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Special cycles on the modular curve X0(1)

Let Y0(1) := SL2(Z)\H be the modular curve, it parameterize
elliptic curves over C by

τ ∈ H 7−→ Eτ = C/Z+ Zτ.

Let X0(1) be its compactification.

Given an integer m > 0, we consider the following moduli
problem: for a C-scheme S ,

Z (m)(S) = {(E , α) :E/S is an elliptic curve,

α ∈ EndS(E ) satisfying α
2 = −m.}.
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Counting points on the modular curve X0(1)

The moduli problem Z (m) parameterise elliptic curves with
complex multiplication by the order Om = Z+ Z ·

√
−m.

It can be shown the set Z (m)(C) consists of finitely many
points.

A natural question: what’s #Z (m)(C)?
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Counting points on the modular curve X0(1)

#Z (m)(C) =
∑
E

#{α ∈ EndC(E ) : α
2 = −m.}/aut(E ).

If E = Eτ appears on the right hand side, then τ satisfies a
quadratic equation

aτ2 + bτ + c = 0.

where a, b, c ∈ Z and gcd(a, b, c) = 1, the discriminant of this
equation is b2 − 4ac.

Recall that the discriminant of Om is −4m, then there exists an
integer k > 0 such that

−4m = k2(b2 − 4ac).
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Counting points on the modular curve X0(1)

Then by the theory of complex multiplication, we have

#Z (m)(C) =
∑
E

#{α ∈ EndC(E ) : α
2 = −m.}/aut(E ).

=
∑

k>0:k2|4m

h(
4m

k2
) = H(4m).

Recall that for a positive integer N,

H(N) = #SL2(Z)-equivalence classes of positive definite

binary quadratic form of disc −N.

h(N) = #SL2(Z)-equivalence classes of primitive positive

definite binary quadratic form of disc −N.
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Geometric Sigel-Weil formula on X0(1)

The modular curve X0(1) is the (compactified) GSpin
Shimura variety attached to the rank 3 quadratic lattice
V = M2(Z)tr=0, because

GSpin(VQ) ≃ GL2, GSpin(V ) ≃ GL2(Z)

There is an Eisenstein series E (z , s, 1V⊗Ẑ) associated to the
lattice V via Weil representation.

Theorem (Geometric Sigel-Weil formula on Y0(1))

Let m > 0 be an integer, then

#Z (m)(C) · qm =
1

12
· Em(z ,

1

2
, 1V⊗Ẑ).
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Computing the Eisenstein series

We can also compute the Fourier coefficients Em(z ,
1
2 , 1V⊗Ẑ) in

the following way,

Em(z ,
1

2
, 1V⊗Ẑ) = 4π(1 + i)

√
m · qm

∏
p

Wm,p(1,
1

2
, 1V⊗Zp).

Assume −m < −4 is a fundamental discriminant, by the works of
Kudla, Rapoport and Yang

Em(z ,
1

2
, 1V⊗Ẑ) = (3− χm(2)) ·

√
m

π
L(1, χm) · qm.
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Geometric Siegel-Weil v.s. Class number formula

On the other hand,

H(4m) = h(m) + h(4m) = (3− χm(2)) · h(m).

The geometric Siegel-Weil formula on Y0(1) implies

Theorem (Class number formula)

Let −m < −4 be a fundamental discriminant, then

h(m) =

√
m

π
L(1, χm).
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The modular curve Y0(N)

Let Y0(N) = Γ0(N)\H, and X0(N) = Y0(N) ∪ {cusps}. The
modular curve Y0(N) parameterize cyclic isogenies between
elliptic curves over C by the following

τ ∈ H 7−→ (Eτ = C/Z+ Zτ → E τ
N
).

Given an integer m > 0, we consider the following moduli
problem: for a C-scheme S ,

Z (m)(S) = {(E π→E ′, α) : E
π→ E ′ is a cyclic isogeny between

elliptic curves, α ∈ HomS(E ,E
′) satisfies

α∨ ◦ π + π∨ ◦ α = 0 and α∨ ◦ α = m.}.
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Geometric Siegel-Weil formula on X0(N)

Let N > 0 be an integer, and ∆(N) be the following rank 3
quadratic lattice over Z,

∆(N) =

{
x =

(
−Na b
c a

)
: a, b, c ∈ Z

}
.

