Arithmetic Siegel-Weil formula on $\mathcal{X}_{0}(N)$

Baiqing Zhu

Department of Mathematics
Columbia University

$$
\text { July 13, } 2023
$$

Contents

- Geometric Siegel-Weil formula on $X_{0}(1)$.

■ Integral model $\mathcal{X}_{0}(N)$.

- Arithmetic Sigel-Weil formula.
- Associated RZ spaces.
- Difference formulas.
- Geometric side
- Analytic side

Special cycles on the modular curve $X_{0}(1)$

- Let $Y_{0}(1):=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathcal{H}$ be the modular curve, it parameterize elliptic curves over \mathbb{C} by

$$
\tau \in \mathcal{H} \longmapsto E_{\tau}=\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau
$$

Let $X_{0}(1)$ be its compactification.
■ Given an integer $m>0$, we consider the following moduli problem: for a \mathbb{C}-scheme S,

$$
\begin{aligned}
& Z(m)(S)=\{(E, \alpha): E / S \text { is an elliptic curve, } \\
& \left.\quad \alpha \in \operatorname{End}_{S}(E) \text { satisfying } \alpha^{2}=-m .\right\}
\end{aligned}
$$

Counting points on the modular curve $X_{0}(1)$

- The moduli problem $Z(m)$ parameterise elliptic curves with complex multiplication by the order $\mathcal{O}_{m}=\mathbb{Z}+\mathbb{Z} \cdot \sqrt{-m}$.
■ It can be shown the set $Z(m)(\mathbb{C})$ consists of finitely many points.

A natural question: what's $\# Z(m)(\mathbb{C})$?

Counting points on the modular curve $X_{0}(1)$

$$
\# Z(m)(\mathbb{C})=\sum_{E} \#\left\{\alpha \in \operatorname{End}_{\mathbb{C}}(E): \alpha^{2}=-m .\right\} / \operatorname{aut}(E)
$$

Counting points on the modular curve $X_{0}(1)$

$$
\# Z(m)(\mathbb{C})=\sum_{E} \#\left\{\alpha \in \operatorname{End}_{\mathbb{C}}(E): \alpha^{2}=-m \cdot\right\} / \operatorname{aut}(E)
$$

If $E=E_{\tau}$ appears on the right hand side, then τ satisfies a quadratic equation

$$
a \tau^{2}+b \tau+c=0
$$

where $a, b, c \in \mathbb{Z}$ and $\operatorname{gcd}(a, b, c)=1$, the discriminant of this equation is $b^{2}-4 a c$.

Recall that the discriminant of \mathcal{O}_{m} is $-4 m$, then there exists an integer $k>0$ such that

$$
-4 m=k^{2}\left(b^{2}-4 a c\right)
$$

Counting points on the modular curve $X_{0}(1)$

Then by the theory of complex multiplication, we have

$$
\begin{aligned}
\# Z(m)(\mathbb{C}) & =\sum_{E} \#\left\{\alpha \in \operatorname{End}_{\mathbb{C}}(E): \alpha^{2}=-m .\right\} / \operatorname{aut}(E) . \\
& =\sum_{k>0: k^{2} \mid 4 m} h\left(\frac{4 m}{k^{2}}\right)=H(4 m)
\end{aligned}
$$

Recall that for a positive integer N,
$H(N)=\# \mathrm{SL}_{2}(\mathbb{Z})$-equivalence classes of positive definite binary quadratic form of disc $-N$.
$h(N)=\# \mathrm{SL}_{2}(\mathbb{Z})$-equivalence classes of primitive positive definite binary quadratic form of disc $-N$.

Geometric Sigel-Weil formula on $X_{0}(1)$

- The modular curve $X_{0}(1)$ is the (compactified) GSpin Shimura variety attached to the rank 3 quadratic lattice $V=\mathrm{M}_{2}(\mathbb{Z})^{\mathrm{tr}=0}$, because

$$
\operatorname{GSpin}\left(V_{\mathbb{Q}}\right) \simeq \mathrm{GL}_{2}, \operatorname{GSpin}(V) \simeq \mathrm{GL}_{2}(\mathbb{Z})
$$

- There is an Eisenstein series $E\left(z, s, 1_{V \otimes \hat{\mathbb{Z}}}\right)$ associated to the lattice V via Weil representation.

Geometric Sigel-Weil formula on $X_{0}(1)$

- The modular curve $X_{0}(1)$ is the (compactified) GSpin Shimura variety attached to the rank 3 quadratic lattice $V=\mathrm{M}_{2}(\mathbb{Z})^{\mathrm{tr}=0}$, because

$$
\operatorname{GSpin}\left(V_{\mathbb{Q}}\right) \simeq \mathrm{GL}_{2}, \mathrm{GSpin}(V) \simeq \mathrm{GL}_{2}(\mathbb{Z})
$$

- There is an Eisenstein series $E\left(z, s, 1_{V \otimes \hat{Z}}\right)$ associated to the lattice V via Weil representation.

