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Chapter 1

Introduction

Let C be a smooth projective curve defined over a number field K of genus g. The nature of
the set of rational points C'(K) depends heavily on g. As in many other scenarios, we have a
trichotomy corresponding to the cases g = 0,¢g = 1, and g > 2. Let us give an overview of what
occurs in each case.

1.1 The Hasse principle (¢ = 0)

In the case g = 0, the anticanonical bundle has degree 2. Since 2 > 2¢g + 1 = 1, the anti-
canonical bundle is very ample and gives a closed embedding C — P2 of degree 2. Thus C
is isomorphic to a conic. Now there are two possibilities: either C'(K) = & or there exists
some P € C(K). In the first case there is nothing more to say regarding C'(K); in the second
we may project from P onto some copy of P} not going through P. This map gives an iso-
morphism of C onto P%.. Alternatively, the point P defines a line bundle £(P) of degree 1. By
Riemann-Roch, h°(C, L(P)) = 2 and thus the two sections define a closed embedding of C into
P, which must be an isomorphism.

We conclude that either C has no rational points or has infinitely many. The Hasse principle
gives a criterion for determining which of these cases C satisfies. It states that a quadratic form
over a number field K has a solution in K if and only if it has a solution over all completions
K, with respect to all places (including the infinite ones). Since C' is isomorphic to a conic, we
have the following result.

Theorem 1.1.1. Let g = 0. Then if C has a solution over all completions K., then C'is isomorphic
to P}, and has infinitely many rational points. Otherwise, C is isomorphic to a conic in P%- and has
no rational points.

1.2 The Mordell-Weil theorem (g = 1)

If g = 1, then C is an elliptic curve which we denote as E. The points of £ form an abelian
group; one way to see this is by viewing its points as a complex torus, another way is through
theory of divisors. Furthermore, the sum of two rational points is rational, so E(K) is an
abelian group. Using Galois cohomology and some classical algebraic number theory, one
proves the weak Mordell-Weil theorem, which states that F(K)/nE(K) is finite for each n.
Then by the theory of heights, we arrive at the following result.

Theorem 1.2.1 (Mordell-Weil theorem). Let E/K be an elliptic curve. Then E(K) is a finitely
generated abelian group.
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In fact, this result holds for all abelian varieties (and this is the full statement of the the-
orem). The Hasse principle does not hold for cubic forms. Though every elliptic curve has
a rational point by definition, there may be curves of genus 1 with rational points at every
completion K, but no global rational point. In fact, one may reformulate the Hasse principle
in terms of Galois cohomology and show that the obstruction to its truth is described by the
Tate-Shafarevich group III(E/K). Indeed, we define

I(E/K) := ker(H' (G, E) - H' (Gg,, E).

Here, H' (G, E) classifies torsors over £, which may be interpreted as curves of genus 1
which are isomorphic to F over K. Having a rational point is equivalent to being 0 in this
cohomology class. Interpreting H'(Gx,, E) similarly, we see that if C represents a nontrivial
element in ITII(E/K), then it has rational points in each K,,) but no rational point in K.

We may write E(K) =~ Z" ® G, where G is some finite abelian group. Both the torsion
and the rank of F(K) are of enormous interest. They are described by the famous theorem of
Mazur and the Birch and Swinnerton-Dyer conjecture.

Theorem 1.2.2 (Mazur, Merel). Let E/K be an elliptic curve. Then the torsion part of E(K) is
Z/nZwithl <n<100rn =12, oritis Z/2nZ x Z/2Z with 1 < n < 4.

Conjecture 1.2.3 (Birch and Swinnerton-Dyer). Let E/K be an elliptic curve. Then the rank of
E(K) is given by the order of the pole of the Hasse-Weil L-function L(E, s) at s = 1.

1.3 Faltings’s theorem (g > 2)

The primary goal of this seminar is to understand the Lawrence-Venkatesh proof of the follow-
ing theorem, previously nown as Mordell’s conjecture.

Theorem 1.3.1 (Faltings’s theorem). Let C'/K be a smooth projective curve of genus g > 2. Then
C(K) is finite.

We will now sketch Faltings’s original proof, which may be found in [1]. We list the main
steps. First, let A/K be an abelian variety over a number field, let G = Gal(K/K), and let
Vi(A) = T}(A) ®z, Q; be the Tate modules of A for some prime .

1. (Finiteness I) There are finitely many abelian varieties B which are isogenous to A.

2. (Tate conjecture I) a) The representation of G on V;(A) is semisimple.
b) The natural map Homg (A, B) ®z Z; — Homg, (T;(A), T;(B)) is an isomorphism.

3. (Shafarevich conjecture for AV) Let S be a finite set of places of K and fix a positive
integer g. Then there are only finitely many isomorphism classes of abelian varieties
A/K of dimension g with good reduction outside S.

4. (Shafarevich conjecture) With the notation above, there are only finitely many isomor-
phism classes of smooth projective curves C of genus g with good reduction outside S.

5. (Mordell’s conjecture) If g > 2, then C(K) is finite.

We will now say something about each step, obviously not trying to give full details.
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1.

Actually, Faltings originally proved something slightly different from (Finiteness I). At
any rate, this is one of the most technically difficult parts of the proof, and involves an
intensive analysis of heights. Briefly, we canonically embed the Siegel moduli space of
abelian varieties A, into P"; then the height on P" gives a height function A defined on
A,. Then Faltings defined a different height function, now known as the Faltings height.
First, we take a Neron model A" — Spec Of. Then wy/ o, is a metrized line bundle on
Spec Ok, and we may define

h(4) = g desleonon)

Now the point of this is to compare these two definitions of height and show that they
are not too different. There are serious technical difficulties that arise when analyzing
them near the boundary of the moduli space. Then Faltings analyzes the behavior of the
Faltings height under isogeny, showing it varies in a controlled way. Then since H and
h are not too different and we have finiteness theorems for 5, he is able to deduce the
finiteness of isogeny classes.

. Next, Faltings proved Tate conjecture I using a similar argument to Tate’s own proof of

this conjecture for abelian varieties over finite fields. Indeed, Tate proved the same state-
ment for finite fields using the fact that there are only finitely many isomorphism classes
of abelian varieties of dimension g over F,. This fact may be replaced by Finiteness I. The
injectivity of part b) is not too difficult. Moreover, we may assume A = B by using this
statement on A x B. Now both statements are proved together in the following way.

First, one shows that all finite subgroups of A(K) stable under G arise as the kernels
of isogenies A — B. Then every Gi-stable Z;-submodule of 7} B arises as the image of
some isogeny A — B. Now consider any G i -invariant subspace W < V;(A). We claim
there is some u € End(A) ® Q; such that uV;A = W. Indeed, we apply the previous
correspondence between representations and isogenies to the Z;-submodules

(Ti(A) A W) + I"Ti(4)

for each n. Now using Finiteness I along with a compactness argument, we obtain the
desired u. This allows us to construct complementary subspaces to prove semisimplicity.
Finally, semisimplicity applied to a suitable graph construction yields

End(A) ® Q; = Endg, (VIA),

which gives b).

. By Finiteness I, we only need to show finiteness up to isogeny. Recall that the Néron-

Ogg-Shafarevich criterion says that if v is a finite place of K not dividing some prime [,
then A has good reduction at v if and only if the representation of Gx on V} A is unrami-
fied at v. This implies that isogenous abelian varieties over K have good reduction at the
same finite places.

Now if A has good reduction over v, let A(v)/K (v) be the corresponding abelian variety
andlet P,(A,t) := P(A(v),t) be the characteristic polynomial. We claim thatif P,(A,t) =
P,(B,t) for all v in a certain finite set 7', then the corresponding G x-representations
V;A, VB are isomorphic. This can be proven using some classical algebraic number the-
ory involving Hermite-Minkowski finiteness and the Chebotarev density theorem.
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Now by the Tate conjecture, we have that if V;A and V;B are isomorphic, then A and
B are isogenous. The final step is thus to show that there are finitely many possible
polynomials P, (A, t) where v € T. But P,(A, t) is a monic polynomial of degree 2¢g whose
roots are the eigenvalues of the Frobenius. These are bounded by the Weil conjectures,
so the result follows.

3. = 4. Ifwe have an abelian variety over a field, there are only finitely many isomorphism classes

of principal polarizations on it. Furthermore, if C has good reduction at a prime v, then
so does its Jacobian. Then using 3) we may apply the Torelli theorem, which for g > 2
tells us that two curves are isomorphic if their principally polarized Jacobians are.

4. = 5. (This was proved by Parshin [? ]) The key is the construction of the so-called Kodaira-

Parshin family, an abelian scheme over C' with good ramification properties. To be pre-
cise, if S is a finite set of primes containing the ones dividing 2, we can find a finite ex-
tension L/K and curves Cp for each P € C(K) satisfying the following properties. The
genus of Cp is bounded, Cp has good reduction outside the places dividing .S, and there
are finite maps ¢p : Cp — C over L ramified at exactly P. Thus every rational point P
gives a pair (Cp, ¢p), and by Shafarevich’s theorem the Cp fall into finitely many iso-
morphism classes.

Next, we use de Franchis’s theorem, which states that if C’ and C'/k are fields and g¢ > 2,
then there are only finitely many nonconstant maps C’ — C'. In particular, there are only
finitely many possibilities for ¢p corresponding to a fixed isomorphism class Cp. The
Mordell conjecture follows.

1.4 The Chabauty-Kim approach

Recall that the Mordell-Weil theorem implies that J(K) is finitely generated, where J is the
Jacobian of C. Chabauty proved the Mordell conjecture in the case that the rank of J(K) is less
than g. The ideas is the following. Take Py € C'(K); this gives an embedding

¢:C—J  ¢(P)=[P-H,

so C(K) = C n J(K). Now embed K into L, some finite extension of Q,. The logarithm map
gives a local isomorphism between U < J(L) and Lie(.J) =~ O%. Let I" be the closure of J(K) in
J(L). Since J(L) is compact, if the intersection is infinite then we get a convergent sequence of
points in the intersection to one of them, which we may assume to be 0. Note that J(K) n U is
free of rank less than ¢g. Changing coordinates, we get a function z; on the curve with infinitely
many zeroes accumulating at 0; thus z; = 0 in a neighborhood of 0 on C. But dz; has at most
2g — 2 zeroes, contradiction.

Minhyong Kim generalized this method by using deeper quotients of the fundamental group.
Indeed, 7; may be viewed as the first étale cohomology group of C, which is (more or less) the
abelianization of the étale fundamental group. Roughly, one finds a middle ground between
the étale cohomology and torsor given by the étale fundamental group as described by the
section conjecture, which the rational points of C' are mapped to. One then analyzes a p-adic
period map, which as we will see is also done in the Lawrence-Venkatesh approach. Kim has
made significant progress through this approach, though a complete of Faltings’s theorem in
this way has not yet appeared.
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1.5 Outline of the Lawrence-Venkatesh approach

The method we will be studying arose from Brian Lawrence’s PhD thesis under Akshay Venkatesh.
It gives a full proof of the Mordell conjecture and can also be applied to give results for higher
dimensional varieties. As the authors say, it uses the setup of Faltings’s proof but is close in
spirit to the methods of Chabauty and Kim.

Let Y/K be a curve of genus g > 2. Actually, we will eventually want to run this argument
for other Y. The starting point is a smooth projective family X — Y based on the Kodaira-
Parshin family used in the last step of Faltings’s proof. This family satisfies certain desired
properties we will now describe.

Let O be the S-integers of K and say X — Y extendstor : X — ) over O. For every p
unramified in K and not dividing any prime in S, every y € Y(O) gives a Galois representation

py: Gr G HEG(Xy, Q).

Now recall that in the step 2 — 3 of Faltings’s proof, it was (essentially) proven that there
are only finitely many possibilities for semisimple representations pj’ that are unramified out-
side a finite set of primes that are moreover these kinds of Galois representations on étale coho-
mology. As a reminder, classical algebraic number theory results such as Hermite-Minkowski
finiteness and the Chebotarev density theorem are used to show that the representation is de-
termined by its characteristic polynomial for a finite subset of Frobenius elements. By the Weil
conjectures, there are only finitely many such polynomials that come from these representa-
tions.

Now Faltings worked with abelian varieties where he showed that every p, is semisimple
and determines X, up to isogeny - this is Tate’s conjecture. In the approach we are now con-
sidering, we take the semisimplification p% and restrict it to G, for a suitable place v. Then
it is proven that the fibers of this mapping from Y (K) to these p-adic representations are not
Zariski dense.

To prove this last statement, we use p-adic Hodge theory. Using this theory, each point
y € Y(K,) gives a filtered ¢-module over K :

y — (Har(Xy/Ky), Fil*, ).

The Gauss-Manin connection allows us identify Hyr (X./K,) = Hqr(X,/K,) as we vary z
in a residue disk in Y (K,) around y. What changes is the Hodge filtration. This variation is
described by the p-adic period map, which sends points in the residue disk to K,-points of a
certain flag variety of subspaces of Hqr(X,/K,). The p-adic period map is injective, but there
may be different filtrations which give rise to the isomorphic filtered ¢-modules. Thus, we
must also show that the image of the period map has finite intersection with an orbit on the
period domain of the centralizer Z(¢). For example, when Y is a curve we will show that the
Z(¢)-orbit of the filtrations is a proper subvariety of the ambient flag variety, and that the im-
age of the p-adic period map is Zariski dense. Then the fiber is given by the intersection points
which are the zeroes of a nonvanishing K,-analytic function in a residue disc, which is finite.