Then the geometric Siegel-Weil formula on X0(N) is proved by
Tuoping and Tonghai [DY19],

Theorem (Geometric Siegel-Weil formula on X0(N))

For an integer m > 0, we have

#Z (m)(C) · qm =
ψ(N)

12
E (z ,

1

2
, 1∆(N)(Ẑ)).

here ψ(N) = N
∏
p|N

(1 + p−1).
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The stack X0(N)

Let Y0(N) be the stack of Γ0(N)-level structures on elliptic curves
defined by Katz and Mazur in [KM85]: for a scheme S ,

Y0(N)(S) = {E π→ E ′ : π is a cyclic isogeny and π∨ ◦ π = N}.

here π is cyclic means that the order N group scheme G := ker(π)
is a cyclic group scheme in the sense that there exists a section
P ∈ G (S) such that for any f ∈ OG ,

det(T − f ) =
N∏

a=1

(T − f (aP)).

Let X0(N) be its compactification.
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Special cycles on X0(N)

Given an integer m > 0, we consider the following moduli
problem: for a scheme S ,

Z (m)(S) = {(E π→ E ′, α) : π is a cyclic N-isogeny, α is

an isogeny from E to E ′ satisfying α∨ ◦ α = m

and α∨ ◦ π + π∨ ◦ α = 0.}.
It is a generalized Cartier divisor on X0(N) and has no
intersections with cusps.

Given a 2× 2 positive definite symmetric matrix T , we define
the moduli problem Z(T ) as follows: for a scheme S ,

Z(T )(S) = {(E π→ E ′, α1, α2) : π is a cyclic N-isogeny, αi are

isogenies from E to E ′ satisfying
1

2
(αi , αj) = T

and α∨
i ◦ π + π∨ ◦ αi = 0.}.
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The special cycle Z(T )

Let T ∈ Sym2(Q) be a nonsingular matrix, we define the following
difference set

Diff(T ,∆(N)) = {l is a finite prime :T is not represented

by ∆(N)⊗Ql .}

Lemma

Let T ∈ Sym2(Q) be a nonsingular matrix. If Z(T )(Fp) ̸= ∅ for
some prime p, then T is positive definite, and

Diff(T ,∆(N)) = {p}.

Moreover, in this case, the special cycle Z(T ) is supported in the
supersingular locus of the special fiber X0(N)Fp .
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Arithmetic Siegel-Weil formula on X0(N)

Let T be a 2× 2 positive definite symmetric matrix with diagonal
elements m1,m2, then we define

deg(Z(T )) = χ(Z(T ),OZ(m1) ⊗
L OZ(m2)) · logp.

where p ∈ Diff(T ,∆(N)).

Theorem (Arithmetic Siegel-Weil formula on X0(N))

Let T ∈ Sym2(Q) be a positive definite symmetric matrix, then

deg(Z(T ))qT =
ψ(N)

24
· E ′(z , 0, 1(∆(N)⊗Ẑ)2).

where z = x + iy ∈ H2 and qT = e2πitr(Tz).
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Key ingredients

Formal uniformization of the supersingular locus of X0(N).

It connects intersection numbers on X0(N) with local
arithmetic intersection numbers on the RZ space associated to
X0(N).

Kudla-Rapoport conjecture for the RZ space associated to
X0(N).

It connects local arithmetic intersection numbers on RZ space
with Whittaker functions.