Theorem (Geometric Sigel-Weil formula on $Y_{0}(1)$)

Let $m>0$ be an integer, then

$$
\# Z(m)(\mathbb{C}) \cdot q^{m}=\frac{1}{12} \cdot E_{m}\left(z, \frac{1}{2}, 1_{V \otimes \hat{\mathbb{Z}}}\right)
$$

Computing the Eisenstein series

We can also compute the Fourier coefficients $E_{m}\left(z, \frac{1}{2}, 1_{V \otimes \hat{Z}}\right)$ in the following way,

$$
E_{m}\left(z, \frac{1}{2}, 1_{V \otimes \hat{\mathbb{Z}}}\right)=4 \pi(1+i) \sqrt{m} \cdot q^{m} \prod_{p} W_{m, p}\left(1, \frac{1}{2}, 1_{V \otimes \mathbb{Z}_{p}}\right)
$$

Computing the Eisenstein series

We can also compute the Fourier coefficients $E_{m}\left(z, \frac{1}{2}, 1_{V \otimes \hat{\mathbb{Z}}}\right)$ in the following way,

$$
E_{m}\left(z, \frac{1}{2}, 1_{V \otimes \hat{\mathbb{Z}}}\right)=4 \pi(1+i) \sqrt{m} \cdot q^{m} \prod_{p} W_{m, p}\left(1, \frac{1}{2}, 1_{V \otimes \mathbb{Z}_{p}}\right)
$$

Assume $-m<-4$ is a fundamental discriminant, by the works of Kudla, Rapoport and Yang

$$
E_{m}\left(z, \frac{1}{2}, 1_{V \otimes \hat{\mathbb{Z}}}\right)=\left(3-\chi_{m}(2)\right) \cdot \frac{\sqrt{m}}{\pi} L\left(1, \chi_{m}\right) \cdot q^{m}
$$

Geometric Siegel-Weil v.s. Class number formula

On the other hand,

$$
H(4 m)=h(m)+h(4 m)=\left(3-\chi_{m}(2)\right) \cdot h(m) .
$$

Geometric Siegel-Weil v.s. Class number formula

On the other hand,

$$
H(4 m)=h(m)+h(4 m)=\left(3-\chi_{m}(2)\right) \cdot h(m) .
$$

The geometric Siegel-Weil formula on $Y_{0}(1)$ implies

Theorem (Class number formula)
Let $-m<-4$ be a fundamental discriminant, then

$$
h(m)=\frac{\sqrt{m}}{\pi} L\left(1, \chi_{m}\right)
$$

The modular curve $Y_{0}(N)$

■ Let $Y_{0}(N)=\Gamma_{0}(N) \backslash \mathcal{H}$, and $X_{0}(N)=Y_{0}(N) \cup\{$ cusps $\}$. The modular curve $Y_{0}(N)$ parameterize cyclic isogenies between elliptic curves over \mathbb{C} by the following

$$
\tau \in \mathcal{H} \longmapsto\left(E_{\tau}=\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau \rightarrow E_{\frac{\tau}{N}}\right)
$$

■ Given an integer $m>0$, we consider the following moduli problem: for a \mathbb{C}-scheme S,

$$
Z(m)(S)=\left\{\left(E \xrightarrow{\pi} E^{\prime}, \alpha\right): E \xrightarrow{\pi} E^{\prime}\right. \text { is a cyclic isogeny between }
$$ elliptic curves, $\alpha \in \operatorname{Hom}_{S}\left(E, E^{\prime}\right)$ satisfies

$$
\left.\alpha^{\vee} \circ \pi+\pi^{\vee} \circ \alpha=0 \text { and } \alpha^{\vee} \circ \alpha=m .\right\} .
$$

Geometric Siegel-Weil formula on $X_{0}(N)$

Let $N>0$ be an integer, and $\Delta(N)$ be the following rank 3 quadratic lattice over \mathbb{Z},

$$
\Delta(N)=\left\{x=\left(\begin{array}{cc}
-N a & b \\
c & a
\end{array}\right): a, b, c \in \mathbb{Z}\right\}
$$

Geometric Siegel-Weil formula on $X_{0}(N)$

Let $N>0$ be an integer, and $\Delta(N)$ be the following rank 3 quadratic lattice over \mathbb{Z},

$$
\Delta(N)=\left\{x=\left(\begin{array}{cc}
-N a & b \\
c & a
\end{array}\right): a, b, c \in \mathbb{Z}\right\} .
$$

Then the geometric Siegel-Weil formula on $X_{0}(N)$ is proved by Tuoping and Tonghai [DY19],

Theorem (Geometric Siegel-Weil formula on $X_{0}(N)$)
For an integer $m>0$, we have

$$
\# Z(m)(\mathbb{C}) \cdot q^{m}=\frac{\psi(N)}{12} E\left(z, \frac{1}{2}, 1_{\Delta(N)(\hat{\mathbb{Z}})}\right) .
$$

here $\psi(N)=N \prod_{p \mid N}\left(1+p^{-1}\right)$.