To check Zariski density, one passes to the corresponding complex period map which sat-
isfies the same differential equation coming from the Gauss-Manin connection. Checking the
result here is done through analyzing monodromy representations and mapping class groups.
Finally, for higher dimensions Bakker and Tsimerman used o-minimality to prove the Ax-
Schanuel theorem for period mappings. This gives us better control about the intersection
of the Z(¢)-orbit and Y.
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Chapter 2

The Gauss-Manin connection and the
period map

2.1 Local systems, monodromy, and connections

Our goal is to relate isomorphism classes of complex local systems with representations of the
fundamental group of a topological space B, and in the case that B is a complex manifold, to
holomorphic vector bundles over B equipped with a flat connection. In this section, we follow
[3] and [2].

2.1.1 The monodromy representation

Let B be a topological space. We assume it is nice; e.g. path-connected, locally path-connected
and locally simply connected, so it has a nice universal cover.

Definition 2.1.1. A complex local system on B is a locally free sheaf on B whose fibers are complex
vector spaces and transition functions are linear.

Remark. It is important to clearly distinguish the concepts of being locally constant (local sys-
tems) and being locally trivial (vector bundles).

Example 2.1.2. Consider the sheaf of holomorphic global solutions to a homogeneous system of
n linear first order differential equations with holomorphic coefficients on an open subset U — C.
They form a local system!

Every (henceforth assumed complex and finite-dimensional) local system H with fiber V'
on [0, 1] is constant. This follows from the fact that [0, 1] is compact, so every element of a fiber
H, extends uniquely to a global section by continuing it along the intersections of the trivial-
izations. Furthermore, we see that this construction gives an isomorphism H, ~ H; along any
path on a general space B. If two paths 1, v5 are homotopic, then by covering the correspond-
ing square I with a trivialization, we see that there is a unique way to extend every element
of a fiber to a global section of this square. The corresponding linear transformation of fibers
at the endpoints coincides with the ones given by both the top and bottom sides of the square.
As a consequence, if B is simply connected, then all local systems over B are constant.

Fix a basepoint b € B. If we have a local system H with fiber V', we have constructed a
representation, known as the monodromy representation,

7[‘1(3, b) - GL(Hb).

10
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Theorem 2.1.3. The functor just defined yields an equivalence between isomorphism classes of
local systems with fiber V and isomorphism classes of representations of the fundamental group
m1(B,b).

We sketch the inverse. Let p : (B, 50) — (B, by) be auniversal covering space. Then 7 (B, by)
may be canonically identified with the covering transformations of p. Then we may define a

local system H by first defining a constant sheaf H(B). Then we take H to be the equivariant
sections of H(B) under the action of the fundamental group.

2.1.2 Vector bundles with flat connections

Now let us take B to be a complex manifold. Let £ — B be a holomorphic vector bundle.
Definition 2.1.4. A connection V on the vector bundle E — B is a C-linear map
V:I'(E)—>T(E) R0, OB

that satisfies the Leibniz rule:
V(fo) = V(o) +o@df

foroc e '(E)and f € Op.
We can further differentiate V : T'(E) @ QO — I'(E) @ A Q5 by the rule
Vie®a) =Vo A a+o®da.

The curvature of a connection is then given by

2
©:=VoV:I(E)-T(E)® /\ 2.

Finally, we say that a connection is flat if it has curvature zero. Another way of expressing
this in terms of vector fields is the condition

[Vx,Vy] = Vixy]

Our goal is to now associate a local system H over B with a holomorphic vector bundle with
a flat connection.

Construction 2.1.5. Let H be a local system over B and define H := H ®c Op. Then H is a
holomorphic vector bundle over B, and define a connection V : H — H ®o, Qp on it in the
following way. For o € H, write o = ), a;0; with o; a local trivialization of H. Then set

Vo = Zm@dai.

We claim the constructed V on # is flat. Indeed, we have

(VoV)o = E(V(n ®da; + 0; ® d*a;) = 0,

)

since Vo; = 0; ® d(1) = 0.

Theorem 2.1.6. The above construction produces a bijection between isomorphism classes of local
systems and isomorphism classes of holomorphic vector bundles equipped with a flat connection.

11
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The inverse map associates to (#, V) the local system of flat sections of H, i.e. those anni-
hilated by V. Showing this works boils down to showing that if we pick a point in some fiber
x € Hy, there is a unique way to continue it to a flat section around b. The idea is to use the
flatness of the connection to create a suitable integrable distribution D, which then gives by the
Frobenius theorem a local foliation of # by submanifolds locally isomorphic to B. Then locally
around b, flat sections correspond to the leaves of these local foliations, which are determined
by their fiber in H,,.

Here, a distribution F is a subbundle of the tangent bundle of a manifold, and it is integrable
if X is covered by open sets with a differentiable map ¢ : U — R" ¥ such that forall z € U, we
have E, = ker d¢,. In other words, we can find a submanifold with F locally giving its tangent
spaces. The Frobenius theorem says the following.

Theorem 2.1.7 (Frobenius). A distribution E is integrable if and only if it is closed under Lie
bracket.

The flatness of the connection in the previous theorem allows us to check that the corre-
sponding distribution is closed under the Lie bracket.

Remark. The Riemann-Hilbert correspondence is a generalization of this correspondence to
algebraic varieties. In full generality, it is a very deep theorem.

2.2 The Gauss-Manin connection

Given a suitable fiber bundle, we are interested in the local system determined by de Rham
cohomology groups of the fibers. By the theory above, we can study this by looking at the
flat sections of the associated connection, known as the Gauss-Manin connection. This theory
applies both to the manifolds and in the setting of algebraic varieties. We will focus on the
case of manifolds here and discuss the algebraic case in the next chapter. Here we follow [2].

2.2.1 Geometric background

Theorem 2.2.1 (Ehresmann’s theorem). Let ¢ : X — B be a proper surjective submersion
between two differentiable manifolds, where B is contractible with base point 0. Then there exists
a diffeomorphism

T:X=>X,xB

over B.

In particular, if ¢ is a proper surjective submersion of manifolds, then it gives a fiber bundle.
The proof of this uses the tubular neighborhood theorem, which says that there is a neighbor-
hood W of Xj in X with a differentiable retraction Ty : W — Xj. The map

T=(T0,(Z))IW—>XOXB

has invertible differential along X, and thus in some open set containing X, since X is com-
pact. Then T must be the projection of a direct product in some smaller open set.

In the case of complex manifolds, we will need a slightly stronger result. Namely, that the
fibers of T : W — X are complex submanifolds of X.

Next we recall the classical de Rham theorem stating that for a smooth manifold X, we
have
Hip(X) =~ H*(X,R).

12
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Indeed, we have two flasque resolutions of the constant sheaf R given by

0 1
OHK_)Q%d_)Q}(d_,...

and
0-R—-C0 Sl 5.

sing sing

(Note that in the second, we are taking the sheafification, and it takes some work to show
that the cohomology agrees with singular cohomology.) Thus they both give the cohomology of
the constant sheaf R. The same holds for the complex cohomology, where R is replaced with
C. For complex manifolds there is also a Hodge filtration, which can be calculated with the
Dolbeault resolution. We will discuss this in the following section. There is also a resolution
of C with the holomorphic de Rham complex; in this case we must take the hypercohomology.
When we go to the algebraic setting in the next chapter, we will replace the holomorphic de
Rham complex with the algebraic de Rham complex.

Finally, we state the proper base change theorem in topology, which is actually much more
general than what we need.

Theorem 2.2.2. Let F be a sheaf on X. Then the natural map

is an isomorphism of sheaves on A.

XxgA 24 X

A

A—7F— B

2.2.2 Definition of the Gauss-Manin connection

We will put everything together to define the Gauss-Manin connection. Let 7 : X — B be
a surjective proper submersion. Consider the sheaf R*r,.C on B (we use C for C from now
on). We claim it forms a local system. Indeed, fixing a basepoint 0 € B, Ehresmann’s theorem
implies that X is isomorphic to X x U in a neighborhood U < X. Thatis, X xpU ~ Xy x U.
Then it is evident that R*,C is constant on U.

Xo — X xpU —s X

Ik

0 - U —— B

7

Next, by the proper base change theorem, each fiber (R*r,C), for b € U is isomorphic to
(RFrli"*C), =~ H*(X, C). Thus the cohomology of each fiber X is the same. Really though,
this is overkill because the fact that we have a fiberbundle T : X xgU >~ Xy, x U — X, gives a
diffeomorphism between X and Xy, and thus we have isomorphisms H* (X, C) =~ H*(X,, C).
In fact, since we can make U contractible, we actually obtain canonical isomorphisms.

Now recall that in the previous section, we associated a flat connection to each local system.

13
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Definition 2.2.3 (Gauss-Manin connection). Let H* = R*n,C ®c Op be the vector bundle
associated to the local system R¥r,C. The associated flat connection

V/Hk—>7'[k®QB where V(ZO@O@)ZZO}@dO@

is called the Gauss-Manin connection.

The sections of H* restrict to kth cohomology classes on each fiber. For example, if w is
a complex differential form of degree & on X such that over b € U, we have that wy, is closed.
Then w : b — [w,] defines a section of H* over U.

2.2.3 Example: the Picard-Fuchs equation

Let us try to work through a concrete example. Consider the Legendre family
Ey:y?=z(x—1)(z— ), where XeP'—{0,1,00}.

Formally, this is an elliptic surface which looks as follows.

E\ Ey E
A U « P! —{0,1,00}

Write B = P1—{0, 1, 0}. The local system we are working with is # = R!7,C on B. The fiber
of this at \ is given by H!(E), C), which has dimension 2. A natural way to construct a section
is by taking w = %z to be the one-form on E that restricts to the holomorphic differential

dx
z(x —1)(x —N)

wy =

We identify w) with its cohomology class. We may apply the connection along the tangent
vector \ to differentiate V(w) = (Vw)d\ € H*. That is, we are using the connection to use
tangent vectors to differentiate the sections. Then w, Vw, V3w are linearly dependent when
restricted to any fiber H'(E;, C), and thus we obtain a differential equation ...

How to actually find it, how are periods solutions, why are the cycle classes flat sections?

2.3 The period mapping

We follow [2].

2.3.1 Hodge structures

We begin with a rapid overview of some basic Hodge theory. If X is a complex manifold, let AP-4
denote the sheaf of (p, ¢)-forms on X and let A* be its k-forms. Then we have the Dolbeault

resolution
0— QP — APO gl ...

The cohomology of this complex is denoted HP¢(M) = HY(M, QP (M)).

14
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Now let g be a Riemannian metric on X ; this induces an L? metric on A*(X). Then we can
define the Hodge star operator, an isomorphism

w1 AF(X) S AR (X)

such that
= [ anes

X
Then define d* : A*¥(X) — A*1(X) by
d* = (=1)*«Tdx.
By construction, this operator is the adjoint for d:

(Oé, d*B>L2 = (dOé, /B)L2 .

Finally, define the Laplacian A; = dd* + d*d. A harmonic form w is one where A w = 0. Such
forms are automatically closed. By analytic results involving elliptic differential operators, one
(ideally) proves the following celebrated result, sometimes known as the Hodge theorem.

Theorem 2.3.1 (Hodge). The natural map from the space of harmonic forms A*(X) to the complex
de Rham cohomology H,r(X) ®r C is an isomorphism.

In the case of a Kdhler manifold, one can show that A; = 2A; = 2A5. Here, A5 preserves
the type of a differential form, so A, does too. This implies that the harmonic form decomposi-
tion descends down to the decomposition of forms, and thus we have the Hodge decomposition

H*(x,c)= @ HP(X).
p+q=k

Leaving the Kéhler case, we would still like to define a sort of ‘Hodge structure’ with a
‘Hodge filtration’ on an arbitrary complex manifold X. In general, we can define an integral
Hodge structure on any free abelian group V' by

V®,C= (:) VP4

pt+q=k
satisfying VP4 = Vr, But this doesn’t work nicely in general for the complex cohomology of
X . Instead we define a Hodge filtration which can be used to define a ‘mixed Hodge structure.’
We do this is by using the holomorphic de Rham complex. Take the resolution
0-0x>ax 5035 ... Son o

One shows that the inclusion of the holomorphic de Rham complex into the de Rham com-
plex is a quasi-isomorphism (as complexes of sheaves). Then the de Rham cohomology is given
by the hypercohomology of the holomorphic de Rham complex:

H*(X,C) = H*(X,Q%).
We can now define the Hodge filtration.
Definition 2.3.2. Let FPQ5 be the truncated holomorphic de Rham complex
0— O — Q8 —
The Hodge filtration is defined by
FPH*(X,C) = im(H* (X, FPQ%) — HF (X, Q%)).