Both are proved by embedding trick!
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RZ space associated to X0(1)×X0(1)

Let X be a p-divisible group of dim 1, height 2. Consider the
following functor: for every S ∈ NilpW , the set N (S) consists of
((X ,X ′), (ρ, ρ′), (λ, λ′)), where
(1) X and X ′ are two p-divisible group over S , ρ and ρ′ are two
height 0 quasi-isogenies between p-divisible groups
ρ : X×F S → X ×S S , ρ′ : X×F S → X ′ ×S S .
(2) λ : X → X∨, λ′ : X ′ → X ′∨ are two principal polarizations,
such that Zariski locally on S , we have

ρ∨ ◦ λ ◦ ρ = c(ρ) · λ0, ρ′∨ ◦ λ ◦ ρ′ = c(ρ′) · λ0.

for some c(ρ) = c(ρ′) ∈ Z×
p .

N ≃ SpfW [[t1, t2]].
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Special cycles on N

Let B the unique division quaternion algebra over Qp, it is
isometric to End0(X).

Definition

For any subset L ⊂ B, define the special cycle Z♯(L) ⊂ N to be
the closed formal subscheme cut out by the condition,

ρ′univ ◦ x ◦ (ρuniv)−1 ∈ Hom(X univ,X ′univ).

for all x ∈ L.

Let L be a rank 3 lattice with basis x1, x2 and x3. Define the local
arithmetic intersection number on N to be

Int♯(L) = χ(N ,OZ♯(x1) ⊗
L
ON OZ♯(x2) ⊗

L
ON OZ♯(x3)).
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Difference divisor on N

For any x ∈ B, the special cycle Z♯(x) is cut out by a single
equation fx ∈ W [[t1, t2]], define dx = fx/fp−1x ∈ W [[t1, t2]]
and the difference divisor D(x) = SpfW [[t1, t2]]/(dx)

Theorem

The difference divisor D(x) is regular.

Recently we have proved that difference divisors on GSpin RZ
spaces with hyperspecial level structure are regular, the formal
scheme N is a special example of such RZ spaces.
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RZ space associated to X0(N)

Fix a N-isogeny x0 : X → X. Consider the following functor: for
every S ∈ NilpW , the set N0(N)(S) consists of
(X

x→ X ′, (ρ, ρ′), (λ, λ′)), where
(1) X and X ′ ...
(2) λ : X → X∨, λ′ : X ′ → X ′∨...
(3) x : X → X ′ is a cyclic isogeny (i.e., ker(x) is a cyclic group
scheme over S) lifting ρ′ ◦ x0 ◦ ρ−1.

Theorem ([KM85])

The natural morphism N0(N) → N is a closed immersion, and
N0(N) is regular.
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An isomorphism

Recall that we have fixed a N-isogeny x0 when we define N0(N).

Theorem

There is an isomorphism between formal schemes,

D(x0)
∼−→ N0(N).
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Remark

By the isomorphism and Zink’s windows theory, we can
compute the special fiber N0(p

n)p as follows

F[[t1, t2]]/

(t1 − tp
n

2 ) · (t2 − tp
n

1 ) ·
∏
a+b=n
a,b≥1

(tp
a−1

1 − tp
b−1

2 )p−1

 .

which coincides with Katz-Mazur’s computation.
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Special cycles on N0(N)

Let W = {x0}⊥ ⊂ B.

Definition

For any subset M ⊂ W, define the special cycle Z(M) ⊂ N0(N) to
be the closed formal subscheme cut out by the condition,

ρ′univ ◦ x ◦ (ρuniv)−1 ∈ Hom(X univ,X ′univ).

for all x ∈ M.

Let M be a rank 2 lattice with basis x1 and x2. Define the local
arithmetic intersection number on N0(N) to be

Int(M) = χ(N0(N),OZ(x1) ⊗
L
ON0(N)

OZ(x2)).
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Difference formula at the geometric side

By the isomorphism D(x0) ≃ N0(N), we can prove the following
theorem

Theorem

For any rank 2 lattice M ⊂ W, the following identity holds,

Int(M) = Int♯(M k Zp · x0)− Int♯(M k Zp · p−1x0).
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Local density

For two quadratic lattice L and M, the local density is defined
to be

Den(M, L) = lim
d→∞

#RepM,L(Zp/p
d)

pd ·dim(RepM,L)Qp
.