The stack $\mathcal{X}_{0}(N)$

Let $\mathcal{Y}_{0}(N)$ be the stack of $\Gamma_{0}(N)$-level structures on elliptic curves defined by Katz and Mazur in [KM85]: for a scheme S,

$$
\mathcal{Y}_{0}(N)(S)=\left\{E \xrightarrow{\pi} E^{\prime}: \pi \text { is a cyclic isogeny and } \pi^{\vee} \circ \pi=N\right\} .
$$

The stack $\mathcal{X}_{0}(N)$

Let $\mathcal{Y}_{0}(N)$ be the stack of $\Gamma_{0}(N)$-level structures on elliptic curves defined by Katz and Mazur in [KM85]: for a scheme S,

$$
\mathcal{Y}_{0}(N)(S)=\left\{E \xrightarrow{\pi} E^{\prime}: \pi \text { is a cyclic isogeny and } \pi^{\vee} \circ \pi=N\right\} .
$$

here π is cyclic means that the order N group scheme $G:=\operatorname{ker}(\pi)$ is a cyclic group scheme in the sense that there exists a section $P \in G(S)$ such that for any $f \in \mathcal{O}_{G}$,

$$
\operatorname{det}(T-f)=\prod_{a=1}^{N}(T-f(a P))
$$

Let $\mathcal{X}_{0}(N)$ be its compactification.

Special cycles on $\mathcal{X}_{0}(N)$

- Given an integer $m>0$, we consider the following moduli problem: for a scheme S,

$$
Z(m)(S)=\left\{\left(E \xrightarrow{\pi} E^{\prime}, \alpha\right): \pi \text { is a cyclic } N \text {-isogeny, } \alpha\right. \text { is }
$$ an isogeny from E to E^{\prime} satisfying $\alpha^{\vee} \circ \alpha=m$ and $\left.\alpha^{\vee} \circ \pi+\pi^{\vee} \circ \alpha=0.\right\}$.

It is a generalized Cartier divisor on $\mathcal{X}_{0}(N)$ and has no intersections with cusps.

Special cycles on $\mathcal{X}_{0}(N)$

■ Given an integer $m>0$, we consider the following moduli problem: for a scheme S,

$$
\begin{aligned}
Z(m)(S)= & \left\{\left(E \xrightarrow[\rightarrow]{\rightarrow} E^{\prime}, \alpha\right): \pi \text { is a cyclic } N \text {-isogeny, } \alpha\right. \text { is } \\
& \text { an isogeny from } E \text { to } E^{\prime} \text { satisfying } \alpha^{\vee} \circ \alpha=m \\
& \text { and } \left.\alpha^{\vee} \circ \pi+\pi^{\vee} \circ \alpha=0 .\right\} .
\end{aligned}
$$

It is a generalized Cartier divisor on $\mathcal{X}_{0}(N)$ and has no intersections with cusps.

- Given a 2×2 positive definite symmetric matrix T, we define the moduli problem $\mathcal{Z}(T)$ as follows: for a scheme S,
$\mathcal{Z}(T)(S)=\left\{\left(E \xrightarrow{\pi} E^{\prime}, \alpha_{1}, \alpha_{2}\right): \pi\right.$ is a cyclic N-isogeny, α_{i} are isogenies from E to E^{\prime} satisfying $\frac{1}{2}\left(\alpha_{i}, \alpha_{j}\right)=T$ and $\left.\alpha_{i}^{\vee} \circ \pi+\pi^{\vee} \circ \alpha_{i}=0.\right\}$.

The special cycle $\mathcal{Z}(T)$

Let $T \in \operatorname{Sym}_{2}(\mathbb{Q})$ be a nonsingular matrix, we define the following difference set
$\operatorname{Diff}(T, \Delta(N))=\{I$ is a finite prime : T is not represented

$$
\text { by } \left.\Delta(N) \otimes \mathbb{Q}_{1 .}\right\}
$$

The special cycle $\mathcal{Z}(T)$

Let $T \in \operatorname{Sym}_{2}(\mathbb{Q})$ be a nonsingular matrix, we define the following difference set
$\operatorname{Diff}(T, \Delta(N))=\{I$ is a finite prime $: T$ is not represented

$$
\text { by } \left.\Delta(N) \otimes \mathbb{Q}_{l} \cdot\right\}
$$

Lemma

Let $T \in \operatorname{Sym}_{2}(\mathbb{Q})$ be a nonsingular matrix. If $\mathcal{Z}(T)\left(\overline{\mathbb{F}}_{p}\right) \neq \varnothing$ for some prime p, then T is positive definite, and

$$
\operatorname{Diff}(T, \Delta(N))=\{p\}
$$

Moreover, in this case, the special cycle $\mathcal{Z}(T)$ is supported in the supersingular locus of the special fiber $\mathcal{X}_{0}(N)_{\mathbb{F}_{p}}$.