When X is Kahler, this coincides with the filtration coming from the Hodge decomposition
where FPH = @, H"" %,

izp

15
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2.3.2 The period mapping and the period domain

We return to the setting of a fibration X — B; now assume that X is Kdhler and shrink B so that
X is a product of it and a fiber. As before, we have that H*(X,,C) ~ H*(X,C) = H*(X,,C).
Moreover, using the Frolicher spectral sequence, more is true: all the Hodge numbers are con-
stant in B. However, the Hodge filtrations differ. Let "% = hP4(X).

Definition 2.3.3. The period map
PP B — Gr(bP*, H*(Xy,C))
is the map which sends b € B to the subspace
FPH*(X,,C) c H*(X,,C) = H*(X,,C).

A theorem of Griffiths states that the period map is holomorphic for all p, k. One can prove
this using some version of a base change theorem.

Taking all p for a fixed k, we see that the period mappings sends b to a complete flag of
H*(X,C). Denote the set of such flags by FI(H*(X, C)). If we restrict to the points b € B such
that X, is Kahler, then the Hodge filtration must also satisfy the condition

FPH*(X,,C) @ Fk—p+1HE(X,,C) = H*(X,, C).

The open set D < FI(H*(X,C)) which satisfies this conditions is known as a period do-
main. The polarized period domain, P, is a subset which satisfies additional properties.

16



Chapter 3

Algebraic de Rham cohomology and
crystalline cohomology

3.1 Algebraic de Rham cohomology

3.1.1 Background on differentials

Definition 3.1.1 (derivations). Let f : A — B be aring homomorphism and let B be a B-module.
We call v : B — M be an A-linear derivation if v(ab) = ay(b), v(b1b2) = b1y(b2) = bay(b1).

Definition 3.1.2 (Kihler differentials). The module of Kéhler differentials is a B-module QF, /A

that represents the functor
M — Ders(B, M),

so in particular Der (B, M) = HomB(QlB/A, M) and we have the universal property

B4,

B/A
\L’Y ////
]

We construct Q}, /A in two ways. First, take the free B-module generated by the symbols

da, and quotient by relations. Alternatively, define I := ker(B ®4 B — B). Then define
Qp 4 =1/1°. Thenwehaved: B — I/I?byb— b®1 - 1®b.

Properties of differentials on rings.
1. If A — A’ is aring homomorphism, then Qpg), 4174 = Qg4 ®4 A'.
2. Qg-1p/4 = Qp/aQp S 'B.
3. Given an exact sequence A — B — C, we have an exact sequence
C®5 Qpa = ya — Qeyp — 0

When B — C is formally smooth, then this sequence is exact on the left and admits a
splitting.

4. Given B — C then
/1?5 C®p Oy — Oy — 0.

17
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From 1 and 2, we can define a quasi-coherent sheaf on Spec B by taking oL Furthermore,

BJA"
welet Qp , = AT /4- Then given the differential d : B — Qp /4> this extends to

d d
B—Qpa>0F,5 .

We now extend the sheaf of differentials to general separated schemes.

Definition 3.1.3 (Sheaf of differentials). Let f : X — S be separated. Let I be the ideal sheaf
corresponding to the closed immersion X 2 X x s X. Then we define the sheaf of differentials

Vs = (Ax/s)* ().

The above properties of affine differentials extend to the case of schemes.

3.1.2 Algebraic de Rham cohomology groups

Let 7 : X — Y be a morphism of schemes. Then the algebraic de Rham cohomology groups
are defined as
HI(X, Q;(/Y) = Rq”*(QE(/Y)‘

We can compute this as the hypercohomology of the complex R, (5 /Y). We get the
Hodge-de Rham spectral sequence
E: HY(X, Qg’(/y) = RPF I, (Qx)y) = HY R (X).

Deligne proved that the spectral sequence degenerates at Fy; for Y = SpecC this gives the
Hodge decomposition.

We can use another filtration. Assume 7= : X — Y is smooth. Recall there is an exact
sequence
0— W*(Q%//k:) - Qﬁc/k - Qﬁc/y — 0.

We use the fact that the Q_,_ are locally free. In the Katz-Oda paper, the authors assign a

filtration on 0% /i, as follows. Let

F' = im[Q5 % ®oy 7 (/i) — /]
Then the associated grading is given by
Gri = 7 (D} /) ®ox Vi
With respect to this filtration, we compute the spectral sequence for R, (25 / ) gives
EP? = Qf;(/k ®oy RIT(Q% )y )-
Then we get an exact sequence
d d d
0 — Hyp(X/Y) > Q%//k ®oy Hp(X/Y) = Q2Y/lc ®oy Hip(X/Y) = -

This d is the Gauss-Manin connection with d? = 0. This implies that (X /Y') is a crystal on
the crystalline site of Y.

18
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3.1.3 The Gauss-Manin connection arising from the spectral sequence for al-
gebraic de Rham cohomology

Recall:

X smooth Yy

.

Spec k

We defined the relative de Rham complex 5 Jy asan Ox-module and the de Rham cohomology

HdR(X/Y> = R’]T* (QB(/Y)
We showed last time that there is a spectral sequence
EP = HI(X, Q])D(/Y) - Rp+q7r*(93</y)

Over C, when 7 is proper in addition to smooth, the spectral sequence terminates at E' page,
get the Hodge decomposition.
This comes from the stupid filtration. We can use a cleverer one (relying heavily on smooth-
ness). 4
FiQY )y o= Im[r* (@ ) Qo Q4[] — ]
0— W*(Q%//k) - Q_lX/k - Q%(/Y —0

The filtration essentially takes the forms in Q /, that have i forms coming from Q;, Ik

grl ~ Fi/Fitl = W*(Qg//k) ®0y Q;(;
(write it out). For a filtration on a complex, we get a spectral sequence.
Eg = FPQRUL/FPHQRTL = grP it
We want to compute R, (25 /k,).
EPY = RPMm,gr’ (Qy ) = Ry (Qx )
= RPTig, (W*Q];//k) ® Q;é;é)
— wa*(w*(Q’;/k) Qox Q% y)
= Qg//k ®(’)Y Hc.lR(X/Y)
We have F; A F; c F;; with R, respecting multiplication
/\ . P4 x BP0 pptrlatd
(e,€) > ene = (=1)PrDE+) ! n e do(ene)=dr(e) ne +(—1)P e A dr(e)
along E{’O : dr/R ® k with a section Qi,/k, e a section of Hy(q,Y).

dé’q(w Ae)=dygw Ae+ (=1)" 9w A d™e

v v
H (X/Y) = Qy ) @ Hip(X,Y) = ...

where V = dé’o with V2 = 0. We get an integrable connection: the Gauss-Manin connection.
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Vi gives us a connection on the Ox module HJ,(X/Y), this connection means that it
will have good properties for the soon to be defined crystalline site. Connection we claim is
the same data as infinitesimal firest order descent information.

Descent data: X © Y, X — X xy X, sheaf of ideals I defining this, X — Al where Al
is the closed subscheme associated to I?. And X — A the sheaf of ideals is Q.

There are two projections pry,pr, : Al induced by the two projections X xy X — X.
In general, given an Ox-module M, there is no canonical way to identify pri (M), pri (M) as
Al -modules.

Claim: having an A% -linear isomorphism pri (M) = prj(M) is equivalent to defining a
connection on M. Stipulating that X — X xy X xy X satisfying cocycle then in fact is
equivalent to V2 = 0.

Definition 3.14. V: M — Q_lx/k ®o, M, by V(am) = da @ m + aV(m).

Defining a connection in terms of descent data is more generally a Grothendieck connection.
What’s the point of all this? This comparison with descent data will give us essentially that
having a sheaf that has an integral connection defines a crystal on the crystalline site.

3.2 PD structures remedying the lack of a Poincaré lemma

We have /-adic cohomology which, given a Z,,-variety gives us a good cohomology theory for

all ¢ # p. When /¢ = p it is not a Weil-cohomology theory. And de Rham cohomology is a good

cohomology theory, so you might be tempted to define, say, for an F,-variety X a lift X to Z,

and take Hyr(X/Z,). But if we rely on lifts, we don’t know if it will be intrinsic or even exist.
So, will the de Rham cohomology have good properties for Z, varieties?

Spec(Zy[t])

Z,[t] & Z,[t]dt, ) — P ldt

No Poincare lemma.
Now we talk about PD (divided power structure).

Definition 3.2.1. Let Abearing, I — Aanideal, v,>1: I — I. Then (A, 1,~) is a PD structure
ifforall z,y eI

L y(z) =1, vi(z) =x,vi(zx)e I

2. (@ +y) = X7i(@)m-i(y)

3. For a € Awe have v, (az) = a"v,(z)
4. () ym(z) = (n;m) Ynt+m(T)

5. w(n(@)) = Cpgrpq(x) with Cp g = (532:!-

Example 3.2.2. For a Q-algebra, v, (x) = %’ (missed a bit).

Proposition 3.2.3. Given PD structure (A,I,v) and f : A — B, we get an extension of the PD
structure to (B, I B) in the following cases:

e IB=0

e I®a B~ 1B (if f is flat)
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Theorem 3.2.4. If (A, I,~) is a PD-algebra and B is a finite A-algebra, J < B, and f : A — B.

Then there exists a ring (D, J,7) such that

(D, J,5
/
(B,J)
\
(

iﬂ! Ay, 1)

)

(
C,J,Y)
Proof sketch. Consider the graded ring I" defined by
FO =B

I'h=J+1IB
I'), := generated by symbols [z],,z € J + I B modulo the PD-relations v, (z) = [z],,x = [z]1
O
Proposition 3.2.5. Let (A, I,~) be a PD, B an A-algebra, J < B, then
» B'is aflat B-algebra, Dy (JB') = Dp~(J) ®p B’

* (A, L,7) = (A I',7"), Dpg,ary(J @4 A) = Dpy(J) @4 A

3.3 Crystalline cohomology

Recall: we showed that O x-module M has infinitesimal descent data if it admits an integrable
connection. That is, a map

M5 M@0k —

such that the extension V2 = 0.

H},(X/Y) as an Oy-module admitted a Gauss-Manin connection, so as an Oy module we
have infinitesimal descent.

PDOstructure: for A, I < A, maps v,/ — I satisfying vo(z) = 1, 71(x) = z and

* (@ +y) = 2007 (@) m—i(y)

e y(azx) = a"y,(z)

* Mn(T)Ym(z) = (nzm)7n+m($)

e These imply nlvy, (z) = 2"

z"

Example 3.3.1. * For Q-algebras, there exists a unique PD-structure y,(z) = 7.

e IfmA=0,inI, 2™ =0V x € I we have m!v,(z) = z™.

e Z/27 has a PD-structure
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we also defined a universal PD-algebra over a PD-algebra (A, I,vy) and B, J < B

P
~. |

(C,I',v)

DB,’Y(J)

(B,J) (A,1,7)

This construction is compatible with flat base change. This means that given

X / . \ A
N,

where X — 7 is a closed immersion A — A/I, then X7 will be D 4, (1).

Example 3.3.2. Given A[t], we can put a PD-structure on (t) by A[v,(t)] = A{t) the free PD-
polynomial algebra over A.

The PD structure will be the thing that allows you to let the Poincaré lemma work.

Zt) = Zp(ydt,  d(yn(t)) = yn-1(t)dt

. n n—1
taking 7y — h

The idea of Crystalline cohomology: if we have an F), variety X, the /-adic cohomology
groups for [ # p form a good cohomology theory, but for / = p we do not have that.
One possible remedy is to consider a lift to Z,,, X over X, smooth over Z,, then define

ngys(X’ F;D) = HéR(X/Zp)

Two problems: there may be no such lift, and it depends on the left if it exists.

But you can lift locally on affine stuff (that’s deformation theory). Grothendieck’s solution
was to consider all possible lifts of affine objects (U, T") where U is openin X and U — T is a
nil-immersion.

Now, we have to introduce notions of a site on a fibered category.

Definition 3.3.3. Let C be a fibered category. A Grothendieck Top consists of covering families
(U; — U) such that

e id : U — U is in the covering family

 Given a morphism V. — U and covering family {U; — U}, then {V xy U; — V}is also a
covering family

o If{U; — U} and {V;; — U,} are covering families, then {U;; — U} is a covering family.

This is sort of an axiomatization of open sets of a topological space.

Now, Crystalline Site. Let W = Spec(Z,) and X finite type over W when p is locally nilpo-
tent. X will be a finite type Z,/p" Z,-algebra.

We say a closed immersion X — T over W is a PD-thickening if (T I,~) is compatible with

(Zp, (p),)-
Claim: X — T is a nil-immersion. v, : I — I with pV A = 0, nly, (z) = 2" for n = pN.
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Definition 3.3.4. Let k = F,, so X is over W (k). The crystalline site X /W (k)¢ys consists of all
PD-thickenings (nil-immersions) (U, T), with U c X open. And {(U;,T;) — (U,T)} is a covering
if T; — T is a Zariski covering.

