ
rKv :Qps
v q Ă AutKvpVvq. Since φ

rKv :Qps
v is a Zariski closed subset, the

earlier results apply to the given condition and give that the preimage lies in a proper Kv an-
alytic subvariety, as desired.
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Chapter 6

The S-unit equation

In this chapter we use our tools to prove a non-trivial theorem: the S-unit equation has finitely
many solutions. The proof is more involved than the prototype result of the previous chapter,
but still significantly simpler than the proof of Mordell conjecture. It can be thought of as a
proof-of-concept for the Lawrence-Venkatesh method.

6.1 Statement and initial reductions

We will explain a proof of the following theorem.

Theorem 6.1.1. The set
U “ tt P O˚S |1´ t P O˚Su

is finite.

We begin by enlarging S and K so that S contains the primes above 2 and K contains µ8.
It suffices to show the finiteness of U1, where U1 Ă U consists of non-squares. Let m be the
largest power of 2 dividing the order of the roots of unity inK. It suffices to check finiteness for
t not a square. Now there are only finitely many choices forKpt1{mq (??? Kummer + Hermite-
Minkwoski?), so in fact we can fix some cyclic degreem extension L and restrict our attention
to proving the finiteness of

U1,L “ tt P U1,Kpt
1{mq – Lu.

After choosing an appropriate prime v P SpecOK , we restrict even more to the t ” t0
pmod vq.

6.2 The chosen family, a variant of Legendre

The family we use is the composite
X Ñ Y 1 πÝÑ Y

where Y 1 “ P1
O ´ t0, µm,8u, Y “ P1

O ´ t0, 1,8u, π is the map u ÞÑ um, and X Ñ Y 1 is the
Legendre family. In particular, the geometric fiber Xt of t P Y pKq is the disjoint union of the
curves y2 “ xpx´ 1qpx´ t1{mq.

A point that we glossed over (??? fix this up!) is that when we pass to local Galois repre-
sentations, we need to make sure ρy is semisimple first before going to ρy,v. In this case, we
can show that there are only finitely many solutions pt, 1´ tq to the S-unit equation where the
corresponding Tate module fails to be simple. This is a separate argument from the rest of the
proof, and we do not give it here (for now ???).

Some comments on why we chose this family.
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6.3 Reduction to big monodromy

We now run our machine: p-adic Hodge theory to send the Galois representations associated
to points to filtered vector spaces with Frobenius, Gauss-Manin to identify fibers, and the pe-
riod mapping to analyze when two fibers are isomorphic.

Fix t0 P U1,L. We want to show the finiteness of t P U1,L with t ” t0 pmod vq. The cor-
responding Galois representation ρt on H1

dRpXt,Kv{Kvq is a 2-dimensional vector space over
Kvpt

1{mq and a 2d-dimensional vector space overKv. The Gauss-Manin connection forX Ñ Y
gives

H1
dRpXt,Kv{Kvq – H1

dRpXt0,Kv{Kvq

respecting the Frobenius action, as usual. The period mapping sends t to a Kvpt
1{mq-line, or

anm-dimensionalKv-subspace inH1
dRpXt,Kv{Kvq. We are interested in the dimension of the

orbit Zpφvq ¨hi. As before, this is contained in Zpφ
rKv :Qps
v q. By some general theory (Lemma 2.1

in LV), we have
dimKv Z ď pdim

Kvpt
1{m
0 q

H1
dRq

2 “ 4.

In particular, the set of t P U1,L congruent to t0 pmod vq is contained in Φ´1pZq, where
Z Ă GrKvp2m,mq has dimension at most 4. Then by the results of the previous chapter, it
suffices to show that the dimension of the orbit of the complex monodromy is greater than 4.

6.4 Big monodromy

The complex monodromy action is the following. The fiber over t P P1
C ´ t0, 1,8u is the union

of the elliptic curves Ez, with zm “ t. Then the monodromy representation is a map

π1pP1
C ´ t0, 1,8u, t0q Ñ Aut

˜

à

zm“t0

H1
BpEz,Qq

¸

.

Lemma 6.4.1. The Zariski closure of the image of monodromy Γ contains
ś

z SLpH
1
BpEz,Qqq.

Proof.

The corresponding orbit then contains all of
śm
i“1 PVi, which has dimensionm ě 8 ą 4 as

desired.
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Chapter 7

Proof of Faltings’s theorem modulo
facts about the Kodaira-Parshin
family

7.1 Paradigm of the proof

We use a similar paradigm as in the previous chapter, but the details are much more compli-
cated. The families we will considerX Ñ Y will be abelian-by-finite families, defined below.

Definition 7.1.1. An abelian-by-finite familyX Ñ Y is one that factors as

X Ñ Y 1
π
ÝÑ Y,

where π is finite étale andX Ñ Y 1 is a polarized abelian scheme.

We would also like there to be a smooth model over some S-integers O Ă K, given by
X Ñ Y 1 Ñ Y. For each point y P YK , we consider cohomology of the fiber H i

etppXyqK ,Qpq

along with its action of GK . The existence of the smooth model implies that such represen-
tations are crystalline, so they are associated to triples pHq

dRpXy{Kvq, φv,Ψvpyqq where φv is
a semilinear Frobenius action on Hq

dRpXy{Kvq and Ψvpyq is the Hodge filtration. If y ” y0

pmod vq, then the first entries for y and y0 are identified via the Gauss-Manin connection. If
two such triples are isomorphic, they must differ by some element in the centralizer of φ. We
would like to bound this from above so that we have finite fibers from points to isomorphism
classes of Galois representations, the latter of which has finite cardinality by a result of Falt-
ings.