Arithmetic Siegel-Weil formula on $\mathcal{X}_{0}(N)$

Let T be a 2×2 positive definite symmetric matrix with diagonal elements m_{1}, m_{2}, then we define

$$
\operatorname{deg}(\mathcal{Z}(T))=\chi\left(\mathcal{Z}(T), \mathcal{O}_{\mathcal{Z}\left(m_{1}\right)} \otimes^{\mathbb{L}} \mathcal{O}_{\mathcal{Z}\left(m_{2}\right)}\right) \cdot \log p
$$

where $p \in \operatorname{Diff}(T, \Delta(N))$.

Arithmetic Siegel-Weil formula on $\mathcal{X}_{0}(N)$

Let T be a 2×2 positive definite symmetric matrix with diagonal elements m_{1}, m_{2}, then we define

$$
\operatorname{deg}(\mathcal{Z}(T))=\chi\left(\mathcal{Z}(T), \mathcal{O}_{\mathcal{Z}\left(m_{1}\right)} \otimes^{\mathbb{L}} \mathcal{O}_{\mathcal{Z}\left(m_{2}\right)}\right) \cdot \log p
$$

where $p \in \operatorname{Diff}(T, \Delta(N))$.
Theorem (Arithmetic Siegel-Weil formula on $\mathcal{X}_{0}(N)$)
Let $T \in \operatorname{Sym}_{2}(\mathbb{Q})$ be a positive definite symmetric matrix, then

$$
\operatorname{deg}(\mathcal{Z}(T)) q^{T}=\frac{\psi(N)}{24} \cdot E^{\prime}\left(z, 0,1_{(\Delta(N) \otimes \hat{\mathbb{Z}})^{2}}\right)
$$

where $z=x+i y \in \mathcal{H}_{2}$ and $q^{T}=e^{2 \pi i \operatorname{tr}(T z)}$.

Key ingredients

■ Formal uniformization of the supersingular locus of $\mathcal{X}_{0}(N)$.
It connects intersection numbers on $\mathcal{X}_{0}(N)$ with local arithmetic intersection numbers on the RZ space associated to $\mathcal{X}_{0}(N)$.

Key ingredients

- Formal uniformization of the supersingular locus of $\mathcal{X}_{0}(N)$. It connects intersection numbers on $\mathcal{X}_{0}(N)$ with local arithmetic intersection numbers on the RZ space associated to $\mathcal{X}_{0}(N)$.

■ Kudla-Rapoport conjecture for the RZ space associated to $\mathcal{X}_{0}(N)$.

It connects local arithmetic intersection numbers on RZ space with Whittaker functions.

Key ingredients

- Formal uniformization of the supersingular locus of $\mathcal{X}_{0}(N)$. It connects intersection numbers on $\mathcal{X}_{0}(N)$ with local arithmetic intersection numbers on the RZ space associated to $\mathcal{X}_{0}(N)$.

■ Kudla-Rapoport conjecture for the RZ space associated to $\mathcal{X}_{0}(N)$.

It connects local arithmetic intersection numbers on RZ space with Whittaker functions.

Both are proved by embedding trick!

$R Z$ space associated to $\mathcal{X}_{0}(1) \times \mathcal{X}_{0}(1)$

Let \mathbb{X} be a p-divisible group of $\operatorname{dim} 1$, height 2 . Consider the following functor: for every $S \in \operatorname{Nilp}_{W}$, the set $\mathcal{N}(S)$ consists of $\left(\left(X, X^{\prime}\right),\left(\rho, \rho^{\prime}\right),\left(\lambda, \lambda^{\prime}\right)\right)$, where
(1) X and X^{\prime} are two p-divisible group over S, ρ and ρ^{\prime} are two height 0 quasi-isogenies between p-divisible groups
$\rho: \mathbb{X} \times_{\mathbb{F}} \bar{S} \rightarrow X \times_{S} \bar{S}, \rho^{\prime}: \mathbb{X} \times_{\mathbb{F}} \bar{S} \rightarrow X^{\prime} \times_{S} \bar{S}$.
(2) $\lambda: X \rightarrow X^{\vee}, \lambda^{\prime}: X^{\prime} \rightarrow X^{\prime \vee}$ are two principal polarizations, such that Zariski locally on \bar{S}, we have

$$
\rho^{\vee} \circ \lambda \circ \rho=c(\rho) \cdot \lambda_{0}, \quad \rho^{\prime \vee} \circ \lambda \circ \rho^{\prime}=c\left(\rho^{\prime}\right) \cdot \lambda_{0} .
$$

for some $c(\rho)=c\left(\rho^{\prime}\right) \in \mathbb{Z}_{\rho}^{\times}$.