We also have truncated sites: X /W), crys Will consist of (U, T) PD-thickenings of X for T" a
W,,-scheme.
Given a sheaf F' on a crystalline site and (U, T, v), we have a Zariski sheaf Fir(W) := F(U n
W, W, ~|w) for eachopen W < T..
Given amap f : T — T’ we have a comparison between (U, T,d) and (U’,T",d") for f(U) c
U/
Of : f_lFT/ i FT

given W’ < T”, f induces a morphism
Flyrw = U o f7H W), FIW 6] pog) = (U 0 W W6 )

Key point: given Zariski sheaves F; for each (U, T, 6) and comparison maps (f, f : T — T, W’)
which is an isomorphism for open immersions and satisfies transitivity, then get a sheaf on
(X /Werys)-

Definition 3.3.5. A quasi-coherent sheaf on X /Wy is called a crystal if all comparison maps
are isomorphisms.

Two things

» We’re asking for a lifting problem

1

A—— A/I

» Another thing we can see is the following. Given X — X xg X with X — S smooth,
there is a sheaf of ideals I defining the closed immersion. But we can also define the
infinitesimal neighborhood A;(X) by X — A1(X) - I? € X xg X.For X — A1(X)a
closed immersion, we can assign a PD-structure and (X, A; X') will be in X /Werys. Recall
we have two projections pry, pr, : A;(X) — X. The isomorphism condition on compar-
ison maps implies pr; ! (X) = pr,'(X) and the data that gives this is a connection. The
point is that given a quasi-coherent sheaf F' on X /Wy (U, T, 9), QT/S it will be Q7 /g
quotient by dv, (z) = v,—1(z)dz. It’s saying that F' is a crystal iff there exists an integral
connection of F' on X /Wy, .

Fr — F®o; Qr/s

There is a structure sheaf on X /Wcys which assigns to every (U, T,6) as I'(T', Ox). Check
that this forms a crystal.

For (U, T, ), assign H,,(T/S); this is a crystal. But Qi(T/S) is not, as it doesn’t a priori
have descent data.

Theorem 3.3.6. If X admits a smooth Z, lifting X, then

Hcirys(X/WCT’Y& OX/crys) = HZIR(X/W)
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So this says that H R(X /W) only depends on the special fiber. If we have two liftings X’
and X, then

~ VGM

\ /

Hcirys (X/CI’YS, DX/W)

Hip(X/W) Hip(X'/W)

they are isomorphic by the Gauss Manin connection.
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Chapter 4

p-adic Hodge theory

Three rings for the Elven-kings under the sky,
Besis, Bst, Bar.-
Seven for the Dwarf-lords in their halls of stone,
Eg,,Ag,,Bo,,E,A,BA.
Nine for mortal Men doomed to die,
Qps Zp, Fp, @y, F, Cp, Oc,, Q" Bur
One ring to rule them all,

Ainf .

Fontaine

Notation:

K isafinite extension of Q, (in fact, the results hold when K is a complete discrete valued
field of characteristic 0 with perfect residue field % of characteristic p).

» Ok is the ring of integers of K, with maximal ideal mx and uniformizer = = 7.
* k = Og/my is the residue field of K. In our case, k is a finite extension of I,,.

« C, is the completion of K = Q, with respect to the p-adic metric.

e G = Gal(K/K).

e K" is the maximal algebraic unramified extension of K.

« K' is the maximal tame extension of K.

e Iy = Gal(K/K"™) c Gk is the inertia group of K.

e Px = Gal(K/K"™) c Ik is the wild inertia subgroup.

* 1, is the group of nth roots of unity.
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4.1 [-adic and p-adic Galois representations

4.1.1 Preliminaries on local fields

Studying representations of Gy = Gal(Q/Q) is a big deal. There is an important local variant:
the representations of Gg,. These are related in the following way.

Proposition 4.1.1. Thereis aninjection Gg, — G identifying G, with the decomposition group
of the place (p) in Gy.

Proof. First we exhibit an injection G, < Gg. Indeed, fixing inclusions Q — Q, and Q — Q,,
we obtain a map G, — Gg. To show this is an injection, it suffices to show two things: first,
Gq, acts continuously on @, and second, Q is dense in Q,,.

For the first, note that Gg, sends Z, to Z,, because it preserves the ring of integers. It
follows easily that G, also preserves pZ, and acts by an isometry with respect to the p-adic
metric. The second follows from Krasner’s lemma, which in fact gives that Q is dense in C,,.
Now we see that Gg, is identified with the stabilizer of the place (p) of @, so it is identified
with the decomposition group of (p) in Gg as desired. O

Given this, G, fits into an exact sequence involving the inertia group and the Galois group
of the residue field. More generally, this holds for K as well. Recall that there is a unique way
to extend the valuation on Q, to K, by setting

1
vp(a) = mVp(NK/Qp)-

Then Ok is also a complete PID with some uniformizer 7. The same proof as above shows
that G i preserves O and my, so we have an exact sequence

1—>IK—>GK—>G]€%2—>1.

Evidently, Ik consists of the elements o € G such that o(z)—z € mg. It corresponds to the
Galois group Gal(K /K™), while Gy, is given by Gal(K™/K). Indeed, the finite extensions of
the residue field k correspond bijectively to the finite unramified extensions of K. The inertia
group I is also known as Gy, with the higher ramification groups G; being defined as the
subgroups of Gk with o(z) — z € m}}'. We are particularly interested in Gy = P, which fits
into another exact sequence

1—>PK—>IK—>HZI(1) — 1.
I#p

This deserves some explanation. First, a tamely ramified extension L/K is one for which
pfer/k- Thus K tr is the union of all extensions of K" with degree relatively prime to p. Then
Py is the wild inertia group, corresponding to Gal(K /K ‘). Thus this exact sequence is saying
that the tamely ramified portion, Gal(K*/K""), is well-understood as just [ |, 2p Z1(1). To show
this, we use the following fact.

Proposition 4.1.2. If L/K"" is a totally tamely ramified extension of degree e (so p { e), then
L = K[ml5).

Proof. Being totally ramified means that O /(7w ) = Op/(7r) and wgw = u(wp)¢ for some
u € OF. Furthermore, it also means that L = K" [rx]!. Thus it suffices to choose a different
uniformizer 7, which is an eth root of 7xu. By an appropriate choice of 7, we may assume
that v = 1 (mod 7). Then by Hensel’s lemma, we have a solution to 2 = u in O, (this uses
the fact that p { e). We conclude by setting 7} = 7, /z. O

'In fact, O = Ogw[nr] and 71, is the root of an Eisenstein polynomial.
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From here, it follows that Gal(K""/K™) = lim oin Z/nZ = ,, 7. Moreover, since K'" can

be viewed as a cyclotomic extension of K, it naturally carries the action of the cyclotomic
character, which is why we write [ ], Z;(1). The (1)" is known as a Tate twist.

The moral is the following: we have a filtration
1 c Px c Ix « Gg correspondingto K o> K% o> KW 5 K.

The parts G /Ix = Gal(K™/K) =~ Z and Ix/Px = Gal(K™/KY) ~ [ L1p Zi(1) are well-
understood. The wild ramification group, Px = Gal(K/K"Y), is where the difficulty lies. But
one can show, essentially due to a ‘clash of topologies,” that the image of Py under any (con-
tinuous, as always) representation is finite. This is already pretty good. To take this the full
way, we have Grothendieck’s monodromy theorem. We call an /-adic representation p poten-
tially semi-stable if there is an open subgroup on which p acts unipotently. Equivalnetly, there
is a finite extension of K such that p is semi-stable.

Theorem 4.1.3 (Grothendieck’s monodromy theorem). Every l-adic representation of G is
potentially semistable.

4.1.2 Good reduction

Recall that a variety X over K is said to have good reduction if it admits a smooth model over
Ok, namely a smooth variety X/Og with the following Cartesian diagram.

X — X

| |

Spec K —— Spec Ok

Now consider the action of G on H}(X,Z;). The Néron-Ogg-Shafarevich theorem says
that for elliptic curves, X has good reduction if and only if this representation is unramified;
i.e. the action of I is trivial. Using Néron models, Serre and Tate extended this to abelian
varieties.

Theorem 4.1.4 (Serre-Tate). Let X /K be an abelian variety and let | # p be a prime. Then X
has good reduction if and only if the representation H, (X, Z;) is unramified.

In their original paper, Serre-Tate used 7;(A), which gives essentially the same thing. Let
us briefly describe why for elliptic curves, good reduction implies the Galois representation is
unramified. If £/K has good reduction, then we may pass to its reduction £/F,. The point is
that as G -representations, we have

T(E) = Ti(£),

where the representation on 7;(€) is obtained through the surjection Gx — Gy. This implies
that the action of G ik factors through Gy, so T;(F) is unramified.

This never works if | = p, because in this case 7},(&r, ) has dimension either 0 or 1, not 2 — we
can’t simply divide by p in characteristic p. Thus being unramified is not the correct criterion for
having good reduction when [ = p. Grothendieck found the correct answer through Barsotti-
Tate groups, which turned out to give one of the first incarnations of p-adic Hodge theory. In
more modern terms, X has good reduction when its etale cohomology groups are crystalline
representations, a term which we will explain in the following section.
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4.2 Cohomological comparison theorems

Remark. Fontaine was the primary architect of these period rings. The proofs of the hardest
theorems are initially due to Fontaine-Messing-Kato-Tsuji. Faltings also proved them around
the same time using an independent method: his theory of almost mathematics. Niziol and
Beilinson have also proved them with different methods. We refer the reader to https://
arxiv.org/pdf/2005.07919.pdf for an excellent survey.

4.2.1 The Hodge-Tate decomposition

Let us recall the classical theorems in the complex case.

Theorem 4.2.1 (Hodge decomposition). Let X be a compact Kdhler manifold. Then there is a
canonical isomorphism

k(X" R)®C=x~ P H(X,Q

%/c)
sing X/C/*
ptq=k

Using étale cohomology rather than singular cohomology, p-adic Hodge theory will not
only give analogues of this decomposition, but also do so in a way that respects filtrations
and the Galois and Frobenius actions that arise when considering étale cohomology. Rather
than tensoring with C, which can be thought of as a ring of periods, we will tensor with p-adic
analogues. The most obvious idea is to tensor with Cx = C,, and this does indeed give the
desired ‘Hodge-Tate’ decomposition.

Theorem 4.2.2 (Hodge-Tate decomposition). Let X be a proper smooth variety over K. Then
there is a canonical isomorphism

H(X%,Qp) ®g, Cx = @ H (X, 0 i) @ Cr ().
i+j=n
compatible with G i -actions.

Note that here, G acts on every term except for H7 (X, Q% / ) This means that the in-

formation we get from the right hand side is essentially limited to the ‘Hodge-Tate weights’
appearing in Cx (—i). For instance, we could write the right hand side as ®,, ;_,, Cx(—i)""".
This is great, but note that the left hand side doesn’t have a grading, while the right hand
side does. In particular, we don’t have a formula for the Hodge numbers of X using the étale
cohomology. To remedy this, we define

BHT = (—D (CK(TL)

neZ
With this new period ring, the Hodge-Tate decomposition becomes
Hy (X%, Qp) ®g, Bur = ( P H(X, QJ)'(/K)) ®xk Bur,
i+j=n

and this is a graded isomorphism. Here, the grading on the left is given by the natural grading
on By, and the grading on the right is given by the sum of i for H7(X, Q% /i) and the grading
on Byr. Now we use the following important theorem.

Theorem 4.2.3 (Ax-Sen-Tate). We have Bg’f =K.

In particular, this copy of K is coming from the weight 0 portion Cf{f = K. We have

(HE(X7, Q) ®g, Bur) 7 = D HI (X, Q)

i+j=n

The ith graded piece of the left hand side therefore recovers the Hodge number A/,
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4.2.2 Etale to de Rham

Recall that there is a Hodge-de Rham spectral sequence

EYY = HY(X, 0% ) = Hig (X/K).
In fact, this degenerates at the E; page, so we know that the de Rham cohomology is abstractly
(as C-vector spaces) isomorphic to (D, , jen H (X, o / ) Although the Hodge-Tate decompo-
sition respects grading, it doesn’t respect the filtration of H¥;(X/K). For this we will need
another ring, Byr, which has a fairly complicated construction.

This ring By itself has a filtration such that its associated graded ring is Byr. Furthermore,
it also carries an action of G such that BdGléf = K. Then we have the following comparison
theorem

Theorem 4.2.4 (Cyr theorem). Let X be a proper smooth variety over K. Then there is a canon-
ical isomorphism
Hiy (X5, Qp) ®q, Bar = Hir (X/K) @k Bar-

compatible with G i -actions and filtrations.

The filtration on the left hand side comes from the one on Byr, while the one on the right
hand side is the convolution of the Hodge filtration and the one on B4r. Furthermore, by taking
G ik -invariants, we obtain

Gk
(Hi(X Q) ®g, Bar) = Hip(X/K).

4.2.3 Etale to crystalline: the mysterious functor

There is even more structure involved once we reflect on the fact that if X admits a smooth O
lifting X (i.e., has good reduction), then the de Rham cohomology is given by the crystalline
cohomology of the special fiber of X. Moreover, the crystalline cohomology carries a Frobenius
action, something not seen by the étale cohomology alone because we are in the situation ! = p.

Grothendieck conjectured the existence of a “mysterious functor” which would allow one
to go from the étale cohomology to the crystalline cohomology. Fontaine reformulated this
conjecture in terms of a comparison theorem involving another period ring B.,;s equipped with
an action of G and a Frobenius-semilinear endomorphism with the following property.