If kpyq “ E, then the Frobenius acts on E{Kv, and we have dimKvpZpφqq “ dimE Zpφ
eq ď

dimEpH
q
dRpXy{Kvqq

2. The upshot is that we want the residue fields of the y to be large. This is
the purpose of the abelian-by-finite families: π ensures that the Galois orbits on its fibers are
large. This can be quantified in the following way.

Definition 7.1.2. LetGK act on E and let v be a place ofK at which the action is unramified. Let

sizevpEq “
number of elements of E that belong to Frobv -orbits of size ă 8

number of elements of E
.

If E Ñ E1 is a morphism of GK sets with all fibers having the same cardinality, then
sizevpEq ď sizevpE

1q.
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7.2 Monodromy of abelian-by-finite families

Generally speaking, we want to show that

centralizer ă monodromy ď image of period map

We can then conclude that bad points, corresponding to the centralizer, are contained in a
lower dimensional subset of Y . The second inequality has already been shown, so what we
need to do is show that the centralizer is small and monodromy is large. We make the second
statement precise in this section.

Begin with an abelian-by-finite family X Ñ Y 1 Ñ Y and take a complex point y0 P Y pCq
and consider the action of π1pY pCq, y0q on

H1
BpXy0 ,Qq –

à

πpỹq“y0

H1
BpXỹ,Qq.

Definition 7.2.1. We say that the family has full monodromy if the Zariski closure of the image
of π1pY, y0q under this representation contains the following product of symmetric groups:

pimage of π1pY pCq, y0qq Ą
ź

πpỹq“y0

SppH1
BpXỹ,Qq, ωq

where the symplectic group is with reference to the form ω defined by the polarization.

Let us briefly explain this last part. We recall some definitions, taken from Milne’s notes
on abelian varieties.

The dual abelian variety, also known as the Picard variety, is an abelian variety A_ that
parametrizes the elements of Pic0pAq. Let us give a proper definition.

Definition 7.2.2. Let pA_,Pq be a pair where P is an invertible sheaf on A ˆ A_. Assume that
P|Aˆtbu P Pic0pAbq and P|t0uˆA_ is trivial. Then A_ is the dual abelian variety of A and P is
the Poincaré sheaf if pA_,Pq satisfies the following universal property. For every other such pair
pT,Lq, there is a unique regular map α : T Ñ A such that p1ˆ αq˚P – L.

In more conceptual terms, pA_,Pq represents the functor sending a variety T to the set of
line bundles on A parameterized by T .

The construction of the dual abelian variety is a special case of the construction of the
Picard scheme, which was famously done by Grothendieck. However, even this special case is
rather involved.

Definition 7.2.3. A polarization λ of an abelian variety is an isogeny AÑ A_ such that, over k,
we have that λ becomes of the form λL for some ample sheafL onAk. If the degree of a polarization
is 1, then λ is called a principal polarization.

Recall that λL : Apkq Ñ PicpAq is defined by λLpaq “ t˚aL b L´1. In fact, Pic0pAq may be
defined as those L for which λL “ 0.

But this may not be too helpful for our purposes. Over C, we can describe polarizations as
follows. Let L Ă Cn be a lattice. Then the torus Cn{L is an abelian variety if it has a Riemann
formH, which is a positive definite Hermitian form on V such thatE “ imH is integer valued
on L. In such a case, we have

Hpu, vq “ Epiu, vq ` iEpu, vq

where E is a symplectic form.
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Remark. A principal polarization is when E can be represented as the standard symplectic
matrix with I and ´I.

Remark. One can see where this form comes from by looking at Jacobians of curves over C.
One has the intersection pairing on the first homology, and one obtains the dual pairing on
the first cohomology by the cup product. The Hermitian form and polarization then follow
from integrating. ???

In our setting, we have a symplectic formω defined by the polarization of the abelian variety
Xỹ. Then after fixing a basis, SppV, ωq is given by the matricesM acting on V with V ᵀωM “ ω.
We will explain why the image of monodromy lies in this symplectic group in a future section.
???

7.3 Properties of the Kodaira-Parshin family

In future sections, we will construct a specific abelian-by-finite familyXq ÝÑ Y 1q
π
ÝÑ Y for each

prime q ě 3. This is called the Kodaira-Parshin family for the group Affpqq. Let us list the
properties we need.

1. It has full monodromy.

2. The relative dimension dq ofXq Ñ Y 1q is given by dq “ pq ´ 1qpg ´ 1
2q.

3. For each y P Y pKq there is aGK-equivariant identification of π´1py0qwith the conjugacy
classes of surjections πet1 pYC ´ y, ˚q� Affpqq that are nontrivial on a loop around y.

These will be proven in future sections, but let us explain what the third means.

Definition 7.3.1. Let Affpqq Ď SympFqq be the subgroup of linear permutations of Fq, defined by
x ÞÑ ax` b where a P F˚q , b P Fq.

Then we have an exact sequence

0 Ñ F`q Ñ Affpqq Ñ F˚q Ñ 0,

and we have Affpqq – F`q ¸ F˚q .

Nowwe can viewπet1 pYC´y0, ˚q as the profinite completion of the free grouponx1, x
1
1, . . . , xg, x

1
g

with a loop around y0 corresponding to the conjugacy class of rx1, x
1
1srx2, x

1
2s ¨ ¨ ¨ rxg, x

1
gs. There-

fore, the set of surjections πet1 pYC ´ y, ˚q� Affpqq are identified with the following set.