Let H be a rank 2 quadratic lattice given by qH(x , y) = xy ,
define the local density polynomial to be (rank L = 2n − 1)

Den(X , L)
∣∣
X=p−k =

Den(Hk+n, L)

Nor+(p−k , 2n − 1)
,

where Norε(X ,m) =

(1− 1+(−1)m+1

2 · εq−(m+1)/2X )
∏

1≤i<(m+1)/2

(1− q−2iX 2).
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Examples of local density

When m is squarefree, then

Den(∆(1)⊗ Zp, ⟨m⟩) = 1− χm(p)p
−1.

When νp(N) = 0 or 1, we have

Den(Hk , ⟨N⟩) =

{
(1− p−k)(1 + p1−k), when p |N;

1− p−k , when p ∤ N.
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Difference formula at the analytic side

Let δp(N) = ∆(N)⊗Zp, define the following local density function
with level N,

Den∆(N)(X ,M)
∣∣
X=p−k =


Den(δp(N) k Hk ,M)

Nor+(p−k , 1)
, when p |N;

Den(δp(N) k Hk ,M)

Nor(N,p)p(p−k , 2)
, when p ∤ N.

Theorem

For any rank 2 lattice M ⊂ W, the following identity holds,

Den∆(N)(X ,M) = Den(X ,MkZp ·x0)−X 2 ·Den(X ,MkZp ·p−1x0).
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Difference formula at the analytic side

We also define

∂Den(L) = − d

dX

∣∣∣∣
X=1

Den(X , L).

∂Den∆(N)(M) = − d

dX

∣∣∣∣
X=1

Den∆(N)(X ,M).

Corollary

The lattice M k Zp · x0 can’t be isometrically embedded into the
lattice H2, hence Den(1,M k Zp · x0) = 0.

∂Den∆(N)(M) = ∂Den(M k Zp · x0)− ∂Den(M k Zp · p−1x0).
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A theorem of Gross and Keating

Theorem ([GK93],[Rap07],[Wed07])

For any rank 3 lattice L ⊂ B,

Int♯(L) = ∂Den(L).

Combing this with two difference formulas, we obtain

Theorem (KR conjecture for the RZ space N0(N))

For any rank 2 lattice M ⊂ W,

Int(M) = ∂Den∆(N)(M).
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Formal uniformization

There is an isomorphism of formal stacks over W ,

X̂0(N)/(X0(N)ssFp )

ΘX0(N)−→
∼

B×(Q)0\[N0(N)×GL2(Ap
f )/Γ0(N)(Ẑp)]

where B×(Q)0 is the subgroup of B×(Q) consisting of
elements whose norm has p-adic valuation 0.

As a corollary, we have the formal uniformization of the
special cycles,

Ẑss(T ) =
∑

x∈B×(Q)0\(∆(N)(p))2

T (x)=T

∑
g∈B×

x (Q)0\GL2(Ap
f )/Γ0(N)(Ẑp)

1∆(N)⊗Ẑp(g
−1x) ·Θ−1

X0(N)(Z(x), g).
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Ẑss(T ) =
∑

x∈B×(Q)0\(∆(N)(p))2

T (x)=T

∑
g∈B×

x (Q)0\GL2(Ap
f )/Γ0(N)(Ẑp)
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Proof strategy

Theorem

For any rank 2 lattice M ⊂ W, the following identity holds,

Den∆(N)(X ,M) = Den(X ,MkZp ·x0)−X 2 ·Den(X ,MkZp ·p−1x0).

Key idea: First embed x0 to the large self-dual lattice Hk , the
depth of the an embedding is defined to be

x0 ∈ ptHk , but x0 /∈ pt+1Hk .

then embed M into {x0}⊥ ⊂ Hk , which is totally determined by
the depth of x0!

Lemma (Witt theorem for lattices, [Mor79])

Let H be a self-dual quadratic lattice, if x1 and x2 has the same
depth and norm, then there exists g ∈ O(H) such that g · x1 = x2.
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Thank you!
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