Theorem 4.2.5 (C.,is theorem). Suppose X /K has good reduction with a proper smooth X/O.
Then there is a canonical isomorphism

Hey (X, Qp) ®q, Beris = Heyis (X1/W () [1/p] @iy Beris
compatible with G i -actions, filtrations, and Frobenius actions.
The mysterious functor is none other than the fully faithful functor (requires extra work)
Dy, : {crystalline representations} — {Filtered K vector spaces + Frobenius.}

Finally, if we are interested in varieties with semistable reduction?, there is yet another
period ring B, satisfying B..;; < Bs; — Bgr, that satisfies a suitable semistable comparison
theorem. These have additional structure, namely a monodromy action.

*proper and flat model that is regular, generically smooth, with special fiber a reduced divisor with normal
crossings
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4.2.4 Recap: connection to representations

Let us explain the meaning of crystalline representations and put all these statements in the
context of p-adic representations. We saw earlier that /-adic representations are reasonably
well-understood. For p-adic representations V' € Repg, (G ), we classify them based off of
whether they satisfy an appropriate comparison theorem when tensored with various period
rings B. To be precise, define

Dp(V) = (V ®q, B)“¥.

Definition 4.2.6 (B-admissibility). We say that V' is B-admissible if the natural morphism
ay : Dp(V)®pex B —V ®q, B
is an isomorphism.

We can now call a representation Hodge-Tate if it is Byp-admissible, etc. We have that the
inclusions

{crystalline representations} — {de Rham representations} — {Hodge-Tate representations}.

The various comparison theorems say that various representations coming from geometry are
crystalline, etc. In particular, if X has good reduction, then its associated representation is
crystalline. Moreover, Dy respects the structures of the ring B. For example, when we apply
Dg_,., the filtration and Frobenius action on B,,;s are reflected by that on what we get, which
is crystalline cohomology.

The semistable representations fit in too, along with potentially semistable representa-
tions, which are those that become semistable after a finite extension of the base field. We
have

{crystalline} — {semistable} — {potentially semistable} = {de Rham} — {Hodge-Tate}.

The equality, saying that all de Rham representations (and thus all those coming from ge-
ometry) are potentially semistable, is a recently obtained deep theorem known as the p-adic
monodromy theorem. It is an analogue of Grothendieck’s monodromy theorem.

4.3 More on the period rings

4.3.1 Cp and BHT

First, we revisit the definition of B-admissibility. A period ring B is a K -algebra that satisfies
various properties — all the period rings mentioned so far will work. Taking V' € Repy(Grk)
finite-dimensional and setting W = B ®x V, we say that V is B-admissible if any of the
equivalent conditions hold.

1. W is trivial; i.e. isomorphic to B? as a Gk -representation.
2. The natural morphism ay : B ®gay W& — W is an isomorphism.
3. dimgo, WO = dimg V.
Then we have the following characterization of C,-admissible representations.
Theorem 4.3.1. V is C,-admissible if and only if Ix acts on V' through a finite quotient.
Thus, C,-admissibility is equivalent to being potentially unramified. This theorem is not

easy to prove, and in particular requires the Ax-Sen-Tate theorem, which we recall below.
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Theorem 4.3.2 (Ax-Sen-Tate). We have CS* = K and C,(n)“% = 0 forn # 0.

Actually, it uses the fact that (ch = K, and can be used to prove that C,(n)“% = 0 for
n # 0. Indeed, the cyclotomic character is infinitely ramified, as it includes the action of
K (ppr)/K for all r, which comes from the inertia group.

Using this, we can also prove that Hodge-Tate weights are well-defined. Indeed, it suffices

to show that
dim Homg , (Cp(m), Cp(n)) = dpmn.

But Homg,, (C,(m),Cp(n)) = Cp(n — m)“%, so we are done by the Ax-Sen-Tate theorem.

4.4 BdR, Bcris> Bst

The construction is very complicated. See, we aren’t messing around:

B, x Boris, i B, x Biax,x Bar

B+ [ B T B’ ] : Bir

/ K cris, K / K 'max, K
B: B;rris B:L— B1+nax
(p>p-1) (I<sp<p-1)

(from Caruso’s article An Introduction to p-adic period rings)

We will only describe B;';, at the base of all these, which itself is built up from A f® via
B = Ap[l
inf inf[1/p]-

Note that the Frobenius is a ring homomorphism on Oc, /pOc, = O%/pO%. Thenwe let R
be the projective limit of the system

—xP —xP —>1P
O(Cp /p(’)(cp ror OCp /p(')(cp AN Ocp /pocp e, .

In other words, R is the perfection of Oc, /pOc,. THen we define A;,; to be the Witt vectors
W(R).

%the one ring to rule them all
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Ingredients of the proof
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Chapter 5

A prototype result

In this chapter we will explain the proof of a prototype result, Proposition 5.1.1. This state-
ment gives a general bound on the number of S-integer points of Y given various conditions.
We do not make many assumptions about Y here; in particular we do not take it to be the
Kodaira-Parshin family used for the proof of Faltings’s theorem. However, the proof strategy
and ingredients in this chapter will be present in the further applications of the Lawrence-
Venkatesh approach.

Notation:

e K is a number field

Gx = Gal(K/K)

S is a finite set of places of K including the archimedean places

O = Qg is the ring of S-integers of K

p a prime that does not divide any place of S

K, the completion of K at some w € Spec O

v some finite place of K such that K, is unramified over Q, and the rational prime p below
v isnot 2 and does not lie in S.

5.1 Basic strategy

Let 7 : X — Y be a proper smooth morphism over K. Suppose 7 extends to a proper smooth
morphism 7 : X — Y of smooth O-schemes. Then we have a natural inclusion Y(0) — Y (K).
Given yo € Y(0O), we will use the Galois representation p on the p-adic étale cohomology of X,
to bound |Y(0O)|. Because there is a smooth model of Y, by definition Y has good reduction.
By p-adic Hodge theory, this implies that this representation is crystalline. Then we can use
p-adic Hodge theory again to translate crystalline representations into certain filtered vector
spaces, which we can then analyze through the period map and the Gauss-Manin connection.
We describe this in more detail in the following steps.

1. Prove that there are only finitely many isomorphism classes of semisimple representa-
tions p : G — GL4(Q,) unramified outside S that come from geometry (i.e. satisfy Weil
conjectures). This was proven by Faltings as part of the original proof of the Mordell
conjecture.
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2. It now suffices to show that the map
Y= pyo Gk, = Gx — Aut Hi, (Xy)5, Qp)

has finite fibers, where we chose an appropriate place v. Moreover, fixing some yy € Y(O),
we may restrict our consideration to the y satisfying y = yo (mod v).

3. The existence of a smooth proper model ) implies that implies that all the representa-
tions are crystalline, so by p-adic Hodge theory each y corresponds to a triple

(HgR(Xy/Kv)a b0, Vou(y)).

Here ¢, is a Frobenius-semilinear automorphism acting on the de Rham cohomology and
the third entry is the Hodge filtration.

4. Use the Gauss-Manin connection to conclude an isomorphism
Hg (Xyo/Ko) = Hig (Xy/Ky)

forall y = yy (mod v). This isomorphism respects the associated Frobenius actions, but
not the filtrations. A similar isomorphism holds in the complex case.

5. The filtration is determined by the period map. Show that the image of the period map
is large; it’s closure has dimension at least that of the monodromy I - A{,.

6. Show that the set of possible filtrations is determined by the size of the centralizer of
the Frobenius. If this is smaller than monodromy, then the set of possible filtrations is a
proper Zariski closed subset of the period map.

Then we have the following general bound, which we will explain in more detail in the
following sections.

Proposition 5.1.1. With the notation above, suppose that
dimp, (Z(qsLK“QP])) < dimeT - b

Then the set
{yeY(O)ly=yo (mod v),p, semisimple}

is contained in a proper K ,-analytic subvariety of the residue disk of Y (K,) at yo.

5.2 Finiteness of Galois representations

This theorem was proven by Faltings. As of now, a proof is not included here. I will probably
add it when I revisit this.

5.3 The complex and p-adic Gauss-Manin connections

Recall that we have extended 7 : X — Y to a proper smooth morphism 7 : X — ). Recall that
the relative de Rham cohomology sheaf is defined by #? = R, Q% /y- Bya result of Deligne
(in his degeneration of the Leray spetral sequence paper), these are coherent and locally free
over the generic point of O. Enlarging S, we can assume they are locally free Oy -modules.
Then by Katz-Oda, we obtain a Gauss-Manin connection

ViU = N1 Qo, 00
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Fixing a basis {v1, ..., v} for H? in a neighborhood of some yy € Y(O), we may write Vuv; =
Z;‘:l A;jv; where A;; are sections of Qﬁ, Recalling that V(f;v;) = d(fi)vi + f;Vv;, we see that
a local section Y] f;v; is flat precisely when it satisfies the equation

d(fi) = =Y. Ajfj.
J

We may write down a formal solution to this equation in power series, but we want it to
converge. That is why we introduce a finite place v of K. We pick it so that if it lies over
p € Spec Z, then p > 2 and does not lie below anything in S, and K,,/Q,, is unramified. Denote
the residue field of K, by IF,,. Now consider the set

U:={yeY(O)ly=yo (modv)}.

One checks that the solutions to the Gauss-Manin equation are convergent in this case,
and in fact we have an isomorphism

GM : HY (X, /K,) =~ HIL (X, /K,)

for all y € Y(O,) with y = yy (mod v) (call this set €2,). Similarly, there is an isomorphism in
the complex case for y € Y (C) sufficiently close to .

Finally, by results on crystalline cohomology we also have an isomorphism to the crystalline
cohomology, which comes with a semilinear Frobenius action. The Gauss-Manin connections
is compatible with the Frobenius action.

5.4 Bounding period mappings with monodromy

Recall that the goal was to show that the y € U that give rise to isomorphic representations,
or filtered vector spaces with Frobenius, is small. Through the Gauss-Manin connection, we
know they all have isomorphic de Rham cohomologies with Frobenius, so it remains to analyze
their Hodge filtrations. The period mapping sends each Hodge filtration to a flag:

(ID(C : Q(c - 7‘[(@(@) and @v : QU - 'H(Kv)

We are interested in analyzing the image of the p-adic period map. In particular, we are
interested in first bounding it below by the image of some monodromy representation. The
filtrations equivalent to that of 13 come from the centralizer of the Frobenius ¢,. Thus if the
dimension of this centralizer is less than that of monodromy, it cannot be Zariski dense in the
entire image of the period map.

We begin by bounding the image of the period map below by monodromy. In the complex
case, the period map extends to a map

P % — Hc(C)

that is equivariant for the monodromy action of 71 (Y¢) on H¢(C). In some sense it ‘contains’
the monodromy action, since monodromy is essentially just restriction to the points of 37@
that project back down to yo. Let I" be the Zariski closure of the image of the monodromy
representation. Fix the initial flag hyp = ®¢(yo). Then we have that

I'-ho < ()

where on the right we are taking the Zariski closure inside H¢.

The key to relating the p-adic version to this comes from the fact that the coefficients of
the Gauss-Manin equation are defined over K, and the following lemma.
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Lemma 5.4.1. Suppose By, ... By € K||z1,. .., zm]] are absolutely convergent power series with
on common zero in both v-adic and complex discs U,, and Uc. If Z < PY. is the subscheme cut out
by all polynomials killing (B, . . ., By,), then the base-extension of Z to K, and C gives the Zariski
closures of B(U,) and B(Uc) respectively.

Apply this to the power series of the Gauss-Manin connection. This implies that the di-
mension of the Zariski closure of ®,(2,) in H, is at least the complex dimension of T" - hy.
In particular, if we have a subset %#%*? = %, of dimension less than that of monodromy, then
@, 1(#bad) is contained in a proper K, -analytic subset of (.

We now recall the desired statement.
Proposition 5.4.2. With the notation above, suppose that
dimp, (Z(qu,K'”ZQP])) < dimeT - hb.
Then the set
{yeY(O)ly=yo (mod v),p, semisimple}
is contained in a proper K,-analytic subvariety of the residue disk of Y (K,) at yo.

Proof. Inlight of the discussion above, the set of interest can be identified with triples (V;,, ¢, ®,(v)),
which are all isomorphic to one of a finite number of representatives (V;,, ¢,, h;). This means
that each such y must satisfy

Dy(y) € UZ((%) - hy.

But we have Z(¢,) < Z (gb,[JK“:QP]) c Autg, (V,). Since ¢£ @l i a Zariski closed subset, the
earlier results apply to the given condition and give that the preimage lies in a proper K, an-
alytic subvariety, as desired. O
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Chapter 6

The S-unit equation

In this chapter we use our tools to prove a non-trivial theorem: the S-unit equation has finitely
many solutions. The proof is more involved than the prototype result of the previous chapter,
but still significantly simpler than the proof of Mordell conjecture. It can be thought of as a
proof-of-concept for the Lawrence-Venkatesh method.

6.1 Statement and initial reductions

We will explain a proof of the following theorem.

Theorem 6.1.1. The set
U={teO§l1—te O}

is finite.