Let f : Affpqq2g Ñ F`q be given by

fpyq “ fpy1, y
1
1, ¨ ¨ ¨ , yg, y

1
gq “ ry1, y

1
1s ¨ ¨ ¨ ryg, y

1
gs.

Now consider the set
T “ ty|fpyq ‰ 0, y generates Affpqqu.

There is a map g : T Ñ rF˚q s2s given by sending each coordinate ax ` b ÞÑ a. The image of g
consists of those p2gq-tuples of F˚q which generate F˚q , and it is easily shown that any point in
the image has fiber of size q2g´1pq ´ 1q.
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7.4 Proof of Faltings’s theorem

Assuming the results stated in the previous section, we can now prove Faltings’s theorem.

Theorem 7.4.1. Let Y be a curve over the number fieldK with genus g ě 2. Then Y pKq is finite.

We outline the proof in the following steps.

1. Reduce to showing that all y have fibers of size bounded above by 1
dq`1 . That is, prove

that the cardinality of such points is finite.

2. Use algebraic number theory to choose appropriate q and v. Form the associated Kodaira-
Parshin family.

3. Obtain an appropriate map of GK-sets

π´1pyq Ñ H1
etpYK ,Z{pq ´ 1qq “M.

It suffices to show that sizev of the image I is less than 1
dq`1 .

4. Use the perfect Weil pairing on M and the Frobenius at v to bound the number of ele-
ments ofM belonging to Frobenius orbits of size less than 8.

5. Use basic inequalities to bound sizevpIq given the previous result.

As usual, let Y be a curve overK of genus g ě 2. LetX Ñ Y 1
π
ÝÑ Y be an abelian-by-finite

family over Y , with full monodromy. Let d be the relative dimension ofX Ñ Y 1. Suppose that
X Ñ Y 1

π
ÝÑ Y admits a good model over the ring O of S-integers ofK. Let v R S be a friendly

place ofK.
Step 1. This is the following proposition.

Proposition 7.4.2 (Proposition 5.3). The set

Y pKq˚ :“ ty P Y pKq| sizevpπ
´1pyqq ă

1

d` 1
u

is finite.

This proof is all of Section 6 in the Lawrence-Venkatesh paper. It is a more difficult version
of the prototype result proved earlier. We will not prove it here. ??? Assuming this, we need to
chose q and v in such a way that v is friendly and

sizevpπ
´1pyqq ă

1

d` 1

for all y P Y pKq.
Step 2. Let us state the precise conditions we want.

1. q ´ 1 is not divisible by 4 or by any or primes less than 8rK : Qs.

2. The Galois closure k1 ofK is linearly disjoint from Qpζq´1q over Q.

3. 8¨2g`1

pq´1qg ă
1

pg´1{2qpq´1q`1 .

and

1. v is friendly.

2. pqv, q ´ 1q “ 1 (recall that qv is the cardinality of the residue field at v).
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3. For any odd prime factor r of q ´ 1, the class of qv in pZ{rq˚ has order at least 8.

For q, note that for the second condition, if there is some common subfield greater thanQ,
then a prime that ramifies in it must divide both q´ 1 and the discriminant. Thus the first and
second conditions can be satisfied by some admissible congruence condition. Condition 3 is
satisfied when q is sufficiently large. Thus Dirichlet’s theorem suffices. For v, it is a bit harder
but the Chebotarev density theorem suffices.

Step 3. The desired map is simply the one we described at the end of the previous section.
Indeed, for y P Y pKq, property 3 of the Kodaira-Parshin family identifies π´1pyq with the set

T “ ty|fpyq ‰ 0, y generates Affpqqu.

Moreover, the surjectionAffpqq Ñ F˚q gives rise to themap g : T Ñ pF˚q q2s –M :“ H1
etpYK ,Z{pq´

1qq.
This can also be written as the composite

T : π´1pyq Ñ H1
etpYK ,Affpqqq Ñ H1

etpYK ,Z{pq ´ 1qq,

and the key is that this is a GK-equivariant map. Its image I also has fibers of the same size,
so as noted in the first section of this chapter, we have sizevpπ

´1pyqq ď sizevpIq, so we just need
to show that sizevpIq ď

1
dq`1 .

Step 4. To show that sizevpIq ď
1

dq`1 , we will first show that the Galois orbits on M are
large. In the following step we will pass to I. We use the fact thatM is equipped with a Galois-
equivariant Weil pairing that is perfect.

x´,´y : M ˆM Ñ µ_q´1 :“ Hompµq´1,Z{pq ´ 1qZq.

Recall that for elliptic curves, we can define this Weil pairing as follows. ???
Since this pairing is Galois-equivariant, if we take T : M ÑM to be the map onM coming

from the Frobenius at v, we have

xTv1, T v2y “ q´1
v xv1, v2y

since the Frobenius acts on µq´1 by raising to the qv power.

We would like to bound the size of
Ť8
i“1 kerpT i´ 1q. Note that ifm1,m2 P kerpT i´ 1q, then

pq´iv ´ 1qxm1,m2y “ 0 ñ 2xm1,m2y “ 0 by our choices of q and v. However, in general if we
have a nondegenerate pairing A ˆ A Ñ Q{Z with a subgroup B Ă A satisfying xB,By “ 0,
then |B| ď

a

|A|. Applying this to A “ 2M , we get

|2 kerpT i ´ 1q| ď

ˆ

q ´ 1

2

˙g

ñ |

8
ď

i“1

kerpT i ´ 1q| ď 8 ¨ 2gpq ´ 1qg.

This is the desired bound for the number of elements of M with Frobenius orbits of size at
most 8.