$R Z$ space associated to $\mathcal{X}_{0}(1) \times \mathcal{X}_{0}(1)$

Let \mathbb{X} be a p-divisible group of $\operatorname{dim} 1$, height 2 . Consider the following functor: for every $S \in \operatorname{Nilp}_{W}$, the set $\mathcal{N}(S)$ consists of $\left(\left(X, X^{\prime}\right),\left(\rho, \rho^{\prime}\right),\left(\lambda, \lambda^{\prime}\right)\right)$, where
(1) X and X^{\prime} are two p-divisible group over S, ρ and ρ^{\prime} are two height 0 quasi-isogenies between p-divisible groups
$\rho: \mathbb{X} \times_{\mathbb{F}} \bar{S} \rightarrow X \times_{S} \bar{S}, \rho^{\prime}: \mathbb{X} \times_{\mathbb{F}} \bar{S} \rightarrow X^{\prime} \times_{S} \bar{S}$.
(2) $\lambda: X \rightarrow X^{\vee}, \lambda^{\prime}: X^{\prime} \rightarrow X^{\prime \vee}$ are two principal polarizations, such that Zariski locally on \bar{S}, we have

$$
\rho^{\vee} \circ \lambda \circ \rho=c(\rho) \cdot \lambda_{0}, \quad \rho^{\wedge} \circ \lambda \circ \rho^{\prime}=c\left(\rho^{\prime}\right) \cdot \lambda_{0} .
$$

for some $c(\rho)=c\left(\rho^{\prime}\right) \in \mathbb{Z}_{\rho}^{\times}$.
$■ \mathcal{N} \simeq \operatorname{Spf} W\left[\left[t_{1}, t_{2}\right]\right]$.

Special cycles on \mathcal{N}

Let \mathbb{B} the unique division quaternion algebra over \mathbb{Q}_{p}, it is isometric to $\operatorname{End}^{0}(\mathbb{X})$.

Definition

For any subset $L \subset \mathbb{B}$, define the special cycle $\mathcal{Z}^{\sharp}(L) \subset \mathcal{N}$ to be the closed formal subscheme cut out by the condition,

$$
\rho^{\prime \text { univ }} \circ x \circ\left(\rho^{\text {univ }}\right)^{-1} \in \operatorname{Hom}\left(X^{\text {univ }}, X^{\prime \text { univ }}\right) .
$$

for all $x \in L$.

Special cycles on \mathcal{N}

Let \mathbb{B} the unique division quaternion algebra over \mathbb{Q}_{p}, it is isometric to $\operatorname{End}^{0}(\mathbb{X})$.

Definition

For any subset $L \subset \mathbb{B}$, define the special cycle $\mathcal{Z}^{\sharp}(L) \subset \mathcal{N}$ to be the closed formal subscheme cut out by the condition,

$$
\rho^{\prime \text { univ }} \circ x \circ\left(\rho^{\text {univ }}\right)^{-1} \in \operatorname{Hom}\left(X^{\text {univ }}, X^{\prime \text { univ }}\right)
$$

for all $x \in L$.
Let L be a rank 3 lattice with basis x_{1}, x_{2} and x_{3}. Define the local arithmetic intersection number on \mathcal{N} to be

$$
\operatorname{lnt}^{\sharp}(L)=\chi\left(\mathcal{N}, \mathcal{O}_{\mathcal{Z}^{\sharp}\left(x_{1}\right)} \otimes_{\mathcal{O}_{\mathcal{N}}}^{\mathbb{L}} \mathcal{O}_{\mathcal{Z}^{\sharp}\left(x_{2}\right)} \otimes_{\mathcal{O}_{\mathcal{N}}}^{\mathbb{L}} \mathcal{O}_{\mathcal{Z}^{\sharp}\left(x_{3}\right)}\right) .
$$

Difference divisor on \mathcal{N}

■ For any $x \in \mathbb{B}$, the special cycle $\mathcal{Z}^{\sharp}(x)$ is cut out by a single equation $f_{x} \in W\left[\left[t_{1}, t_{2}\right]\right]$, define $d_{x}=f_{x} / f_{p^{-1} x} \in W\left[\left[t_{1}, t_{2}\right]\right]$ and the difference divisor $\mathcal{D}(x)=\operatorname{Spf} W\left[\left[t_{1}, t_{2}\right]\right] /\left(d_{x}\right)$

Difference divisor on \mathcal{N}

- For any $x \in \mathbb{B}$, the special cycle $\mathcal{Z}^{\sharp}(x)$ is cut out by a single equation $f_{x} \in W\left[\left[t_{1}, t_{2}\right]\right]$, define $d_{x}=f_{x} / f_{p^{-1} x} \in W\left[\left[t_{1}, t_{2}\right]\right]$ and the difference divisor $\mathcal{D}(x)=\operatorname{Spf} W\left[\left[t_{1}, t_{2}\right]\right] /\left(d_{x}\right)$

Theorem

The difference divisor $\mathcal{D}(x)$ is regular.
Recently we have proved that difference divisors on GSpin RZ spaces with hyperspecial level structure are regular, the formal scheme \mathcal{N} is a special example of such RZ spaces.