We begin by enlarging S and K so that S contains the primes above 2 and K contains pus.
It suffices to show the finiteness of U;, where U; < U consists of non-squares. Let m be the
largest power of 2 dividing the order of the roots of unity in K. It suffices to check finiteness for
t not a square. Now there are only finitely many choices for K (t!/™) (??? Kummer + Hermite-
Minkwoski?), so in fact we can fix some cyclic degree m extension L and restrict our attention
to proving the finiteness of

U ={teU, K™ ~ L}.

After choosing an appropriate prime v € Spec O, we restrict even more to the ¢t = ¢

(mod v).

6.2 The chosen family, a variant of Legendre

The family we use is the composite

X->Yy 5y
where V' = P}, — {0, iy, 0}, Y = P, — {0,1,00}, 7 is the map u — u™, and X — ) is the
Legendre family. In particular, the geometric fiber X; of ¢t € Y (K) is the disjoint union of the
curves y? = z(z — 1)(z — t'/™).

A point that we glossed over (??? fix this up!) is that when we pass to local Galois repre-
sentations, we need to make sure p, is semisimple first before going to p, .. In this case, we
can show that there are only finitely many solutions (¢, 1 —¢) to the S-unit equation where the
corresponding Tate module fails to be simple. This is a separate argument from the rest of the
proof, and we do not give it here (for now ???).

Some comments on why we chose this family.
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6.3 Reduction to big monodromy

We now run our machine: p-adic Hodge theory to send the Galois representations associated
to points to filtered vector spaces with Frobenius, Gauss-Manin to identify fibers, and the pe-
riod mapping to analyze when two fibers are isomorphic.

Fix ty € Uy,. We want to show the finiteness of ¢t € U; ;, with ¢t = ¢; (mod v). The cor-
responding Galois representation p; on HJ (X; x,/K,) is a 2-dimensional vector space over
K, (tl/ ™) and a 2d-dimensional vector space over K,. The Gauss-Manin connection for X — Y
gives

HéR(Xt,Ku/Kv) = HéR(Xto,Ku/Kv)
respecting the Frobenius action, as usual. The period mapping sends ¢ to a K,(t"/")-line, or
an m-dimensional K,-subspace in H} (X, k,/K,). We are interested in the dimension of the

orbit Z(¢,) - h;. As before, this is contained in Z (gbq[) “:Qp]). By some general theory (Lemma 2.1
in LV), we have

dimg, Z < (dim Hig)? = 4.

Ko(ty™)

In particular, the set of ¢ € U, congruent to ¢y (mod v) is contained in ®~!(Z), where
Z < Grg,(2m,m) has dimension at most 4. Then by the results of the previous chapter, it
suffices to show that the dimension of the orbit of the complex monodromy is greater than 4.

6.4 Big monodromy

The complex monodromy action is the following. The fiber over ¢ € PL. — {0, 1, o0} is the union
of the elliptic curves E., with 2z = t. Then the monodromy representation is a map

m (Pt — {0,1, 00}, to) — Aut ( @ Hp(E., Q)> :
zM=tq
Lemma 6.4.1. The Zariski closure of the image of monodromy I contains [, SL(H(E.,Q)).
Proof. 0

The corresponding orbit then contains all of [ [, PV;, which has dimension m > 8 > 4 as
desired.
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Chapter 7

Proof of Faltings’s theorem modulo
facts about the Kodaira-Parshin
family

7.1 Paradigm of the proof

We use a similar paradigm as in the previous chapter, but the details are much more compli-
cated. The families we will consider X — Y will be abelian-by-finite families, defined below.

Definition 7.1.1. An abelian-by-finite family X — Y is one that factors as
XYV 5y,
where 7 is finite étale and X — Y is a polarized abelian scheme.

We would also like there to be a smooth model over some S-integers O — K, given by
X — Y’ — Y. For each point y € Yk, we consider cohomology of the fiber H{,((X,)%, Q)
along with its action of Gi. The existence of the smooth model implies that such represen-
tations are crystalline, so they are associated to triples (Hi, (X,/K,), v, ¥,(y)) where ¢, is
a semilinear Frobenius action on Hj,(X,/K,) and ¥, (y) is the Hodge filtration. If y = y
(mod v), then the first entries for y and y, are identified via the Gauss-Manin connection. If
two such triples are isomorphic, they must differ by some element in the centralizer of ¢. We
would like to bound this from above so that we have finite fibers from points to isomorphism
classes of Galois representations, the latter of which has finite cardinality by a result of Falt-
ings.

If k(y) = E, then the Frobenius acts on E/K,, and we have dimg, (Z(¢)) = dimg Z(¢¢) <
dimg(HiR (X,/K,))?. The upshot is that we want the residue fields of the y to be large. This is
the purpose of the abelian-by-finite families: = ensures that the Galois orbits on its fibers are
large. This can be quantified in the following way.

Definition 7.1.2. Let G act on E and let v be a place of K at which the action is unramified. Let

_ number of elements of E that belong to Frob, -orbits of size <8
B number of elements of E ’

size, (E)

If E — E’is a morphism of G sets with all fibers having the same cardinality, then
size, (E) < size,(E').
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7.2 Monodromy of abelian-by-finite families

Generally speaking, we want to show that
centralizer < monodromy < image of period map

We can then conclude that bad points, corresponding to the centralizer, are contained in a
lower dimensional subset of Y. The second inequality has already been shown, so what we
need to do is show that the centralizer is small and monodromy is large. We make the second
statement precise in this section.

Begin with an abelian-by-finite family X — Y’ — Y and take a complex point yq € Y (C)
and consider the action of 7, (Y (C), yo) on

Hp(Xy, Q) = D Hp(Xy Q).
m(§)=yo
Definition 7.2.1. We say that the family has full monodromy if the Zariski closure of the image
of m1(Y, yo) under this representation contains the following product of symmetric groups:

(image of m (Y (C),50)) > [] Sp(HE(Xy Q),w)
m(§)=yo

where the symplectic group is with reference to the form w defined by the polarization.

Let us briefly explain this last part. We recall some definitions, taken from Milne’s notes
on abelian varieties.

The dual abelian variety, also known as the Picard variety, is an abelian variety AV that
parametrizes the elements of Pic’(A). Let us give a proper definition.

Definition 7.2.2. Let (AY,P) be a pair where P is an invertible sheaf on A x AY. Assume that
Plaxqy € Pic’(Ay) and Plioyxav is trivial. Then A is the dual abelian variety of A and P is
the Poincaré sheaf if (AV,P) satisfies the following universal property. For every other such pair
(T, L), there is a unique regular map o : T — A such that (1 x «)*P =~ L.

In more conceptual terms, (AY, P) represents the functor sending a variety 7' to the set of
line bundles on A parameterized by T'.

The construction of the dual abelian variety is a special case of the construction of the
Picard scheme, which was famously done by Grothendieck. However, even this special case is
rather involved.

Definition 7.2.3. A polarization ) of an abelian variety is an isogeny A — A" such that, over k,
we have that X becomes of the form X\ for some ample sheaf L on A+ If the degree of a polarization
is 1, then ) is called a principal polarization.

Recall that A\ : A(k) — Pic(A) is defined by \z(a) = t*£ ® £~!. In fact, Pic’(A) may be
defined as those £ for which A\, = 0.

But this may not be too helpful for our purposes. Over C, we can describe polarizations as
follows. Let L — C™ be a lattice. Then the torus C"/L is an abelian variety if it has a Riemann
form H, which is a positive definite Hermitian form on V such that £ = im H is integer valued
on L. In such a case, we have

H(u,v) = E(iu,v) + iE(u,v)

where E is a symplectic form.
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Remark. A principal polarization is when E can be represented as the standard symplectic
matrix with 7 and —1.

Remark. One can see where this form comes from by looking at Jacobians of curves over C.
One has the intersection pairing on the first homology, and one obtains the dual pairing on
the first cohomology by the cup product. The Hermitian form and polarization then follow
from integrating. ???

In our setting, we have a symplectic form w defined by the polarization of the abelian variety
Xj. Then after fixing a basis, Sp(V, w) is given by the matrices M acting on V with VTwM = w.

We will explain why the image of monodromy lies in this symplectic group in a future section.
777

7.3 Properties of the Kodaira-Parshin family

In future sections, we will construct a specific abelian-by-finite family X, — Y, L Y for each
prime ¢ > 3. This is called the Kodaira-Parshin family for the group Aff(q). Let us list the
properties we need.

1. It has full monodromy.
2. The relative dimension d, of X, — Y is given by d, = (¢ — 1)(g — 3)-

3. For eachy € Y (K) there is a G - -equivariant identification of 7—! (y) with the conjugacy
classes of surjections ¢! (Y¢ — y, %) — Aff(q) that are nontrivial on a loop around y.

These will be proven in future sections, but let us explain what the third means.

Definition 7.3.1. Let Aff(q) < Sym(F,) be the subgroup of linear permutations of F,, defined by
T+ ar +bwhereaeF; bel,.

Then we have an exact sequence
+
0—-F,; —>Aff(q)—>Fj;—>0,

and we have Aff(¢q) = F; x Fy.

Now we can view ¢ (Yc—yo, ) as the profinite completion of the free groupon zq, 24, . .., 24, =

with aloop around y, corresponding to the conjugacy class of [x1, 2 |[2, 73] - - - [z, 27 ]. There-
fore, the set of surjections 7' (Y — vy, ) — Aff(q) are identified with the following set.

Let f : Aff(q)* — I, be given by

F@W) = fy,91, - ¥g:Yg) = [y1,91] - (Y, vy -

Now consider the set
T = {y|f(y) # 0,y generates Aff(q)}.

Thereisamapg : T — [F;]QS given by sending each coordinate ax + b — a. The image of ¢
consists of those (2g)-tuples of FF;; which generate I}, and it is easily shown that any point in
the image has fiber of size ¢?9~!(q — 1).
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7.4 Proof of Faltings’s theorem

Assuming the results stated in the previous section, we can now prove Faltings’s theorem.
Theorem 7.4.1. Let Y be a curve over the number field K with genus g > 2. Then Y (K) is finite.

We outline the proof in the following steps.

1. Reduce to showing that all y have fibers of size bounded above by ﬁlﬂ- That is, prove
that the cardinality of such points is finite.

2. Use algebraic number theory to choose appropriate g and v. Form the associated Kodaira-
Parshin family.

3. Obtain an appropriate map of G'i-sets
™ y) = Hy(Yg, Z/(q— 1)) = M.
It suffices to show that size, of the image I is less than flﬂ.

4. Use the perfect Weil pairing on M and the Frobenius at v to bound the number of ele-
ments of M belonging to Frobenius orbits of size less than 8.

5. Use basic inequalities to bound size, (I) given the previous result.

™

As usual, let Y be a curve over K of genus g > 2. Let X — Y’ — Y be an abelian-by-finite
family over Y, with full monodromy. Let d be the relative dimension of X — Y”. Suppose that
X — Y’ 5 Y admits a good model over the ring O of S-integers of K. Let v ¢ S be a friendly
place of K.

Step 1. This is the following proposition.

Proposition 7.4.2 (Proposition 5.3). The set

Y ()" = {y & V()| simeu(n () < )

is finite.
This proof is all of Section 6 in the Lawrence-Venkatesh paper. It is a more difficult version

of the prototype result proved earlier. We will not prove it here. ??? Assuming this, we need to
chose ¢ and v in such a way that v is friendly and

1
SiZeU (7'('_1 (y)) < m

forally e Y(K).
Step 2. Let us state the precise conditions we want.

1. ¢ — 1 is not divisible by 4 or by any or primes less than 8] K : Q).

2. The Galois closure %’ of K is linearly disjoint from Q({,—1) over Q.

8-29+1 1
3 47 < GIm@ DT

1. v is friendly.

2. (qu,q — 1) = 1 (recall that g, is the cardinality of the residue field at v).
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3. For any odd prime factor r of ¢ — 1, the class of ¢, in (Z/r)* has order at least 8.

For ¢, note that for the second condition, if there is some common subfield greater than Q,
then a prime that ramifies in it must divide both ¢ — 1 and the discriminant. Thus the first and
second conditions can be satisfied by some admissible congruence condition. Condition 3 is
satisfied when ¢ is sufficiently large. Thus Dirichlet’s theorem suffices. For v, it is a bit harder
but the Chebotarev density theorem suffices.

Step 3. The desired map is simply the one we described at the end of the previous section.
Indeed, for y € Y (K), property 3 of the Kodaira-Parshin family identifies 7~ (y) with the set

= {ylf(y) # 0,y generates Aff(q)}.

Moreover, the surjection Aff(q) — F} givesrisetothemapg : T — (F¥)* =~ M := H, (Y, Z/(q—
1)).
This can also be written as the composite

T:n ' (y) — Hoy (Y, Afi(q)) — Hey(Ye, Z/(g — 1)),

and the key is that this is a G x-equivariant map. Its image I also has fibers of the same size,
so as noted in the first section of this chapter, we have size, (7! (y)) < size,(I), so we just need
to show that size, (1) < 715

Step 4. To show that size,(I) < ﬁ, we will first show that the Galois orbits on M are
large. In the following step we will pass to I. We use the fact that M is equipped with a Galois-
equivariant Weil pairing that is perfect.