Step 5. The quantity sizevpIq can now be bounded using the above bound and the fact that
I consists of most of M . Recall that I is the image of gpT q in pF˚q q2s, which consists of all
generating p2gq-tuples in Z{pq ´ 1q. This number is just

pq ´ 1q2g
ź

p|N

p1´ p´2gq ě
1

2
pq ´ 1q2g.
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In total, we have seen there are at most 8 ¨ 2gpq ´ 1qg elements with Frobenius orbits of size at
most 8. Thus, we finally have

sizevpπ
´1pyqq ď sizevpIq ď

8 ¨ 2gpq ´ 1qg

1
2pq ´ 1q2g

ă
1

pg ´ 1{2qpq ´ 1q ` 1
“

1

pg ´ 1{2qpq ´ 1q ` 1
,

as desired. Note that the last inequality not only uses the fact that we choose q large (property
3), but also that g ą 1.
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Part III

The Kodaira-Parshin family
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Chapter 8

Construction of the Kodaira-Parshin
family

The Kodaira-Parshin family was originally used to reduce the Mordell conjecture to the Sha-
farevich conjecture. For each point P P Y pKq, it gives a finite morphism of curves YP Ñ Y
ramified only at P with appropriate good reduction properties. We will construct a variant of
this family. As described in the previous section, we want to construct an abelian-by-finite
family

Xq Ñ Y 1q Ñ Y,

where as usual Y {K is a curve of genus at least 2 and q is some prime. Briefly, the morphism
Y 1q Ñ Yq will be a Hurwitz space with group Affpqq for Y , and Xq Ñ Y 1q will be the reduced
relative Prym of the associated universal Affpqq-cover Z Ñ Y 1q ˆ Y .

8.1 Branched covers of P1

There are two classical Hurwitz functors:

Hn,rpSq “ tf : X Ñ P1
S | deg f “ n; f simple with r branch pointsu

and
Hr,GpSq “ tf : X Ñ P1

S | f Galois with group G and has r branch pointsu

equipped with an isomorphism τ : AutP1
C
pXq – G.

There are many possible variants, and it seems that not too much is known. (!) In fact, for
the Kodaira-Parshin family be interested in the case not of the projective line, but in the case
of our curve Y . Still, for curiosity’s sake, we include here a digression on branched covers of
P1.

8.1.1 Dessins d’enfants

Let us explain what dessins d’enfants are and how they relate to algebraic curves.

Definition 8.1.1. A dessin d’enfant is a triple X0 Ă X1 Ă X2 where X2 is some real surface,
X0 is a finite set of vertices, X1zX0 is a finite set of disjoint segments, and X2zX1 is a finite set of
disjoint open cells. Furthermore, as a graph the dessin must be bipartite.

A clean dessin is one where we may alternately label the vertices with 0 and 1 such that each
vertex labeled 1 has degree 2.

The connection to algebraic curves defined over Q is given by Belyi’s theorem.
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Theorem 8.1.2 (Belyi). A complex algebraic curve may be defined over Q if and only if it admits
a finite morphism to P1

C unramified outside t0, 1,8u.

Remark. Technically, Belyi’s theorem is the ‘only if’ direction. The ‘if’ direction actually re-
quires more work to prove, but it was known before the ‘only if’ direction.

So, let us begin with an algebraic curve X with some f : X Ñ P1
C unramified outside

t0, 1,8u. We know by Belyi’s theorem that it may be defined over Q, and thus there is an
interesting action ofGQ on it. This is a crucial point used in Grothendieck’s theory of dessins1,
but here we will not go into it and instead focus onmore basic combinatorial aspects. Consider
drawing the preimage of the line segment r0, 1s onX. Then we get a dessin d’enfant, with the
preimages of8 corresponding to the faces whichX is subdivided into.

Now let’s say we want to go in the other direction: from the dessin to the algebraic curve.
Note that we can, for example, find the degree of f by the Riemann-Hurwitz formula. To get
the curve though, we first pick an edge E P X1 and consider the monodromy action on it.
Indeed, viewing XzX0 as a covering space of P1

C ´ t0, 1,8u, fix a basis for π1pP1
C ´ t0, 1,8uq

using a loop l0 around 0 and a loop l1 around 1. In fact, we want to use a ‘tangential base point’
from 0 to 1, which works since the interval is contractible. Then l0 corresponds to rotation of
0 counter-clockwise around 1 and l1 corresponds to rotation of 1 counter-clockwise around 0.
Let N ď G be the stabilizer of E. This is well-defined up to conjugacy, and by the correspon-
dence between covering spaces and conjugacy classes of subgroups of the fundamental group,
we obtain the covering XzX0 Ñ P1

C ´ t0, 1,8u. Thus we obtain a bijection between isomor-
phism classes of finite coverings branched only at t0, 1,8u and isomorphism classes of dessins.

We are not too interested in what structure map f : X Ñ P1
C is used. Therefore we may

compose f with a function, say z ÞÑ 4zp1 ´ zq, to ensure that the ramification indices over 1
are all 2, which corresponds to the vertices labeled 1 all having degree 2. These are the clean
dessins. The purpose of studying clean dessins is to relate them to polyhedral combinatorics.
Indeed, if you draw any dessin on a surface forgetting the bipartite condition, we can label all
the vertices 0, and then bisect the edges and label them 1. This gives a clean dessin! With
the same process described above, we obtain a bijection between isomorphism classes of clean
dessins and isomorphism classes of clean Belyi pairs (i.e. where the covering has ramification
indices 2 over the point 1), with the knowledge that any algebraic curve overQ is part of a clean
Belyi pair.