RZ space associated to $\mathcal{X}_{0}(N)$

Fix a N-isogeny $x_{0}: \mathbb{X} \rightarrow \mathbb{X}$. Consider the following functor: for every $S \in \operatorname{Nilp}_{W}$, the set $\mathcal{N}_{0}(N)(S)$ consists of $\left(X \xrightarrow{X} X^{\prime},\left(\rho, \rho^{\prime}\right),\left(\lambda, \lambda^{\prime}\right)\right)$, where
(1) X and X^{\prime}
(2) $\lambda: X \rightarrow X^{\vee}, \lambda^{\prime}: X^{\prime} \rightarrow X^{\prime \vee} \ldots$
(3) $x: X \rightarrow X^{\prime}$ is a cyclic isogeny (i.e., $\operatorname{ker}(x)$ is a cyclic group scheme over S) lifting $\rho^{\prime} \circ x_{0} \circ \rho^{-1}$.

RZ space associated to $\mathcal{X}_{0}(N)$

Fix a N-isogeny $x_{0}: \mathbb{X} \rightarrow \mathbb{X}$. Consider the following functor: for every $S \in \operatorname{Nilp}_{W}$, the set $\mathcal{N}_{0}(N)(S)$ consists of
$\left(X \xrightarrow{X} X^{\prime},\left(\rho, \rho^{\prime}\right),\left(\lambda, \lambda^{\prime}\right)\right)$, where
(1) X and $X^{\prime} \ldots$
(2) $\lambda: X \rightarrow X^{\vee}, \lambda^{\prime}: X^{\prime} \rightarrow X^{\wedge} \ldots$
(3) $x: X \rightarrow X^{\prime}$ is a cyclic isogeny (i.e., $\operatorname{ker}(x)$ is a cyclic group scheme over S) lifting $\rho^{\prime} \circ x_{0} \circ \rho^{-1}$.

Theorem ([KM85])

The natural morphism $\mathcal{N}_{0}(N) \rightarrow \mathcal{N}$ is a closed immersion, and $\mathcal{N}_{0}(N)$ is regular.

An isomorphism

Recall that we have fixed a N-isogeny x_{0} when we define $\mathcal{N}_{0}(N)$.

Theorem

There is an isomorphism between formal schemes,

$$
\mathcal{D}\left(x_{0}\right) \xrightarrow{\sim} \mathcal{N}_{0}(N) .
$$

Remark

■ By the isomorphism and Zink's windows theory, we can compute the special fiber $\mathcal{N}_{0}\left(p^{n}\right)_{p}$ as follows

$$
\mathbb{F}\left[\left[t_{1}, t_{2}\right]\right] /\left(\left(t_{1}-t_{2}^{p^{n}}\right) \cdot\left(t_{2}-t_{1}^{p^{n}}\right) \cdot \prod_{\substack{a+b=n \\ a, b \geq 1}}\left(t_{1}^{p^{a-1}}-t_{2}^{p^{p-1}}\right)^{p-1}\right) .
$$

which coincides with Katz-Mazur's computation.

Special cycles on $\mathcal{N}_{0}(N)$

$$
\text { Let } \mathbb{W}=\left\{x_{0}\right\}^{\perp} \subset \mathbb{B} .
$$

Definition

For any subset $M \subset \mathbb{W}$, define the special cycle $\mathcal{Z}(M) \subset \mathcal{N}_{0}(N)$ to be the closed formal subscheme cut out by the condition,

$$
\rho^{\prime \text { univ }} \circ x \circ\left(\rho^{\text {univ }}\right)^{-1} \in \operatorname{Hom}\left(X^{\text {univ }}, X^{\prime \text { univ }}\right)
$$

for all $x \in M$.
Let M be a rank 2 lattice with basis x_{1} and x_{2}. Define the local arithmetic intersection number on $\mathcal{N}_{0}(N)$ to be

$$
\operatorname{lnt}(M)=\chi\left(\mathcal{N}_{0}(N), \mathcal{O}_{\mathcal{Z}\left(x_{1}\right)} \otimes_{\mathcal{O}_{\mathcal{N}_{0}(N)}}^{\mathbb{I}} \mathcal{O}_{\mathcal{Z}\left(x_{2}\right)}\right)
$$

Difference formula at the geometric side

By the isomorphism $\mathcal{D}\left(x_{0}\right) \simeq \mathcal{N}_{0}(N)$, we can prove the following theorem