(=, =) M x M — g1 = Hom(pg—1,2Z/(q — 1)Z).

Recall that for elliptic curves, we can define this Weil pairing as follows. ???
Since this pairing is Galois-equivariant, if we take 7" : M — M to be the map on M coming
from the Frobenius at v, we have

(Twi, Tvs)y = g, (v1,v2)

since the Frobenius acts on p,_ by raising to the g, power.

We would like to bound the size of | J_, ker(7? — 1). Note that if m;, ms € ker(T% — 1), then
(g, — 1){m1,m2) = 0 = 2{my,mz) = 0 by our choices of ¢ and v. However, in general if we
have a nondegenerate pairing A x A — Q/Z with a subgroup B c A satisfying (B, B) = 0,
then |B| < 4/|A|. Applying this to A = 2M, we get

12ker(T" — 1)| < <_) = | Uker t—1) <8-29(q —1)7.

This is the desired bound for the number of elements of M with Frobenius orbits of size at
most 8.

Step 5. The quantity size, (1) can now be bounded using the above bound and the fact that
I consists of most of M. Recall that I is the image of ¢(T') in (F})**, which consists of all
generating (2¢g)-tuples in Z/(¢ — 1). This number is just

q_12gH 1(q—l)

p|N
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In total, we have seen there are at most 8 - 29(¢ — 1)Y elements with Frobenius orbits of size at
most 8. Thus, we finally have

8- 29(q— 1) _ 1 - 1
Hg—1% “(9-1/2(q-D+1 (9—-1/2)(g—1)+1

as desired. Note that the last inequality not only uses the fact that we choose ¢ large (property
3), but also that g > 1.

A

size, (771 (y)) < size, (I)



Part 111

The Kodaira-Parshin family
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Chapter 8

Construction of the Kodaira-Parshin
family

The Kodaira-Parshin family was originally used to reduce the Mordell conjecture to the Sha-
farevich conjecture. For each point P € Y (K), it gives a finite morphism of curves Yp — Y
ramified only at P with appropriate good reduction properties. We will construct a variant of
this family. As described in the previous section, we want to construct an abelian-by-finite
family

X, > Y] Y,

where as usual Y/K is a curve of genus at least 2 and ¢ is some prime. Briefly, the morphism
Y, — Y, will be a Hurwitz space with group Aff(q) for Y, and X, — Y, will be the reduced
relative Prym of the associated universal Aff(q)-cover Z — Y x Y.

8.1 Branched covers of P!
There are two classical Hurwitz functors:

Hnr(S) = {f: X — Pk|deg f = n; f simple with r branch points}

and
H,c(S) = {f : X — Pg| f Galois with group G and has r branch points}
equipped with an isomorphism 7 : Autp: (X) = G.
There are many possible variants, and it seems that not too much is known. (!) In fact, for
the Kodaira-Parshin family be interested in the case not of the projective line, but in the case

of our curve Y. Still, for curiosity’s sake, we include here a digression on branched covers of
PL.

8.1.1 Dessins d’enfants

Let us explain what dessins d’enfants are and how they relate to algebraic curves.

Definition 8.1.1. A dessin d’enfant is a triple X, c X; < X, where X5 is some real surface,
X is a finite set of vertices, X1\ X is a finite set of disjoint segments, and X2\ X is a finite set of
disjoint open cells. Furthermore, as a graph the dessin must be bipartite.

A clean dessin is one where we may alternately label the vertices with 0 and 1 such that each
vertex labeled 1 has degree 2.

The connection to algebraic curves defined over Q is given by Belyi’s theorem.

46



Caleb Ji Faltings-Lawrence-Venkatesh Fall 2021

Theorem 8.1.2 (Belyi). A complex algebraic curve may be defined over Q if and only if it admits
a finite morphism to P{. unramified outside {0, 1, 0}.

Remark. Technically, Belyi’s theorem is the ‘only if” direction. The ‘if’ direction actually re-
quires more work to prove, but it was known before the ‘only if” direction.

So, let us begin with an algebraic curve X with some f : X — P} unramified outside
{0,1,00}. We know by Belyi’s theorem that it may be defined over Q, and thus there is an
interesting action of G on it. This is a crucial point used in Grothendieck’s theory of dessins!,
but here we will not go into it and instead focus on more basic combinatorial aspects. Consider
drawing the preimage of the line segment [0, 1] on X. Then we get a dessin d’enfant, with the

preimages of co corresponding to the faces which X is subdivided into.

Now let’s say we want to go in the other direction: from the dessin to the algebraic curve.
Note that we can, for example, find the degree of f by the Riemann-Hurwitz formula. To get
the curve though, we first pick an edge £ € X; and consider the monodromy action on it.
Indeed, viewing X\ X, as a covering space of PL — {0, 1, o0}, fix a basis for 7 (PL — {0,1,0})
using a loop [y around 0 and a loop /; around 1. In fact, we want to use a ‘tangential base point’
from 0 to 1, which works since the interval is contractible. Then [, corresponds to rotation of
0 counter-clockwise around 1 and /; corresponds to rotation of 1 counter-clockwise around O.
Let N < G be the stabilizer of E. This is well-defined up to conjugacy, and by the correspon-
dence between covering spaces and conjugacy classes of subgroups of the fundamental group,
we obtain the covering X\ Xy, — P{ — {0,1,00}. Thus we obtain a bijection between isomor-
phism classes of finite coverings branched only at {0, 1, «0} and isomorphism classes of dessins.

We are not too interested in what structure map f : X — P{. is used. Therefore we may
compose f with a function, say z — 4z(1 — z), to ensure that the ramification indices over 1
are all 2, which corresponds to the vertices labeled 1 all having degree 2. These are the clean
dessins. The purpose of studying clean dessins is to relate them to polyhedral combinatorics.
Indeed, if you draw any dessin on a surface forgetting the bipartite condition, we can label all
the vertices 0, and then bisect the edges and label them 1. This gives a clean dessin! With
the same process described above, we obtain a bijection between isomorphism classes of clean
dessins and isomorphism classes of clean Belyi pairs (i.e. where the covering has ramification
indices 2 over the point 1), with the knowledge that any algebraic curve over Q is part of a clean
Belyi pair.

8.1.2 Polyhedral combinatorics

Take some graph G embedded on some real surface X. We call the resulting configuration
(X,G) amap. A map has faces, edges, and vertices. Define a flag of (X, G) to be a choice of
a face, an edge of that face, and a vertex of that edge. Now whatever (X, G) we take, there is

!In fact, the birth of anabelian geometry can be traced back to this!
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going to be a transitive action on the set of flags by the cartographic group?

C, = <Jg,01,02]03 = U% = U% = (0002)2 =1).
These operations oy, 01, 02 correspond to the reflection of the chosen vertex, edge, and face,
respectively. There is also an action of the oriented cartographic group

C3 = {puspfypelp2po = p1,pt = 1)

where py = 01 0 09, p1 = 0¢ © 02, p2 = 0¢ © o1. Thus, pg, p1, p2 correspond to the rotation of the
flag around the vertex, edge, and face, respectively. Draw a picture!

An alternate way of presenting this group is by the relations popi1ps = 1,p? = 1. We see
that this is precisely the fundamental group of P! minus 3 points quotiented by /3 = 1, so these
polyhedra correspond precisely to he algebraic curves described earlier.

8.1.3 Regular polyhedra

Now when do we get a regular polyhedron? Precisely when its automorphism group acts tran-
sitively on its flags. Note that this is equivalent to our structure map f : X — P} being a Galois
covering! We see that every pair of integers p,q > 1 gives rise to a unique connected map by
imposing the additional relations

Pp=r3=1

on its automorphism group. We see that, after pinning down a flag, this automorphism group
determines the polyhedron. In particular, p is the number of faces to a vertex and ¢ is the
number of edges to a face. Immediately we see hat not all the regular polyhedra we get in this
way are Platonic solids. Rather, only the compact ones are; i.e. those realizable on a sphere.
These are the ones with finite automorphism group. The others give regular tilings of either the
Euclidean plane or the hyperbolic plane. In fact, this approach leads to an easy classification
of Platonic solids! Indeed, one just needs the sum of the angles

m(p —2)q
p

< 27

to get a Platonic solid. If it is equal to 27 then we get a tiling of the Euclidean plane and if it is
greater than 27 we get a tiling of the hyperbolic plane.

Alternatively, we could have calculated this with the Riemann-Hurwitz formula. If there
are b branch points, then we have

d
2d—2 = Z(ey — 1) = bd — |ramification points| = bd — Z —.
€y

We thus easily obtain the ramification indices and the degree, but not the explicit realizations
from the previous approach. Note that another way is to find the finite subgroups of PGL(2, C),

*Beware, my conventions differ slightly from Grothendieck’s in the Esquisse; here I consider the elements as
operators so I multiply in the opposite direction.
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which can be identified with the finite subgroups of SO(3,R).

As noted by Grothendieck, it is important not to confine ourselves to the cases where p and
q are finite. Indeed, by pondering the universal formulas that are used to define the reflections,
we not only get new regular polyhedra but also obtain a method for specializing to character-
istic p in a meaningful way! Or, even considering regular polyhedra over any base ring. Indeed,
the formulas for the fundamental reflections o; can be written in terms of universal for-
mulae in terms of the cosines of the angles of the polyhedron!

Fixing a flag vg, v1, v2, we have

a0(vo) = 2v1 — vy,
o1(v1) = (1 — cosB)vg — v1 + (1 + cos b)va,
o2(v2) = (1 — cosy)vr — va.

The data of the polyhedron is completely contained in these values of cos 6 and cos . Thus,
taking any base field, we may substitute any pair of values for them and obtain a regular poly-
hedron! Note that there will be many of these which all correspond to p = ¢ = oo. In particular,
we may specialize from the field R to finite fields! For instance, in the case of the octahedron,
we have cosf = 1/2,cosy = —1/3. For 6 1 ¢, we see that we can specialize these values to F,
and therefore obtain an octahedron over FF,! This has the same automorphism group as the
ordinary octahedron®.

However, as Grothendieck writes, the situation is entirely different if we start with an infi-
nite (i.e. Euclidean/hyperbolic tilings) regular polyhedron! Then when we specialize it to F,
the fact that polyhedra over finite fields must necessarily be finite implies that we get an infinite
number of finite regular polyhedra as ¢ varies, whose automorphism group varies arithmeti-
cally with ¢! One of the questions Grothendieck mentions in connection with this is: which
algebraic curves come from regular polyhedra over finite fields?

8.1.4 Moduli

At last we come to the question: is there a meaningful way of interpreting these phenomenon
through moduli? Indeed, consider the functor

Fy(S) = {X L PY | gx = g, f Galois, deg(D/S) = 3}.

8.2 Hurwitz spaces

8.2.1 The usual Hurwitz functor

Recall the Hurwitz functor:

Hrc(S) = {(f.7)|f : X — Pg] f Galois with group G and has r branch points, 7 : Autp (X) = G}.

Say we have constructed a coarse moduli space for it. Note that automorphisms of the pair
(f, ) are given by the center of G. Thus if the center of G is just the identity, then there are no
automorphisms. Apparently this means we have a fine moduli space???

3Grothendieck seems to claim this; I haven’t checked it.

49



Caleb Ji Faltings-Lawrence-Venkatesh Fall 2021

Theorem 8.2.1. There exists a scheme H, smooth and of finite type over Z, that is a coarse moduli
space for the functor H, . It is a fine moduli space when G is center-free.

Let us briefly describe how this can be proven. We begin with constructing it analytically
over C, which is not so bad. This amounts to putting an appropriate manifold structure on Hc,
which as a set is the collection of all Galois covers with r branch points and with Galois group
G. The hard part is descending it onto Z. Anyways, the construction follows the same model
as the construction of the universal covering space.

Note that as a set, H¢ corresponds to pairs of » points and surjective homomorphisms
71 (P& — r points) — G up to inner automorphism of G. Fix a cover f with branch locus
D = {t1,...,t,} and surjective homomorphism 6 : 71 (P} — r points) — G. Let {C;} be disks
around the points of the branch locus that do not intersect each other. Picking another branch
locus D’ where we just pick different points in the disks C;, we get a natural isomorphism

71 (P& — D) = 7 (P& — D).

Then define the topology on % to be generated by H(f, C;) which correspond to elements
with branch locus in the C; and whose homomorphisms agree after composition up to inner
automorphism of G. Using the Riemann existence theorem, one shows that this works.

8.2.2 Higher genus case

Lawrence and Venkatesh construct a Hurwitz space for Y /K where the genus of Y is at least 2.
They do not explicitly state that this is a coarse/fine moduli space...

Proposition 8.2.2. Let Y /K have genus at least 2 and let G be a center-free finite group. Then
there is a curve Y'/K equipped with an étale map = : Y' — Y and a relative curve Z — Y’ with
the following properties.

1. Y’ parameterizes G-covers of Y branched at a single point.
2. Z gives the universal G-cover of Y branched at a single point.

Let us explain these a bit more. The idea is that Y’ represents the functor
F(S) ={X — Y xg S|branched at 1 point, Galois with group G}.