8.1.2 Polyhedral combinatorics

Take some graph G embedded on some real surface X. We call the resulting configuration
pX,Gq a map. A map has faces, edges, and vertices. Define a flag of pX,Gq to be a choice of
a face, an edge of that face, and a vertex of that edge. Now whatever pX,Gq we take, there is

1In fact, the birth of anabelian geometry can be traced back to this!
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going to be a transitive action on the set of flags by the cartographic group2

C2 “ xσ0, σ1, σ2|σ
2
0 “ σ2

1 “ σ2
2 “ pσ0σ2q

2 “ 1y.

These operations σ0, σ1, σ2 correspond to the reflection of the chosen vertex, edge, and face,
respectively. There is also an action of the oriented cartographic group

C`2 “ xρv, ρf , ρe|ρ2ρ0 “ ρ1, ρ
2
1 “ 1y

where ρ0 “ σ1 ˝ σ2, ρ1 “ σ0 ˝ σ2, ρ2 “ σ0 ˝ σ1. Thus, ρ0, ρ1, ρ2 correspond to the rotation of the
flag around the vertex, edge, and face, respectively. Draw a picture!

‚

‚ ‚ ‚

‚ ‚
p

An alternate way of presenting this group is by the relations ρ0ρ1ρ2 “ 1, ρ2
1 “ 1. We see

that this is precisely the fundamental group of P1 minus 3 points quotiented by l21 “ 1, so these
polyhedra correspond precisely to he algebraic curves described earlier.

8.1.3 Regular polyhedra

Now when do we get a regular polyhedron? Precisely when its automorphism group acts tran-
sitively on its flags. Note that this is equivalent to our structuremap f : X Ñ P1

C being a Galois
covering! We see that every pair of integers p, q ě 1 gives rise to a unique connected map by
imposing the additional relations

ρp0 “ ρq2 “ 1

on its automorphism group. We see that, after pinning down a flag, this automorphism group
determines the polyhedron. In particular, p is the number of faces to a vertex and q is the
number of edges to a face. Immediately we see hat not all the regular polyhedra we get in this
way are Platonic solids. Rather, only the compact ones are; i.e. those realizable on a sphere.
These are the oneswith finite automorphismgroup. The others give regular tilings of either the
Euclidean plane or the hyperbolic plane. In fact, this approach leads to an easy classification
of Platonic solids! Indeed, one just needs the sum of the angles

πpp´ 2qq

p
ă 2π

to get a Platonic solid. If it is equal to 2π then we get a tiling of the Euclidean plane and if it is
greater than 2π we get a tiling of the hyperbolic plane.

Alternatively, we could have calculated this with the Riemann-Hurwitz formula. If there
are b branch points, then we have

2d´ 2 “
ÿ

pey ´ 1q “ bd´ |ramification points| “ bd´
ÿ d

ey
.

We thus easily obtain the ramification indices and the degree, but not the explicit realizations
from the previous approach. Note that anotherway is to find the finite subgroups ofPGLp2,Cq,

2Beware, my conventions differ slightly from Grothendieck’s in the Esquisse; here I consider the elements as
operators so I multiply in the opposite direction.
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which can be identified with the finite subgroups of SOp3,Rq.

As noted by Grothendieck, it is important not to confine ourselves to the cases where p and
q are finite. Indeed, by pondering the universal formulas that are used to define the reflections,
we not only get new regular polyhedra but also obtain a method for specializing to character-
istic p in a meaningful way! Or, even considering regular polyhedra over any base ring. Indeed,
the formulas for the fundamental reflections σi can be written in terms of universal for-
mulae in terms of the cosines of the angles of the polyhedron!

Fixing a flag v0, v1, v2, we have

σ0pv0q “ 2v1 ´ v0,

σ1pv1q “ p1´ cos θqv0 ´ v1 ` p1` cos θqv2,

σ2pv2q “ p1´ cos γqv1 ´ v2.

The data of the polyhedron is completely contained in these values of cos θ and cos γ. Thus,
taking any base field, we may substitute any pair of values for them and obtain a regular poly-
hedron! Note that there will be many of these which all correspond to p “ q “ 8. In particular,
we may specialize from the field R to finite fields! For instance, in the case of the octahedron,
we have cos θ “ 1{2, cos γ “ ´1{3. For 6 - q, we see that we can specialize these values to Fq,
and therefore obtain an octahedron over Fq! This has the same automorphism group as the
ordinary octahedron3.

However, as Grothendieck writes, the situation is entirely different if we start with an infi-
nite (i.e. Euclidean/hyperbolic tilings) regular polyhedron! Then when we specialize it to Fq,
the fact that polyhedra over finite fieldsmust necessarily befinite implies thatwe get an infinite
number of finite regular polyhedra as q varies, whose automorphism group varies arithmeti-
cally with q! One of the questions Grothendieck mentions in connection with this is: which
algebraic curves come from regular polyhedra over finite fields?

8.1.4 Moduli

At last we come to the question: is there a meaningful way of interpreting these phenomenon
through moduli? Indeed, consider the functor

FgpSq “ tX
f
ÝÑ P1

S | gX “ g, f Galois, degpD{Sq “ 3u.

8.2 Hurwitz spaces

8.2.1 The usual Hurwitz functor

Recall the Hurwitz functor:

Hr,GpSq “ tpf, τq|f : X Ñ P1
S | f Galois with group G and has r branch points, τ : AutP1

C
pXq – Gu.

Say we have constructed a coarse moduli space for it. Note that automorphisms of the pair
pf, τq are given by the center ofG. Thus if the center ofG is just the identity, then there are no
automorphisms. Apparently this means we have a fine moduli space???