Theorem

For any rank 2 lattice $M \subset \mathbb{W}$, the following identity holds,

$$
\operatorname{lnt}(M)=\operatorname{lnt} t^{\sharp}\left(M \oplus \mathbb{Z}_{p} \cdot x_{0}\right)-\operatorname{lnt} t^{\sharp}\left(M \oplus \mathbb{Z}_{p} \cdot p^{-1} x_{0}\right)
$$

Local density

- For two quadratic lattice L and M, the local density is defined to be

$$
\operatorname{Den}(M, L)=\lim _{d \rightarrow \infty} \frac{\# \operatorname{Rep}_{M, L}\left(\mathbb{Z}_{p} / p^{d}\right)}{p^{d \cdot \operatorname{dim}\left(\operatorname{Rep}_{M, L}\right) \mathbb{Q}_{p}}}
$$

■ Let H be a rank 2 quadratic lattice given by $q_{H}(x, y)=x y$, define the local density polynomial to be (rank $L=2 n-1$)

$$
\left.\operatorname{Den}(X, L)\right|_{X=p^{-k}}=\frac{\operatorname{Den}\left(H^{k+n}, L\right)}{\operatorname{Nor}^{+}\left(p^{-k}, 2 n-1\right)}
$$

where $\operatorname{Nor}^{\varepsilon}(X, m)=$

$$
\left(1-\frac{1+(-1)^{m+1}}{2} \cdot \varepsilon q^{-(m+1) / 2} X\right) \prod_{1 \leq i<(m+1) / 2}\left(1-q^{-2 i} X^{2}\right)
$$

Examples of local density

- When m is squarefree, then

$$
\operatorname{Den}\left(\Delta(1) \otimes \mathbb{Z}_{p},\langle m\rangle\right)=1-\chi_{m}(p) p^{-1}
$$

■ When $\nu_{p}(N)=0$ or 1 , we have

$$
\operatorname{Den}\left(H^{k},\langle N\rangle\right)= \begin{cases}\left(1-p^{-k}\right)\left(1+p^{1-k}\right), & \text { when } p \mid N ; \\ 1-p^{-k}, & \text { when } p \nmid N .\end{cases}
$$

Difference formula at the analytic side

Let $\delta_{p}(N)=\Delta(N) \otimes \mathbb{Z}_{p}$, define the following local density function with level N,

$$
\left.\operatorname{Den}_{\Delta(N)}(X, M)\right|_{X=p^{-k}}= \begin{cases}\frac{\operatorname{Den}\left(\delta_{p}(N) \oplus H^{k}, M\right)}{\operatorname{Nor}^{+}\left(p^{-k}, 1\right)}, & \text { when } p \mid N ; \\ \frac{\operatorname{Den}\left(\delta_{p}(N) \oplus H^{k}, M\right)}{\operatorname{Nor}^{(N, p)_{p}}\left(p^{-k}, 2\right)}, & \text { when } p \nmid N .\end{cases}
$$

Theorem

For any rank 2 lattice $M \subset \mathbb{W}$, the following identity holds, $\operatorname{Den}_{\Delta(N)}(X, M)=\operatorname{Den}\left(X, M \oplus \mathbb{Z}_{p} \cdot x_{0}\right)-X^{2} \cdot \operatorname{Den}\left(X, M \oplus \mathbb{Z}_{p} \cdot p^{-1} x_{0}\right)$.

Difference formula at the analytic side

- We also define

$$
\begin{aligned}
\partial \operatorname{Den}(L) & =-\left.\frac{\mathrm{d}}{\mathrm{~d} X}\right|_{X=1} \operatorname{Den}(X, L) \\
\partial \operatorname{Den}_{\Delta(N)}(M) & =-\left.\frac{\mathrm{d}}{\mathrm{~d} X}\right|_{X=1} \operatorname{Den}_{\Delta(N)}(X, M)
\end{aligned}
$$

Corollary

The lattice $M \oplus \mathbb{Z}_{p} \cdot x_{0}$ can't be isometrically embedded into the lattice H^{2}, hence $\operatorname{Den}\left(1, M \oplus \mathbb{Z}_{p} \cdot x_{0}\right)=0$.

$$
\partial \operatorname{Den}_{\Delta(N)}(M)=\partial \operatorname{Den}\left(M \oplus \mathbb{Z}_{p} \cdot x_{0}\right)-\partial \operatorname{Den}\left(M \oplus \mathbb{Z}_{p} \cdot p^{-1} x_{0}\right)
$$

A theorem of Gross and Keating

Theorem ([GK93],[Rap07],[Wed07])

For any rank 3 lattice $L \subset \mathbb{B}$,

$$
\operatorname{lnt} t^{\sharp}(L)=\partial \operatorname{Den}(L) .
$$

A theorem of Gross and Keating

Theorem ([GK93],[Rap07],[Wed07])