There is also an implicit isomorphism to GG. Note that this is essentially the Hurwitz func-
tor H, ¢, except we have replaced P! with Y. Note that since there is only one branch point,
there is an identification between the space of points on Y with Y, which is where the map
7 :Y' — Y comes from. The set 7—!(y) gives the set of G-conjugacy classes of surjections
m1 (Y —y,*) - G nontrivial on a loop around y.

The scheme Z comes from taking the universal family. This occurs when we lookat 7, ¢ (Y”)
and take the identity, which corresponds to a G-cover Z — Y’ x ¢ Y. It is a covering space away
from the graph of 7, and each fiber Z,, — Y is ramified exactly at (/).

The analytic construction follows the same pattern as with the previous Hurwitz functor.
One takes Y’ as a set to be the union of all S(y), for y € Y(C), of G-covers of Y ramified only at
y. This is equipped with a covering map e : Y/ — Y which gives Y’ the structure of a Riemann
surface. Then Z is taken to be the union of the corresponding curves X, for ¢’ € Y’, and we
obtainamap f: Z — Y’ x Y. Thislast map, on f : X,y — Y, is given by (¢/, f). This can all be
made algebraic through GAGA theorems, and as before the difficulty lies in the descent to K.
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8.3 Prym varieties

8.3.1 General theory

Definition 8.3.1. Given a morphism f : C; — C5 of curves over an algebraically closed field, the
associated Prym variety is the cokernel of the induced map

Pic?(Cy) — Pic(Cy)
on Jacobians.

In our setting, if we have an Aff(g)-covering C; — Cs, we can take the subgroup F;; = Aff(q)
to factor it into a degree ¢ — 1 covering followed by a degree ¢ covering C; — C{ — C2. We can
then take the Prym variety of this second covering

coker(Pic?(Cy) — Pic(C)).

Looking at their images in Pic’(C}), we see that these are the connected components of the
identities of Pic®(Cy)A(@) and Pic®(C})¥7. This is 2?2 an abelian variety of dimension (2g —1) -

q—1
-

8.3.2 The Kodaira-Parshin family for Aff(q)

For a prime ¢, we recall we want to construct the Kodaira-Parshin family for Aff(¢) as an
abelian-by-finite family X, — Y/ L Y. The finite étale map 7 : Y, — Y is given by the
Hurwitz spaces for the center-free group Aff(q), as described in the previous section. The pre-
vious section also gives a map

Zg — Yq/ xY

from the universal G-cover of Y. Recall that the fiber over ¢’ € Y gives the associated Aff(q)-
cover (Z,),, — Y branched at y. Thus Z, — Y is a relative curve.

The desired sequence of morphisms giving the Kodaira-Parshin family for Aff(q)
Xy — Yq/ —-Y

comes from the reduced relative Prym of Z, — Y, x Y. Basically, this means that for every
y' € Y, the fiber of X, — Y/ is the Prym of (Z,),, — (Y, x Y),, = {y'} x Y. It is possible to
make these fit together into an abelian scheme X, — Y, with a symmetric and fiberwise ample
line bundle through a some further construction given by Lawrence-Venkatesh.
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Chapter 9

Monodromy of the Kodaira-Parshin
family

9.1 Background on mapping class groups

See Benson/Farb. S surface with b boundaries and n punctures. Then x(S) =2 —2g —b—n. If
x = 0 then S admits a Euclidean metric, and if x(S5) < 0 then S admits a hyperbolic metric. In
the hyperbolic case, closed curves are homotopic to geodesics.

Simple closed curves. Prop. 1.4: primitive elements of 7 (.5). 1.2.5: homotopy vs isotopy.
Essential (nontrivial in 7; curves: isotopic if homotopic. 1.2.6: isotopy of surfaces.

2.1: definition of MCG(S). Lemma 2.1: MCG(D?),MCG(Sp 1), MCG(S?) trivial. 2.2.2-
2.2.4: MCG(Sp3) =~ S5, MCG(So2) = S2,MCG(A) =~ Z,MCG(T?) = SL(2,Z). 2.3: The
Alexander method.

3: Dehn twists definition. 72 example. Nontriviality, infinite order, braid relation.

4: Dehn-Lickorish theorem. Humphries generators.

9.2 A topological reformulation of having full monodromy

Setup

We recall that we constructed the Kodaira-Parshin family as an abelian-by-finite family

X, - Y, 5,
and used it to prove Faltings’s theorem under the condition that it possesses full monodromy.
Briefly, recall that 7 : Y,/ — Y is a finite étale map whose fiber over a point y classifies Galois
Aff(q)-covers branched only at y. If Z is the universal Aff(q)-cover of Y, then the fiber over
some point 3’ — y gives an Aff(¢)-covering Z, ,, — Y ramified precisely at y. The subgroup
{ax} < Aff(q) gives a degree ¢ covering C,y — Y, whose Prym is the abelian variety X, .

These fit together to form the abelian scheme X, — Y. In the language to come, Z, ,, — Y is
a singly branched Aff(q)-cover, while Cy — Y is a singly ramified Aff(q)-cover.

We recall what having full monodromy means. Begin with an abelian-by-finite family X —
Y’ — Y and take a complex point yy € Y(C) and consider the action of 7, (Y (C), y9) on

Hp(Xy,,Q) = P Hp(Xy Q).
(¥)=yo
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Definition 9.2.1. We say that the family has full monodromy if the Zariski closure of the image
of m1(Y, yo) under this representation contains the following product of symmetric groups:

(image of M (Y(C),y0) > [] Sp(Hp(X5Q),w)

7(§)=yo

where the symplectic group is with reference to the form w defined by the polarization.
The goal will be to prove the following theorem.

Theorem 9.2.2. Let Z,,..., Zy be the (isomorphism classes of) singly ramified Aff(q)-covers of

Y. Then the map
N

Mon : m1 (Y, )0 — | [ Sp(HT"(Z;,Y))

=1
has Zariski-dense image.

Aff(q)-covers - not to be confused with (Galois) Aff(q)-covers

Now let us define the terms and see why this implies that the Kodaira-Parshin family has full
monodromy.

Definition 9.2.3 (Aff(q)-covers). Let Y be a surface. Then an Aff(q)-cover of Y is defined to be
a connected surface Z with a degree q covering map « : Z — Y whose monodromy representation
has image Aff(q) = S,.

Let y € Y be a point. Then a singly ramified Aff(q)-cover of Y is the compactification of an
Aff(q)-cover of Y — {y} whose monodromy around y is nontrivial, and hence a q-cycle.

q—1

By the Riemann-Hurwitz formula, a singly ramified Aff(q)-cover of Y has genus gq — %5-.
Recall that covering spaces are determined by their monodromy representations. Precisely,
an Aff(q)-cover of Y is determined by an Aff(q)-conjugacy class of maps m (Y, yo) — Aff(q).
Similarly, the singly ramified Aff(q)-covers of Y are given by representatives Cov; : 71 (Y —
{y},yo) = Aff(q) for 1 <i < N.Let Z;,..., Zy be these singly ramified Aff(q)-covers of Y (up
to isomorphism).

9.3 The reformulation explained

The representation on primitive homology

We still have not explained what the map Mon is, or even what 7 (Y, yo) is. We do so now. Note
that MCG(Y") acts on the set of isomorphism classes of Aff(g)-covers of Y. This action can be
algebraically viewed as the outer action MCG(Y) — Out(m1 (Y, y0))*.

For every Aff(q)-cover of Z, define MCG(Y) # to be the stabilizer of (Z, 7) under this action.
Because Aff(q) has trivial centralizer in S, we obtain a well-defined homomorphism

MCG(Y); — MCG(Z),

where we have the obvious commutative diagram with 7. Next, we note that MCG(Z) acts on
H,(Z) in a way that preserves its symplectic intersection form. Moreover, since 7 : Z — Y is
a covering, we have a decomposition

H(Z,Q) = m*H,(Y,Q) @ ker(my : H1(Z,Q) — H1(Y,Q)).

LA variant of this observation is crucial in anabelian geometry
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We define
Hfr(Zv)/,@) = kel‘(ﬂ'* : Hl(Z7 Q) - Hl(Y7 Q))

As we will see, Pr can stand for both ‘primitive’ and ‘Prym.” We assume Q coefficients hence-
forth. One sees that the mapping class group preserves Hi*(Z,Y'), and thus we obtain a mon-
odromy map

Mon : MCG(Y)z — Sp(H{*(Z,Y)).

In our context, we are actually taking Y right above to be the punctured surface Y —{y}, and
the Z; are the compactified singly ramified Aff(q)-covers. Note these have the same homology
without compactification, so we can invoke Mon as before.

Finally, we have an embedding 7;(Y,y) < MCG(Y — {y}). We define 7 (Y, y)o to be the
intersection of the image of m; (Y, y) with the intersection MCG(Y — {y})o = Y, MCG(Y)_,.
Restricting gives the monodromy map

Mon : (Y, y)o — Sp(H{*(Z,Y)).

Back to the full monodromy theorem

We again recall the Kodaira-Parshin family. We have a family Z, — Y, — Y, and for ¢ € Y
above y € Y, we take the fiber and obtain a singly branched Aff(q)-cover

Z,

gy — Y.

This is a Galois, degree ¢(q — 1) cover. Taking the associated degree ¢ cover, we obtain a singly
ramified Aff(q)-cover
Cy —Y.

We have that C,, is isomorphic to one of the covers Z;. Now for the actual Kodaira-Parshin
family X, — Y, — Y, we have an isogeny

Xgy — Prym(Z; - Y).

9,y
Looking at rational homology, this precisely gives
H{*(Z:,Y;Q) = H' (X, Q).

Moreover, the monodromy representation coincides with that coming from 7 (Y, y)o in the
second definition of Mon. Thus it suffices to prove Theorem 9.2.2 to show that the Kodaira-
Parshin family has full monodromy.

Reduction from the fundamental group to a mapping class group

Recall that we first defined

Mon : MCG(Y — {y})z — Sp(H{"(Z,Y)).
By taking their intersections we have a map

Mon : MCG(Y — {y})o — Sp(H{ " (Z,Y)).

and then restricted it to 7 (Y, y)o. We claim that we can just work with Mon : MCG(Y — {y})o;
that is, to show that the image of 7 (Y, y)o is Zariski-dense, we just need to show that the im-
age of MCG(Y — {y})o is Zariski-dense.
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Theorem 9.3.1 (Birman exact sequence). Let Y be a surface, possibly with punctures and/or
boundary, with x(Y') < 0. Then there is an exact sequence

1 - m(Y,y) > MCG(Y,y) - MCG(Y) — 1.

Then one shows that the image of 71 (Y, y)o — Sp(H}"(Z;,Y)) on any of the N factors is not
contained in the center of the image. Then since 7 (Y, y)o is a normal subgroup of MCG(Y —
{y})o and the symplectic groups are almost simple, we conclude that it suffices to show that
the monodromy map

Mon : MCG(Y — {y})o — Sp(H{"(Z,Y))

has Zariski-dense image.

9.4 A normal form for singly ramified Aff(¢)-covers

We would like to put the singly ramified Aff(q) covers into a nice normal form where they are
trivial over S,_; and nontrivial over 7', where Y = S,_#T. Precisely, write Sg_1=284-1—-D
and 7° = T — D’ and identify the boundaries of the open disks D, D’ to form Y. This can be
done so that the ramifiction point y is in the interior of 7, the cover Z — Y splits over S;_,,
and when it is restricted to 7° extends over T’ (i.e. has trivial monodromy around the boundary
of T'). Furthermore, letting ;, 52 be a standard basis for (71 (T — {y}, *), monodromy sends 3,
to a generator of Fy < Aff(¢) and 3, to a generator of I/ = Aff(q).

We only give the general idea. A singly ramified Aff(¢)-cover Z — Y is associated to a
surjection 71 (Y —{y}, y0) — Aff(q). The map on abelianizations H,(Y,Z) — F; canbe induced
by intersecting with a simple closed curve «;. Cut Y along two such curves o, a; on either
side of y. The result is a surface Y'! with boundary, Use Poincare duality

H(YYovlz) x H(YY,Z) > Z

to construct a ‘unit’ element ap € Hy(Y'!,0Y';Z). Cutting Y'! along a», we obtain the desired
Sg—1-

9.5 Dehn twists and completion of the proof

We sketch the completion of the proof. We use the following fact, which can be viewed as an
algebraic version of Goursat’s lemma.

Proposition 9.5.1. Suppose G is an algebraic subgroup of Sp(V)" such that
 Each projection 7r; : G — Sp(V) is surjective.

e For1 < i < j < N, there exists g € G such that m;(g) and ©;(g) are unipotent with fixed
spaces of different dimensions.

For the second, one can show that for two non-isomorphic covers Z;, Z;, then there is some
simple closed curve n in Y such that the cycle decompositions of monodromy around 7 in Z;
and Z, are different.

For the first, we reduce the problem even further to just showing that each map

Mon : MCG(Y)z, — Sp(H{*(Z;,Y))
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has Zariski-dense image. Indeed, we are just taking a finite-index subgroup of what we started
with, which will have the same Zariski closure in the image because the image is connected.
We prove Zariski-density by showing that there are enough curves on Y whose corresponding
Dehn twists generate what we need. For this we need the normal form of Z; explained in the
previous section.
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