3Grothendieck seems to claim this; I haven’t checked it.
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Theorem 8.2.1. There exists a schemeH, smooth and of finite type over Z, that is a coarse moduli
space for the functorHr,G. It is a fine moduli space when G is center-free.

Let us briefly describe how this can be proven. We begin with constructing it analytically
overC, which is not so bad. This amounts to putting an appropriate manifold structure onHC,
which as a set is the collection of all Galois covers with r branch points and with Galois group
G. The hard part is descending it onto Z. Anyways, the construction follows the same model
as the construction of the universal covering space.

Note that as a set, HC corresponds to pairs of r points and surjective homomorphisms
π1pP1

C ´ r pointsq � G up to inner automorphism of G. Fix a cover f with branch locus
D “ tt1, . . . , tru and surjective homomorphism θ : π1pP1

C ´ r pointsq � G. Let tCiu be disks
around the points of the branch locus that do not intersect each other. Picking another branch
locusD1 where we just pick different points in the disks Ci, we get a natural isomorphism

π1pP1
C ´Dq – π1pP1

C ´D
1q.

Then define the topology on HC to be generated by Hpf, Ciq which correspond to elements
with branch locus in the Ci and whose homomorphisms agree after composition up to inner
automorphism of G. Using the Riemann existence theorem, one shows that this works.

8.2.2 Higher genus case

Lawrence and Venkatesh construct a Hurwitz space for Y {K where the genus of Y is at least 2.
They do not explicitly state that this is a coarse/fine moduli space...

Proposition 8.2.2. Let Y {K have genus at least 2 and let G be a center-free finite group. Then
there is a curve Y 1{K equipped with an étale map π : Y 1 Ñ Y and a relative curve Z Ñ Y 1 with
the following properties.

1. Y 1 parameterizes G-covers of Y branched at a single point.

2. Z gives the universal G-cover of Y branched at a single point.

Let us explain these a bit more. The idea is that Y 1 represents the functor

F pSq “ tX Ñ Y ˆK S|branched at 1 point, Galois with group Gu.

There is also an implicit isomorphism to G. Note that this is essentially the Hurwitz func-
tor H1,G, except we have replaced P1 with Y . Note that since there is only one branch point,
there is an identification between the space of points on Y with Y , which is where the map
π : Y 1 Ñ Y comes from. The set π´1pyq gives the set of G-conjugacy classes of surjections
π1pY ´ y, ˚q� G nontrivial on a loop around y.

The schemeZ comes from taking theuniversal family. This occurswhenwe look atH1,GpY
1q

and take the identity, which corresponds to aG-coverZ Ñ Y 1ˆK Y . It is a covering space away
from the graph of π, and each fiber Zy1 Ñ Y is ramified exactly at πpy1q.

The analytic construction follows the same pattern as with the previous Hurwitz functor.
One takes Y 1 as a set to be the union of all Spyq, for y P Y pCq, ofG-covers of Y ramified only at
y. This is equipped with a covering map e : Y 1 Ñ Y which gives Y 1 the structure of a Riemann
surface. Then Z is taken to be the union of the corresponding curves Xy1 for y1 P Y 1, and we
obtain a map f : Z Ñ Y 1 ˆ Y . This last map, on f : Xy1 Ñ Y , is given by py1, fq. This can all be
made algebraic through GAGA theorems, and as before the difficulty lies in the descent toK.
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8.3 Prym varieties

8.3.1 General theory

Definition 8.3.1. Given a morphism f : C1 Ñ C2 of curves over an algebraically closed field, the
associated Prym variety is the cokernel of the induced map

Pic0pC2q Ñ Pic0pC1q

on Jacobians.

In our setting, if we have anAffpqq-coveringC1 Ñ C2, we can take the subgroupF˚q Ă Affpqq
to factor it into a degree q´ 1 covering followed by a degree q covering C1 Ñ C 11 Ñ C2. We can
then take the Prym variety of this second covering

cokerpPic0pC2q Ñ Pic0pC1qq.

Looking at their images in Pic0pC1q, we see that these are the connected components of the
identities of Pic0pC1q

Affpqq and Pic0pC1q
F˚q . This is ??? an abelian variety of dimension p2g´1q ¨

q´1
2 .

8.3.2 The Kodaira-Parshin family for Affpqq

For a prime q, we recall we want to construct the Kodaira-Parshin family for Affpqq as an
abelian-by-finite family Xq Ñ Y 1q

π
ÝÑ Y . The finite étale map π : Y 1q Ñ Y is given by the

Hurwitz spaces for the center-free group Affpqq, as described in the previous section. The pre-
vious section also gives a map

Zq Ñ Y 1q ˆ Y

from the universal G-cover of Y . Recall that the fiber over y1 P Y gives the associated Affpqq-
cover pZqqy1 Ñ Y branched at y. Thus Zq Ñ Y 1q is a relative curve.

The desired sequence of morphisms giving the Kodaira-Parshin family for Affpqq

Xq Ñ Y 1q Ñ Y

comes from the reduced relative Prym of Zq Ñ Y 1q ˆ Y . Basically, this means that for every
y1 P Y 1q , the fiber of Xq Ñ Y 1q is the Prym of pZqqy1 Ñ pY 1q ˆ Y qy1 “ ty

1u ˆ Y . It is possible to
make these fit together into an abelian schemeXq Ñ Y 1q with a symmetric and fiberwise ample
line bundle through a some further construction given by Lawrence-Venkatesh.
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Chapter 9

Monodromy of the Kodaira-Parshin
family

9.1 Background on mapping class groups

See Benson/Farb. S surface with b boundaries and n punctures. Then χpSq “ 2´ 2g ´ b´ n. If
χ “ 0 then S admits a Euclidean metric, and if χpSq ă 0 then S admits a hyperbolic metric. In
the hyperbolic case, closed curves are homotopic to geodesics.