For any rank 3 lattice $L \subset \mathbb{B}$,

$$
\operatorname{lnt}{ }^{\sharp}(L)=\partial \operatorname{Den}(L) .
$$

Combing this with two difference formulas, we obtain
Theorem (KR conjecture for the RZ space $\mathcal{N}_{0}(N)$)
For any rank 2 lattice $M \subset \mathbb{W}$,

$$
\operatorname{lnt}(M)=\partial \operatorname{Den}_{\Delta(N)}(M)
$$

Formal uniformization

- There is an isomorphism of formal stacks over W,
$\hat{\mathcal{X}}_{0}(N) /\left(\mathcal{X}_{0}(N)_{\mathbb{F}_{p}}^{s s}\right) \xrightarrow[\sim]{\Theta_{\mathcal{X}_{0}(N)}} B^{\times}(\mathbb{Q})_{0} \backslash\left[\mathcal{N}_{0}(N) \times \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) / \Gamma_{0}(N)\left(\hat{\mathbb{Z}}^{p}\right)\right]$
where $B^{\times}(\mathbb{Q})_{0}$ is the subgroup of $B^{\times}(\mathbb{Q})$ consisting of elements whose norm has p-adic valuation 0 .

Formal uniformization

- There is an isomorphism of formal stacks over W,
$\hat{\mathcal{X}}_{0}(N) /\left(\mathcal{X}_{0}(N)_{\mathbb{F}_{p}}^{s s}\right) \xrightarrow[\sim]{\Theta_{\mathcal{X}_{0}(N)}} B^{\times}(\mathbb{Q})_{0} \backslash\left[\mathcal{N}_{0}(N) \times \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) / \Gamma_{0}(N)\left(\hat{\mathbb{Z}}^{p}\right)\right]$
where $B^{\times}(\mathbb{Q})_{0}$ is the subgroup of $B^{\times}(\mathbb{Q})$ consisting of elements whose norm has p-adic valuation 0 .

As a corollary, we have the formal uniformization of the special cycles,

$$
\begin{aligned}
\hat{\mathcal{Z}}^{s s}(T)= & \sum_{\substack{x \in B^{\times}(\mathbb{Q})_{0} \backslash\left(\Delta(N)^{(p)}\right)^{2} \\
T(x)=T}} \sum_{\substack{(x) B_{x}^{\times}(\mathbb{Q})_{0} \backslash G L_{2}\left(\mathbb{A}_{f}^{p}\right) / \Gamma_{0}(N)\left(\hat{\mathbb{Z}}^{p}\right)}} \\
& 1_{\Delta(N) \otimes \hat{\mathbb{Z}}^{p}}\left(g^{-1} \boldsymbol{x}\right) \cdot \Theta_{\mathcal{X}_{0}(N)}^{-1}(\mathcal{Z}(\boldsymbol{x}), g) .
\end{aligned}
$$

Proof strategy

Theorem

For any rank 2 lattice $M \subset \mathbb{W}$, the following identity holds,
$\operatorname{Den}_{\Delta(N)}(X, M)=\operatorname{Den}\left(X, M \oplus \mathbb{Z}_{p} \cdot x_{0}\right)-X^{2} \cdot \operatorname{Den}\left(X, M \oplus \mathbb{Z}_{p} \cdot p^{-1} x_{0}\right)$.

Key idea: First embed x_{0} to the large self-dual lattice H^{k}, the depth of the an embedding is defined to be

$$
x_{0} \in p^{t} H^{k}, \text { but } x_{0} \notin p^{t+1} H^{k}
$$

then embed M into $\left\{x_{0}\right\}^{\perp} \subset H^{k}$, which is totally determined by the depth of x_{0} !

Lemma (Witt theorem for lattices, [Mor79])

Let H be a self-dual quadratic lattice, if x_{1} and x_{2} has the same depth and norm, then there exists $g \in O(H)$ such that $g \cdot x_{1}=x_{2}$.

Thank you!

References

围 Tuoping Du and Tonghai Yang．Arithmetic Siegel－Weil formula on $X_{0}(N)$ ．Adv．Math．，345：702－755， 2019.
© Benedict H．Gross and Kevin Keating．On the intersection of modular correspondences．Invent．Math．，112（2）：225－245， 1993.

围 Nicholas M．Katz and Barry Mazur．Arithmetic Moduli of Elliptic Curves．（AM－108）．Princeton University Press， 1985.

圊 Karl A．Morin－Strom．Witt＇s Theorem for Modular Lattices． Amer．J．Math．，101（6）：1181－92， 1979.

目 Michael Rapoport．Deformations of isogenies of formal groups． Astérisque，（312）：139－169，2007．in Argos Seminar on Intersections of Modular Correspondences．
Torsten Wedhorn．Calculation of representation densities $\overline{\bar{i}}$