Simple closed curves. Prop. 1.4: primitive elements of π1pSq. 1.2.5: homotopy vs isotopy.
Essential (nontrivial in π1 curves: isotopic if homotopic. 1.2.6: isotopy of surfaces.

2.1: definition of MCGpSq. Lemma 2.1: MCGpD2q,MCGpS0,1q,MCGpS2q trivial. 2.2.2-
2.2.4: MCGpS0,3q – S3,MCGpS0,2q – S2,MCGpAq – Z,MCGpT 2q – SLp2,Zq. 2.3: The
Alexander method.

3: Dehn twists definition. T 2 example. Nontriviality, infinite order, braid relation.

4: Dehn-Lickorish theorem. Humphries generators.

9.2 A topological reformulation of having full monodromy

Setup

We recall that we constructed the Kodaira-Parshin family as an abelian-by-finite family

Xq Ñ Y 1q
π
ÝÑ Y,

and used it to prove Faltings’s theorem under the condition that it possesses full monodromy.
Briefly, recall that π : Y 1q Ñ Y is a finite étale map whose fiber over a point y classifies Galois
Affpqq-covers branched only at y. If Z is the universal Affpqq-cover of Y , then the fiber over
some point y1 ÞÑ y gives an Affpqq-covering Zq,y1 Ñ Y ramified precisely at y. The subgroup
taxu Ă Affpqq gives a degree q covering Cy1 Ñ Y , whose Prym is the abelian variety Xq,y1 .
These fit together to form the abelian schemeXq Ñ Y 1q . In the language to come, Zq,y1 Ñ Y is
a singly branched Affpqq-cover, while Cy1 Ñ Y is a singly ramified Affpqq-cover.

We recall what having full monodromymeans. Begin with an abelian-by-finite familyX Ñ

Y 1 Ñ Y and take a complex point y0 P Y pCq and consider the action of π1pY pCq, y0q on

H1
BpXy0 ,Qq –

à

πpỹq“y0

H1
BpXỹ,Qq.

52



Caleb Ji Faltings-Lawrence-Venkatesh Fall 2021

Definition 9.2.1. We say that the family has full monodromy if the Zariski closure of the image
of π1pY, y0q under this representation contains the following product of symmetric groups:

pimage of π1pY pCq, y0qq Ą
ź

πpỹq“y0

SppH1
BpXỹ,Qq, ωq

where the symplectic group is with reference to the form ω defined by the polarization.

The goal will be to prove the following theorem.

Theorem 9.2.2. Let Z1, . . . , ZN be the (isomorphism classes of) singly ramified Affpqq-covers of
Y . Then the map

Mon : π1pY, yq0 Ñ
N
ź

i“1

SppHPr
1 pZi, Y qq

has Zariski-dense image.

Affpqq-covers – not to be confused with (Galois) Affpqq-covers

Now let us define the terms and see why this implies that the Kodaira-Parshin family has full
monodromy.

Definition 9.2.3 (Affpqq-covers). Let Y be a surface. Then an Affpqq-cover of Y is defined to be
a connected surface Z with a degree q covering map π : Z Ñ Y whose monodromy representation
has image Affpqq Ă Sq.

Let y P Y be a point. Then a singly ramified Affpqq-cover of Y is the compactification of an
Affpqq-cover of Y ´ tyu whose monodromy around y is nontrivial, and hence a q-cycle.

By the Riemann-Hurwitz formula, a singly ramified Affpqq-cover of Y has genus gq ´ q´1
2 .

Recall that covering spaces are determined by their monodromy representations. Precisely,
an Affpqq-cover of Y is determined by an Affpqq-conjugacy class of maps π1pY, y0q � Affpqq.
Similarly, the singly ramified Affpqq-covers of Y are given by representatives Covi : π1pY ´
tyu, y0q� Affpqq for 1 ď i ď N . Let Z1, . . . , ZN be these singly ramified Affpqq-covers of Y (up
to isomorphism).

9.3 The reformulation explained

The representation on primitive homology

We still have not explained what the mapMon is, or even what π1pY, y0q is. We do so now. Note
thatMCGpY q acts on the set of isomorphism classes of Affpqq-covers of Y . This action can be
algebraically viewed as the outer actionMCGpY q Ñ Outpπ1pY, y0qq

1.

For everyAffpqq-cover ofZ, defineMCGpY qZ to be the stabilizer of pZ, πq under this action.
Because Affpqq has trivial centralizer in Sq, we obtain a well-defined homomorphism

MCGpY qZ Ñ MCGpZq,

where we have the obvious commutative diagram with π. Next, we note that MCGpZq acts on
H1pZq in a way that preserves its symplectic intersection form. Moreover, since π : Z Ñ Y is
a covering, we have a decomposition

H1pZ,Qq “ π˚H1pY,Qq ‘ kerpπ˚ : H1pZ,Qq Ñ H1pY,Qqq.
1A variant of this observation is crucial in anabelian geometry
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We define
HPr

1 pZ, Y ;Qq :“ kerpπ˚ : H1pZ,Qq Ñ H1pY,Qqq.

As we will see, Pr can stand for both ‘primitive’ and ‘Prym.’ We assume Q coefficients hence-
forth. One sees that the mapping class group preservesHPr

1 pZ, Y q, and thus we obtain a mon-
odromy map

Mon : MCGpY qZ Ñ SppHPr
1 pZ, Y qq.

In our context, we are actually taking Y right above to be the punctured surface Y ´tyu, and
the Zi are the compactified singly ramifiedAffpqq-covers. Note these have the same homology
without compactification, so we can invokeMon as before.

Finally, we have an embedding π1pY, yq ãÑ MCGpY ´ tyuq. We define π1pY, yq0 to be the
intersection of the image of π1pY, yq with the intersectionMCGpY ´tyuq0 “

ŞN
i“1 MCGpY qZi .

Restricting gives the monodromy map

Mon : π1pY, yq0 Ñ SppHPr
1 pZ, Y qq.

Back to the full monodromy theorem

We again recall the Kodaira-Parshin family. We have a family Zq Ñ Y 1q Ñ Y , and for y1 P Y 1q
above y P Y , we take the fiber and obtain a singly branched Affpqq-cover

Zq,y1 Ñ Y.

This is a Galois, degree qpq´ 1q cover. Taking the associated degree q cover, we obtain a singly
ramified Affpqq-cover

Cy1 Ñ Y.

We have that Cy1 is isomorphic to one of the covers Zi. Now for the actual Kodaira-Parshin
familyXq Ñ Y 1q Ñ Y , we have an isogeny

Xq,y1 Ñ PrympZi Ñ Y q.

Looking at rational homology, this precisely gives

HPr
1 pZi, Y ;Qq – H1pXq,y1 ,Qq.

Moreover, the monodromy representation coincides with that coming from π1pY, yq0 in the
second definition of Mon. Thus it suffices to prove Theorem 9.2.2 to show that the Kodaira-
Parshin family has full monodromy.

Reduction from the fundamental group to a mapping class group

Recall that we first defined

Mon : MCGpY ´ tyuqZ Ñ SppHPr
1 pZ, Y qq.

By taking their intersections we have a map

Mon : MCGpY ´ tyuq0 Ñ SppHPr
1 pZ, Y qq.

and then restricted it to π1pY, yq0. We claim that we can just work withMon : MCGpY ´tyuq0;
that is, to show that the image of π1pY, yq0 is Zariski-dense, we just need to show that the im-
age ofMCGpY ´ tyuq0 is Zariski-dense.
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Theorem 9.3.1 (Birman exact sequence). Let Y be a surface, possibly with punctures and/or
boundary, with χpY q ă 0. Then there is an exact sequence

1 Ñ π1pY, yq Ñ MCGpY, yq Ñ MCGpY q Ñ 1.

Then one shows that the image of π1pY, yq0 Ñ SppHPr
1 pZi, Y qq on any of theN factors is not

contained in the center of the image. Then since π1pY, yq0 is a normal subgroup of MCGpY ´
tyuq0 and the symplectic groups are almost simple, we conclude that it suffices to show that
the monodromy map

Mon : MCGpY ´ tyuq0 Ñ SppHPr
1 pZ, Y qq

has Zariski-dense image.

9.4 A normal form for singly ramified Affpqq-covers

We would like to put the singly ramified Affpqq covers into a nice normal form where they are
trivial over Sg´1 and nontrivial over T , where Y “ Sg´1#T . Precisely, write S˝g´1 “ Sg´1 ´D
and T ˝ “ T ´D1 and identify the boundaries of the open disks D, D1 to form Y . This can be
done so that the ramifiction point y is in the interior of T ˝, the cover Z Ñ Y splits over S˝g´1,
and when it is restricted to T ˝ extends over T (i.e. has trivial monodromy around the boundary
of T ). Furthermore, letting β1, β2 be a standard basis for pπ1pT ´ tyu, ˚q, monodromy sends β1

to a generator of F˚q Ă Affpqq and β2 to a generator of F`q Ă Affpqq.

We only give the general idea. A singly ramified Affpqq-cover Z Ñ Y is associated to a
surjection π1pY ´tyu, y0q� Affpqq. Themap on abelianizationsH1pY,Zq Ñ F˚q can be induced
by intersecting with a simple closed curve α1. Cut Y along two such curves α`1 , α

´
1 on either

side of y. The result is a surface Y 1 with boundary, Use Poincare duality

H1pY
1, BY 1;Zq ˆH1pY

1;Zq Ñ Z

to construct a ‘unit’ element α2 P H1pY
1, BY 1;Zq. Cutting Y 1 along α2, we obtain the desired

Sg´1.

9.5 Dehn twists and completion of the proof

We sketch the completion of the proof. We use the following fact, which can be viewed as an
algebraic version of Goursat’s lemma.

Proposition 9.5.1. Suppose G is an algebraic subgroup of SppV qN such that

• Each projection πi : GÑ SppV q is surjective.

• For 1 ď i ă j ď N , there exists g P G such that πipgq and πjpgq are unipotent with fixed
spaces of different dimensions.

For the second, one can show that for two non-isomorphic coversZi, Zj , then there is some
simple closed curve η in Y such that the cycle decompositions of monodromy around η in Z1

and Z2 are different.

For the first, we reduce the problem even further to just showing that each map

Mon : MCGpY qZi Ñ SppHPr
1 pZi, Y qq
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has Zariski-dense image. Indeed, we are just taking a finite-index subgroup of what we started
with, which will have the same Zariski closure in the image because the image is connected.
We prove Zariski-density by showing that there are enough curves on Y whose corresponding
Dehn twists generate what we need. For this we need the normal form of Zi explained in the
previous section.
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Higher dimensions
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Chapter 10

O-minimality and applications to
transcendence
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